
1st Reading

August 3, 2011 18:57 WSPC/1793-5369 244-AADA 00081

Advances in Adaptive Data Analysis1

Vol. 3, No. 1 (2011) 1–152

c© World Scientific Publishing Company3

DOI: 10.1142/S17935369110008174

POSITIVELY CONSTRAINED TOTAL VARIATION5

PENALIZED IMAGE RESTORATION6

RAYMOND H. CHAN∗,‡, HAI-XIA LIANG∗,§ and JUN MA†,¶7

∗Department of Mathematics,8

The Chinese University of Hong Kong,9

Shatin, N.T., Hong Kong, P. R. China10

†Department of Statistics,11

Macquarie University, Australia12
‡rchan@math.cuhk.edu.hk13
§hxliang@math.cuhk.edu.hk14

¶jun.ma@mq.edu.au15

The total variation (TV) minimization models are widely used in image processing,16

mainly due to their remarkable ability in preserving edges. There are many methods17

for solving the TV model. These methods, however, seldom consider the positivity con-18

straint one should impose on image-processing problems. In this paper we develop and19

implement a new approach for TV image restoration. Our method is based on the multi-20

plicative iterative algorithm originally developed for tomographic image reconstruction.21

The advantages of our algorithm are that it is very easy to derive and implement under22

different image noise models and it respects the positivity constraint. Our method can be23

applied to various noise models commonly used in image restoration, such as the Gaus-24

sian noise model, the Poisson noise model, and the impulsive noise model. In the numer-25

ical tests, we apply our algorithm to deblur images corrupted by Gaussian noise. The26

results show that our method give better restored images than the forward–backward27

splitting algorithm.28

Keywords: Total variation; maximum penalized likelihood; multiplicative iterative29

algorithms; positivity constraint.30

1. Introduction31

The total variation (TV) image restoration is an important image-processing32

method due to its ability in preserving sharp edges in the restored image [Chambolle33

and Lions (1997); Vogel and Oman (1998); Strong and Chan (2003)]. The method34

is usually formulated as a penalized least squares with the TV penalty function35

[Vogel and Oman (1996, 1998)]. The existing numerical methods for solving this36

TV optimization problem include: partial differential equation (PDE) [Rudin et al.37

(1992)], primal-dual method using either Newton [Chan et al. (1996)] or conju-38

gate gradient [Vogel and Oman (1998)] optimizations, etc. However, these methods39

do not consider the positivity constraint imposed on the restored image, and usu-40

ally the pixel values are guaranteed to be nonnegative only in the last iteration41
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by a simple projection or a scaling. In this paper, we propose a new algorithm1

for solving TV penalized, and positively constrained, image restoration problems.2

Our approach uses the multiplicative iterative (MI) algorithm originally developed3

for tomographic image reconstruction [Ma (2010)] under quadratic penalty terms.4

Here, we modify it to solve the TV penalized image restoration problem. Moreover,5

we extend the error probability model from the traditional Gaussian distribution6

to other probability distributions, such as Poisson and Laplace (equivalent to L17

norm) distributions.8

The following notations are used throughout this paper. Let U ∈ R
p×q
+ be the9

unknown image, which requires to be estimated and Y ∈ R
p×q
+ be the observed10

blurry image, where R+ denotes the positive orthant of R. To simplify, images U11

and Y are lexicographically ordered into vectors, and we let u = (u1, . . . , un)T
12

denote the vectorized U and y = (y1, . . . , yn)T denote the vectorized Y, where13

superscript T represents matrix transpose and n = p ·q. We use these two notations14

of an image (i.e., two-dimensional (2D) U and its vectorized u) interchangeably15

when there is no confusion; an operation on u can be defined using U , and vice16

versa. For a function g(u) we use ∇g(u) to denote derivative of g with respect to17

u and ∇jg(u) the derivative of g with respect to uj .18

In this paper, we consider the statistical image restoration. Suppose the true
(unobserved) image u is distorted by a blurring mechanism (such as a point spread
function), which is denoted by an n × n matrix A. The expected observed image,
denoted by an n-vector µ, is given by

µ = Au.

However, due to noise contamination, we cannot observe µ directly; instead, we19

observe the blurred noisy image y. Our aim is to restore u from y.20

Statistical image restoration depends on the assumed probability model for the
observed image and the penalty function (also known as the log prior density func-
tion). The penalty is used to restrict the restored image so that it follows certain
local smoothness patterns. Assume that yi are independent (given u) and each
follows a probability model, i.e.

yi ∼ pi(yi |µi),

where pi(·) represents the probability density function (PDF) of yi and µi = Aiu
with Ai being the ith row of A. The penalized negative log-likelihood objective
function Ψ(u) for recovering u is given by

Ψ(u) = −
n∑

i=1

li(µi) + λJ(u), (1)

where li(µi) = log pi(yi |µi), λ > 0 is the smoothing parameter and J(u) is the
penalty function. The restored image û is given as the minimizer of Ψ(u) subject
to u ≥ 0, namely

û = argmin
u≥0

Ψ(u). (2)
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The first term of Eq. (1) represents the negative log-likelihood and it measures1

fidelity of the restored blurry image µ̂ = Aû to the observed image y. Its sec-2

ond term, on the other hand, measures smoothness of the restored image û. The3

smoothing parameter λ is included for the purpose of controlling the amount of4

smoothness of the restored image. A good smoothing parameter should balance5

well these two conflicting targets, namely data fidelity and smoothness. This paper6

will not discuss how to select an optimal smoothing value for λ. Our focus is on7

how to compute efficiently the solution to problem (2) and how to obtain a good8

approximation to the target image.9

The form of data-fitting term in Eq. (1) depends on the statistical noise model.10

Three kinds of common noise models are as follows:11

(1) Gaussian noise model: observed image intensities yi ∼ N(µ, σ2). In this model,
after combining variance σ2 with λ to form a new smoothing parameter, we
have

li(µi) = −1
2
(yi − µi)2. (3)

(2) Poisson noise model: observed image intensities yi ∼ Poisson(µi). This noise
model gives

li(µi) = −µi + yi log µi. (4)

(3) Impulsive noise model: observed image intensities yi ∼ Laplace(µi, σ
2). Similar

to the Gaussian noise model example, after combining σ2 with λ we can write

li(µi) = −|yi − µi|. (5)

In this paper, we consider the regularization function J(·) being the TV penalty12

function. Let ‖·‖2 be the Euclidean norm of the relevant space and Ω be the domain13

of image U . According to [Vogel and Oman (1998)], the TV penalty J(u) can be14

written as15

J(u) =
∫

(ξ1,ξ2)∈Ω

‖∇U‖2dξ1dξ2 ≈
n∑

j=1

√
(Rju)2 + (Cju)2 + β, (6)16

where Rj and Cj are respectively the jth row of the n× n matrices R and C. The
entries of Ru and Cu represent the first-order differences of U along the row and
column directions, respectively. If uj in u corresponds to Us,t in U , then

Rju =

{Us+1,t − Us,t for 1 ≤ s ≤ m − 1

U1,t − Um,t for s = m

Cju =

{Us,t+1 − Us,t for 1 ≤ t ≤ m − 1

Us,1 − Us,m for t = m

In Eq. (6), parameter β > 0 is included to avoid degenerate derivative of J(u).17



1st Reading

August 3, 2011 18:57 WSPC/1793-5369 244-AADA 00081

4 R. H. Chan, H.-X. Liang & J. Ma

We introduce a multiplicative iterative (MI) algorithm to solve the constrained1

optimization problem (2) where the penalty function J(u) is TV. We call this new2

method the MITV algorithm. The advantages of MITV are that it is very easy to3

derive and implement under different image noise models, such as Gaussian, Poisson4

and impulsive, and it respects the positivity constraint. In the numerical tests, we5

apply our algorithm to deblur images corrupted with Gaussian noise. The results6

show that our method gives better restored images than the forward–backward7

splitting (FBS) algorithm.8

The rest of this paper is arranged as follows. Section 2 reviews the FBS algorithm9

for TV image restoration. It is the algorithm that we use to compare with MITV.10

Section 3 develops our new MITV image restoration algorithm. Two test images11

with Gaussian noises are used to compare MITV with FBS, and the results are12

given in Sec. 4. Finally, concluding remarks are provided in Sec. 5.13

2. The FBS Algorithm14

In this section, we explain the FBS algorithm (see e.g. [Combettes and Wajs (2005);15

Bredies (2009)]) for solving problem (2) for the Gaussian noise model. This algo-16

rithm was designed without considering the positivity constraint. To obtain a posi-17

tive solution, however, one usually projects the iteration results into the nonnegative18

half space at every iteration or at the last iteration.19

Let H(u) = −∑n
i=1 li(µi) = 1

2‖Au − y‖2
2. We begin with the definition of the

proximity operator. For any proper, convex and semicontinuous function φ(·) with
range (−∞, +∞], its proximity operator is defined by

proxδφ : u → argmin
v

{
1
2δ

‖u− v‖2
2 + φ(v)

}
. (7)

The FBS algorithm can be used to solve the minimization problem of the following
form

min
u

{F1(u) + F2(u)}, (8)

where F1 is a proper, convex, lower semicontinuous function and F2 is a convex, 1/γ-
Lipschitz continuous differentiable function. The FBS iteration formula for solving
Eq. (8) is given as follows

uk+1 = proxδF1
(uk − δ∇F2(uk)). (9)

In [Combettes and Wajs (2005)], the authors show that this FBS algorithm con-20

verges to the solution of Eq. (8) when 0 < δ < 2γ.21

We can apply the FBS algorithm to solve problem (2) with the Gaussian noise
model, where the penalty term F1(u) = λJ(u) and the data fidelity term F2(u) =
H(u), respectively. In this case, the Lipschitz constant γ = 1/‖AT A‖2. The gradient
of the data fidelity term is: ∇H(u) = AT (Au − y). The FBS iteration formula (9)
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is then given by

uk+1 = proxδ(λJ)(u
k − δ∇H(uk)) (10)

from any initial u0. By definition of the proximity operator (7), the iteration formula
(10) is equivalent to

uk+1 = argmin
u

{
λJ(u) +

1
2δ

‖u− (uk − δ∇H(uk))‖2
2

}
. (11)

The FBS algorithm (11) converges to the solution of (2) for Gaussian noise removal1

if δ ∈ (0, 2
‖AT A‖2

). Recall that J(u) is the TV penalty function, so we can apply2

the Chambolle’s denoising algorithm [Chambolle (2004)] to obtain the minimizer3

of Eq. (11) at each step. Interested readers can consult [Combettes and Wajs4

(2005)] for more details of the FBS algorithm [Chambolle (2004)] for general idea of5

the Chambolle’s denoising algorithm, and [Hiriart-Urruty and Lemaréchal (1996);6

Moreau (1962, 1995)] for more background knowledge of convex analysis.7

3. MITV Penalized Image Restoration8

3.1. Derivation of the algorithm9

In image processing, pixel values should be nonnegative numbers. In [Hager et al.10

(2009); Morini et al. (2010)], the authors discussed the box-constrained minimiza-11

tion problem based on the Karush–Kuhn–Tucker (KKT) condition. The interested12

readers can consult [Hager et al. (2009)] for the affine-scaling interior-point cyclic13

[Barzilai and Borwein (1988)] method for box-constrained minimization problem14

and [Morini et al. (2010)] for an a reduced Newton method for box-constrained15

linear least-squares problems. In [Ma (2010)], the author proposed a MI algorithm16

for problems in tomographic reconstructions. There, the penalty function is taken17

to be a quadratic one. In this section, we develop the MI algorithm for TV penal-18

ized and positively constrained image restoration. The algorithm is flexible and can19

be applied to different image noise models. It also begins with the KKT necessary20

conditions.21

We first introduce some notations needed for the derivation of the MITV algo-
rithm below. For any vector function g(u), it can be separated into positive part
vector [g(u)]+ and negative part vector [g(u)]− with their jth entry defined by

[g(u)]+j = max{[g(u)]j , 0}, [g(u)]−j = max{−[g(u)]j, 0}, (12)

where [g(u)]j is the jth component of g(u). By Eq. (12)

g(u) = [g(u)]+ − [g(u)]−. (13)

Obviously [g(u)]+ ≥ 0 and [g(u)]− ≥ 0. We call this separation Type 1 separa-22

tion that we use in the following part. If g(u) has an explicit separation form, i.e.
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g(u) = a−b with a ≥ 0 and b ≥ 0, we just take [g(u)]+ = a and [g(u)]− = b. We1

call this separation Type 2 separation in the following part.2

If û solves optimization problem (2), then û satisfies the KKT conditions:

∇jΨ(û) = 0, if ûj > 0

∇jΨ(û) ≥ 0, if ûj = 0

for j = 1, . . . , n. Equivalently, û solves the following linear system

D(u)∇Ψ(u) = 0, (14)

where D(u) = diag(d1(u), . . . , dn(u)) with

dj(u) =

{
uj, ∇jΨ(u) = 0

0. ∇jΨ(u) > 0

Using expression (1), Eq. (14) is a linear system of

uj

(
−

n∑
i=1

aij∇li(µi) + λ∇jJ(u)

)
= 0, j = 1, . . . , n (15)

where aij ≥ 0 represents the (i, j)th element of matrix A. First, we apply the
separation (13) to ∇li(µi) and ∇iJ(u), to get ∇li(µi) = [∇li(µi)]+ − [∇li(µi)]−

and ∇jJ(u) = [∇jJ(u)]+ − [∇jJ(u)]−. Then, we rewrite Eq. (15) as

uj

(
n∑

i=1

aij [∇li(µi)]− + λ[∇jJ(u)]+
)

= uj

(
n∑

i=1

aij [∇li(µi)]+ + λ[∇jJ(u)]−
)

,

(16)

where both sides of this equation are now nonnegative.3

Equation (16) naturally suggests an iterative scheme for solving Eq. (15), and
that is

u
k+1/2
j = uk

j

δk
1j

δk
2j

, j = 1, . . . , n (17)

where

δk
1j =

n∑
i=1

aij [∇li(µk
i )]+ + λ[∇jJ(uk)]−

δk
2j =

n∑
i=1

aij [∇li(µk
i )]− + λ[∇jJ(uk)]+,

and

δk
2j − δk

1j = ∇jΨ(u). (18)
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Here, µk
i = Aiuk and ∇jJ(uk) denotes ∇jJ(u) evaluated at uk. In Eq. (17) the

iteration index k + 1/2 explains that this is merely a temporary updating, and
further improvements are necessary to give uk+1 by the following rule

uk+1 = uk + αkdk.

Here, αk ∈ (0, 1] is a positive step size and the direction vector dk is given compo-
nentwise by

dk
j = u

k+1/2
j − uk

j .

Substituting Eqs. (17) and (18) into the above equality, we have

dk
j = − uk

j

δ2j
∇jΨ(u). (19)

Hence, dk is a down-hill direction for Ψ(u) when the denominator δk
2j is nonzero1

for all j.2

In order to facilitate Eq. (17) we must provide ∇jJ(u) for the TV penalty
function J(u) given in Eq. (6). It is not difficult to derive that

∇jJ(u) =
n∑

t=1

rtjRtu + ctjCtu√
(Rtu)2 + (Ctu)2 + β

. (20)

To ensure that the iteration scheme (17) is well defined, we have to explain how to3

handle the possibility of δk
2j = 0. This problem can be rectified simply by replacing4

any zero δk
2j with a constant ε (such as ε = 10−2). In this case, however, the5

corresponding numerator of Eq. (17) must also be altered by δk
1j + ε so that the6

estimating Eq. (15) is still maintained.7

It is possible that uk+1/2 by Eq. (17) does not decrease Ψ(u), i.e., Ψ(uk+1/2) ≥
Ψ(uk). In this case we need a line search step to improve uk+1/2 such that the final
update decreases the objective function Ψ(u). In this line search, we must find a
0 < αk ≤ 1 such that

uk+1 = uk + αk(uk+1/2 − uk), (21)

and uk+1 satisfies Ψ(uk+1) < Ψ(uk). Here, αk can be obtained efficiently by8

approaches such as step half or Armijo rule [Luenberger (1984)]. From Eqs. (17)9

and (19), we know that Eq. (21) maintain all the zero components of uk in uk+1.10

We call the iterative scheme defined by Eqs. (21) and (17), where the penalty11

function J(u) and its derivative ∇J(u) are given by, respectively, Eqs. (6) and (20),12

the MITV algorithm. This algorithm is very easy to be implemented in TV image13

restoration tasks, and it can handle any image noise model. A very attractive feature14

is that this algorithm respects the positivity constraint usually imposed on image15

restoration problems. In fact, from any initial guess u0 ≥ 0, we have u1/2 > 0 by
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Eq. (17). We then immediately obtain that u1 ≥ 0 since u1 = (1−α0)u0+α0u1 and1

0 < α0 ≤ 1. By induction, we know that uk is always nonnegative if initial guess2

u0 ≥ 0. From the study reported in Sec. 4, the MITV algorithm is very competitive3

with the existing FBS TV denoising algorithm.4

Under certain regularity conditions, the MITV algorithm is convergent, and5

moreover, it converges to the solution satisfying the KKT necessary conditions.6

The proof of the general convergence result is available in [Ma (2010)].7

3.2. MITV under different image noise models8

In this section, we provide the details of the MITV algorithms when the observed9

image contains Gaussian, Poisson, or impulse noises. From Eq. (17), these MITV10

algorithms differ only due to the fact that the derivatives of the log density func-11

tions, i.e., ∇li(µi), are different for different noise models.12

3.2.1. Gaussian noise model13

For the Gaussian noise model, according to the data-fitting term (3), then the
gradient ∇li(µi) = fi − µi, where fi ≥ 0 and µi > 0. Use Type 2 separation to
∇i(µi), we have [∇li(µi)]+ = fi and [∇li(µi)]− = µi. In addition, we use Type 1
separation to ∇J(u). Then iteration (17) becomes

u
(k+1/2)
j = u

(k)
j

∑n
i=1 bijfi + λ[∇jJ(u(k))]−∑n
i=1 bijµi + λ[∇jJ(u(k))]+

, (22)

for j = 1, . . . , n. If the denominator of Eq. (22) is zero for a pixel j, then we add14

a threshold ε to both numerator and denominator of Eq. (22). Once uk+1/2 is15

obtained, we move to uk+1 as follows. If Ψ(uk+1/2) < Ψ(uk), then uk+1 = uk+1/2;16

otherwise, using a line search to find a 0 < αk < 1 such that17

Ψ(uk + αk(uk+1/2 − uk)) < Ψ(uk),18

and then set uk+1 = uk + αk(uk+1/2 − uk).19

3.2.2. Poisson noise20

For the Poisson noise model, from Eq. (4), the gradient ∇li(µi) = −1 + fi/µi. Any
zero µi will make both li(µi) and ∇li(µi) not well defined. If µk

i = 0 happens in
iterations we will replace µk

i in denominator by a small constant θ > 0. Hence,
we can assume all µi 
= 0 without loss of generality. Using Type 2 separation to
∇li(µi), we have [∇li(µi)]+ = fi/µi and [∇li(µi)]− = 1. In addition, we use Type 1
separation to ∇J(u). Then iteration formula (17) now becomes

u
(k+1/2)
j = u

(k)
j

∑n
i=1 bijfi/µk

i + λ[∇jJ(u(k))]−∑n
i=1 bij + λ[∇jJ(u(k))]+

, (23)
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for j = 1, . . . , n. As in the Gaussian noise above, if the denominator of Eq. (23) is1

zero for a pixel j, then we add a threshold ε to both numerator and denominator2

of Eq. (23). Then, calculate uk+1 from uk+1/2 by line search.3

3.2.3. Impulsive noise4

We use the Laplace distribution to model impulsive noises so that li(µi) = −|fi−µi|
according to Eq. (5). A problem with this model is that li(µi) is not differentiable
at µi = fi. However, adopting the idea of Huber function [Huber (1973)], we may
define the derivative of li(µi) to be

∇li(µi) =




1 if µi < fi − γ

−1 if µi > fi + γ

fi − µi

γ
if fi − γ ≤ µi ≤ fi + γ

= I fi−µi
γ >1

+
fi − µi

γ
I
0≤ fi−µi

γ ≤1
− I fi−µi

γ <−1
+

fi − µi

γ
I−1≤ fi−µi

γ <0
,

We apply Type 1 separation to ∇li(µi), then we have [∇li(µi)]+ = I fi−µi
γ >1

+
fi−µi

γ I
0≤ fi−µi

γ ≤1
and [∇li(µi)]− = I fi−µi

γ <−1
+ µi−fi

γ I−1≤ fi−µi
γ <0

, where IA is an
indicator function for event A: IA = 1 if A is true, and IA = 0 otherwise. The
separation for ∇J(u) is still the Type 1 separation. The updating formula (17)
now becomes

u
k+1/2
j = uk

j

∑n
i=1 bij

(
I fi−µk

i
γ >1

+ fi−µk
i

γ I
0≤ fi−µk

i
γ ≤1

)
+ λ[∇jJ(uk)]−

∑n
i=1 bij

(
I fi−µk

i
γ <−1

+ µk
i −fi

γ I
−1≤ fi−µk

i
γ <0

)
+ λ[∇jJ(uk)]+

, (24)

for j = 1, . . . .n. It is possible that at an iteration, the denominator of Eq. (24) is5

zero. In this case, we add a quantity ε > 0 to both numerator and denominator of6

Eq. (24). The update uk+1 is obtained from uk+1/2 by line search; see the Gaussian7

noise model example above.8

4. Numerical Results9

In this section, we apply our MITV algorithm and the FBS algorithm to deblur10

images which are corrupted by Gaussian noises. For the Poisson and impulsive11

noise models, the augmented Lagrangian method (ALM) in [Wu et al. (2009)] is a12

fast and efficient method. The interested readers can consult [Wu et al. (2009)] for13

more details. Comparison of MITV with ALM on non-Gaussian noise models will14

be reported elsewhere.15

In our tests, we use two images as shown in Fig. 1. The satellite image has a size16

of 176 × 176, and the joke image has a size of 284 × 378. We choose these images17

because they both contain large zero backgrounds, so we expect that the positivity18
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Original image: satellite Original image: joke

Fig. 1. Original test images.

constraint is strongly informative in both examples. In the satellite image, there are1

76.72% pixels equal to 0. In the joke image, this percentage is 86.50%. Due to such2

features, it is easier to test the effect of our algorithm in ensuring the positivity3

constraint.4

In all the tests, matrix A is the blurring matrix corresponding to motion blur
and is generated by the MATLAB command

fspecial(’motion’, 15, 30).

Gaussian noise is added to the blurry image to obtain the observed one. Denote the5

noise level by σ, which represents the standard deviation of the Gaussian noise. We6

test two cases: one has noise level σ = 5, and the other one has noise level σ = 10.7

Considering the good property of MITV in preserving positivity and the feature8

of our test images that most of the pixels equal to zero, we propose a projection in9

each MITV iteration:10

uk+1
j =

{
0, uk+1

j < η

uk+1
j , otherwise

(25)11

for j = 1, . . . , n. We call this projection the lower projection, where η is called the12

lower projection parameter. This projection will help to further improve the restora-13

tion from our MITV algorithm. We call MITV with lower projection the PMITV14

algorithm. The optimal choice for η in all the tests is obtained experimentally. By15

trial and error, we find that the value of η almost increases in direct proportion to16

σ. Morini et al. [2010], also discuss the box-constrained image restoration problems17

with projections. The interested readers can consult [Morini et al. (2010)] for more18

details.19

By trial and error, we find that for the satellite image the best smoothing param-20

eter λ = 0.4 at noise level σ = 5, and the best smoothing parameter λ = 1 at noise21

level σ = 10. For the joke image, the best smoothing parameter λ = 0.2 at noise22

level σ = 5, and the best smoothing parameter λ = 0.4 at noise level σ = 10.23
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We use the peak signal-to-noise ratio (PSNR) to measure the quality of the
restored images, which is defined by

PSNR := 10 log10

2552

1
n‖û− u‖2

2

(dB).

Here, u and û denote the original and restored images respectively, and n is the1

total pixel number of the image.2

We show the comparison results of the PMITV algorithm and the FBS algorithm3

in Figs. 2–5. Figures 2 and 3 show the observed and the recovered images by the4

PMITV and FBS algorithms. In PMITV, at noise level σ = 5, we choose η = 4; at5

noise level σ = 10, we choose η = 9. At each of these ηs, the corresponding PMITV6

algorithm reaches the highest PSNR value among all the trials that we conducted.7

The PFBS algorithm is the FBS algorithm with a lower projection, see Eq. (25) at8

every iteration. Also from the trials, we find that zero is the best choice for η in9

PFBS.10

σ=5, PSNR=13.2871 By PMITV, PSNR=29.9596 By PFBS, PSNR=29.7415
By FBS, PPSNR=29.6235,

PSNR=29.5811

σ=10, PSNR=13.2872 By PMITV, PSNR=27.7779 By PFBS, PSNR=27.1918
By FBS, PPSNR=27.1116,

PSNR=27.0823

Fig. 2. The figure shows the results of MITV algorithm and FBS algorithm when restoring blurred
noisy image “satellite.” From left to right, the first column shows the blurred noisy images (row
1: noise level σ = 5, PSNR= 13.2871; row 2: noise level σ = 10, PSNR= 13.2872). The right three
columns show the restored results by the MITV algorithm and the FBS algorithm for restoring
the corresponding degraded image in the first column on the same row. PMITV is the MITV (row
1: λ = 0.4; row 2: λ = 1) algorithm with a lower projection, see Eq. (25) (row 1: η = 4; row 2:
η = 9) at every iteration; PFBS is the FBS algorithm with a lower projection, see Eq. (25) (row 1
and row 2: η = 0) at every iteration. In the last column, PPSNR denotes the PSNR value of the
recovered image by the FBS algorithm only with a lower projection, see Eq. (25) (η = 0) at the

final step; PSNR denotes the PSNR value without any projection. All the results shown in the
figure are obtained with an additional upper projection, see Eq. (26) at the final step.
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σ=5, PSNR=10.462 By PMITV, PSNR=24.0094 By PFBS, PSNR=23.615
By FBS, PPSNR=22.1652,

PSNR=21.8592

σ=10, PSNR=10.462 By PMITV, PSNR=20.5245 By PFBS, PSNR=20.2969
By FBS, PPSNR=19.5526,

PSNR=19.1943

Fig. 3. The figure shows the results of MITV algorithm and FBS algorithm when restoring blurred
noisy image “joke.” From left to right, the first column shows the blurred noisy images (row 1:
noise level σ = 5, PSNR = 10.462; row 2: noise level σ = 10, PSNR = 10.462). The right three
columns show the restored results by the MITV algorithm and the FBS algorithm for restoring
the corresponding degraded image in the first column on the same row. PMITV is the MITV (row
1: λ = 0.2; row 2: λ = 0.4) algorithm with a lower projection, see Eq. (25) (row 1: η = 4; row 2:
η = 9) at every iteration; PFBS is the FBS algorithm with a lower projection, see Eq. (25) (row 1
and row 2: η = 0) at every iteration. In the last column, PPSNR denotes the PSNR value of the
recovered image by the FBS algorithm only with a lower projection, see Eq. (25) (η = 0) at the
final step; PSNR denotes the PSNR value without any projection. All the results shown in the
figure are obtained with an additional upper projection, see Eq. (26) at the final step.
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Fig. 4. The figure shows the accuracy and the time comparison of the MITV algorithm and FBS
algorithm for satellite image. PMITV algorithm is the MITV algorithm with a lower projection.
The first row is for noise level σ = 5, in PMITV, we take λ = 0.4, η = 4; the second row is
for noise level σ = 10, in PMITV, we take λ = 1, η = 9. From left to right, the first column
describes the decreasing of the energy value in time; the second column describes the number of
projections at each iteration in PMITV; the third column shows the timing comparison of the
PSNR values. From the second column, we see that the number of projections tends to a constant
as time increasing. The third column shows us clearly that the MITV algorithm can reach a higher
PSNR value faster than PFBS with projection and FBS without projection.
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Fig. 5. The figure shows the accuracy and the time comparison of the MITV algorithm and FBS
algorithm for joke image. PMITV algorithm is the MITV algorithm with a lower projection. The
first row is for noise level σ = 5, in PMITV, we take λ = 0.2, η = 4; the second row is for noise
level σ = 10, in PMITV, we take λ = 0.4, η = 9. From left to right, the first column describes
the decreasing of the energy value in time; the second column describes the number of projections
at each iteration in PMITV; the third column shows the timing comparison of the PSNR values.
From the second column, we see that the number of projections tends to a constant as time
increasing. The third column shows us clearly that the MITV algorithm can reach a higher PSNR
value faster than PFBS with projection and FBS without projection.

In the subfigures for the FBS algorithm in Figs. 2 and 3, the PSNR records the1

PSNR value of the final iteration of the FBS algorithm without any projection, while2

the PPSNR records the PSNR value of FBS algorithm with a lower projection, see3

Eq. (25) only at the end of all the iterations, where the lower projection parameter4

is zero. At the final step in all the test algorithms, we take an upper projection5

urec
j =

{
255, urec

j > 255

urec
j , otherwise

(26)6

such that the recovered image is in [0, 255]. From Figs. 2 and 3, we see that the7

PMITV always reach a higher PSNR value than PFBS (i.e., with projection) and8

FBS (without projection).9

Figures 4 and 5 give computational time comparisons of the MITV algorithm10

and the FBS algorithm. From left to right, the first columns of these figures describe11

the time comparison of the energy value sequence {Ψ(uk)}. The second columns12

give the number of the pixels that are projected to zero at each iteration in the13

PMITV algorithm. We observe that the number of pixels that are projected tends14

to stabilize as the iteration number increases. The third columns show the time15
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comparison in relation to the PSNR value. We find that the PMITV always reaches1

higher PSNR value faster than the PFBS and FBS algorithms.2

5. Conclusions3

In this paper, we develop and implement a new approach for total variation image4

restoration. Our method is based on the multiplicative iterative algorithm originally5

developed for tomographic image reconstruction. The advantages of our algorithm6

are that it is very easy to derive and implement under different noise models and it7

respects the positivity constraint. We discuss in the paper how to apply this method8

to Gaussian, Poisson, and impulsive noise models. In the numerical test, we apply9

our algorithm to deblur images corrupted with Gaussian noise. The results show10

that our method gives better restored images than the FBS algorithms.11
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