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Abstract

We consider circulant preconditioners for Hermitian Toeplitz sys-
tems from the view point of function theory. We show that some
well-known circulant preconditioners can be derived from convoluting
the generating function f of the Toeplitz matrix with famous kernels
like the Dirichlet and the Fejér kernels. Several circulant precondition-
ers are then constructed using this approach. Finally, we prove that if
the convolution product converges to f uniformly, then the circulant
preconditioned Toeplitz systems will have clustered spectrum.
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1 Introduction

An n-by-n matrix A, = (a;;) is said to be Toeplitz if a;; = a;_;, i.e. A,
is constant along its diagonals. Toeplitz systems arise in a variety of appli-
cations, especially in signal processing and control theory. Existing direct
methods for dealing with them include the Levinson-Trench-Zohar O(n?) al-
gorithms [21], and a variety of O(nlog?n) algorithms such as the one by
Ammar and Gragg [1]. The stability properties of these direct methods for
symmetric positive definite matrices are discussed in Bunch [2].

An n-by-n matrix C), is said to be circulant if it is Toeplitz and its diag-
onals ¢; satisfy ¢,—; = c_; for 0 < 7 <n — 1. Circulant matrices can always
be diagonalized by Fourier matrix, i.e.

where A, is diagonal and F}, is the n-by-n Fourier matrix with (j, k)th entry
given by

Fl = %e— 0<jk<n, (2)
see Davis [12]. Hence for any vector y, C, 'y = F, A, ' F*y can be computed
by the Fast Fourier Transform in O(nlogn) operations.

Strang [19] first proposed using the preconditioned conjugate gradient
method with circulant preconditioners C,, for solving positive definite Toeplitz
systems. Instead of solving A,z = b, we solve the preconditioned system
C,'A,xz = C'b by the conjugate gradient method with C,, being a circu-
lant matrix. The number of operations per iteration in the preconditioned
conjugate gradient method depends mainly on the work of computing the
matrix-vector multiplication C;'A,y, see for instance Golub and van Loan
[13]. As remarked above, C'-'y can be computed in O(nlogn) operation by
the Fast Fourier Transform. For A,y, it can also be computed by the Fast
Fourier Transform by first embedding A, into a 2n-by-2n circulant matrix.
Thus computing A,y requires O(2nlog(2n)) operations. It follows that the
total operations per iteration is of order O(nlogn).

In order to compete with direct methods, the circulant matrix C,, should
be chosen such that the conjugate gradient method converges sufficiently
fast when applied to the preconditioned system C,'A,z = C 1b. It is well-
known that the convergence rate of the method depends on the spectrum of



C, ' A,. The more clustered the eigenvalues are, the faster the convergence.
Specifically, we want C ' A4, to be of the form I,, + U,, + W,, where I,, is the
identity matrix, U, is a matrix of low rank and W, is a matrix of small /5
norm.

Several circulant preconditioners have been proposed and analysed, see
for instance, Chan and Strang [3], T. Chan [10], Chan [4, 5], Tyrtyshinkov
[22], Ku and Kuo [17], Chan, Jin and Yeung [6], Huckle [16] and Chan
and Jin [8]. It has been shown in these papers that if the diagonals a; of
the Toeplitz matrix A, are Fourier coefficients of a positive function f in
the Wiener class, then the spectrum of the preconditioned system C;'A,
will be clustered around one for large n. It follows that the preconditioned
conjugate gradient methods, when applied to the preconditioned system,
converges superlinearly for large n. More precisely, we have for all € > 0, there
exists a constant ¢(e) > 0 such that the error vector e, of the preconditioned
conjugate gradient method at the gth iteration satisfies

[legll < cle)e]leol| (3)

when n is sufficiently large. Here ||z|> = w*Cn?A,Cr . Hence the
number of iterations required for convergence is independent of the size of
the matrix A, when n is large. In particular, the system A,z = b can be
solved in O(nlogn) operations.

Recently, Chan and Yeung [7] extended the above superlinearly conver-
gence result from the Wiener class of functions to the class of 2w-periodic
continuous functions for the T. Chan’s [10] preconditioner. One of the aims
of this paper is to find other circulant preconditioners that has the same
superlinear convergence property. Our approach is to consider circulant pre-
conditioners as convolution products of the generating function f with some
kernels. We show that most of the known circulant preconditioners can be
derived easily by this approach. In particular, we see that the T. Chan’s
preconditioner is obtained by convoluting f with the Fejer kernel while the
Strang’s preconditioner is obtained by convoluting f with the Dirichlet ker-
nel. We also prove that if the convolution product converges to f uniformly,
then the corresponding circulant preconditioner will have the clustering and
superlinear convergence properties mentioned above. Several circulant pre-
conditioners possessing these properties are then constructed by using known
kernels in function theory and signal processing.



The outline of the paper is as follows. In §2, we express some of the cir-
culant preconditioners mentioned above in terms of convolution of kernels.
Using the idea, we design in §3 some other circulant preconditioners by con-
sidering kernels from function theory and signal processing. In §4, we prove
that if the kernel K, is such that the convolution product K, x f converges
uniformly to f, then the circulant preconditioners so constructed will have
clustering and superlinearly convergence properties. Numerical examples and
concluding remarks are given in §5 and §6 respectively.

2 The Kernels of Some Circulant Precondi-
tioners

Let Co; be the Banach space of all 2r-periodic continuous real-valued func-

tions defined on the real line R and equipped with the supremum norm ||| .
For all f € Cy,, let

1 [ .
aplf] = ﬁ/o (@) ™dp, k=0,41,+2,- -

be the Fourier coefficients of f. For simplicity, we will write a;[f] as a.
Since f is real-valued,

a,k:dk, kZO,:tl,:tQ,

Let A,[f] be the n-by-n Hermitian Toeplitz matrix with the (j,1)th entry
given by a;_;. The function f is called the generating function of the matrices
A,[f]. The jth partial sum of f is defined as

silf100) = > ae™, VO EeR. (4)

k=—j

Given the matrix equation A,[f]x = b, we consider the preconditioned
system C, ' A, [f]x = C,, b for some circulant matrix C,. In order to have fast
convergence rate, the circulant preconditioner C, should be chosen such that
C'A,[f] has spectrum clustered around one. Before we analyze few known
circulant preconditioners that have this property, let us first emphasize the

relationship between the first column of a circulant matrix and its eigenvalues.
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By (1) and (2), if e; and 1,, denote the first unit vector and the vector of
all ones respectively, then we have

Hence if
Co
C1
Onel - . ) (6)
Cp—1

then the eigenvalues of C), are given by

n—1
k=0

where B
=m0 <j<n.

Conversely, if the eigenvalues of C), are given by the right hand side of (7),
then the first column of C,, is given by (6). Notice that we have

gjn—k — gj—’f =, 0<jk<n. (8)

1) Strang’s preconditioner S,[f].

Given A, [f], the corresponding Strang’s preconditioner S,[f] is defined to
be the circulant matrix that copies the central diagonals of A,,[f] and reflects
them around to complete the circulant, see Strang [19]. More precisely, the
kth entry in the first column of S,[f] is given by

o 0<k<m,
(SulfDro = { ar_n, m<k<n.

Here we assume for simplicity that n = 2m + 1. If n = 2m, we define
(Sn[f])mﬂ = 0.

We remark that the eigenvalues of S,[f] are given by the partial sum
sm[f] of [ at evenly-spaced points in [0, 27]. In fact, by (7) and (8), we see



that the eigenvalues of S,[f] are equal to

n—1

)‘J(Sn[f]) = Zakcjk"i_ Z akfncjl‘c
k=0 k=m-+1

m
= Y ali+ ) aud"
k=1

k=0

Il
NE

m

al + Dl
k=1

21y

£
Il

= sm[fI(

(From Fourier analysis, see Zygmund [25, p.49] for instance, the partial
sum s,,,[f] of f is given by the convolution of f with the Dirichlet kernel D,,,
ie.

—)7 0§]<7’L
n

1 27 R R
smlf100) = 5 i f(@)Dm(0 — ¢)do = (f * Dp)(0), (9)
where ik + 10
- sk + 5
Dy(0) = Wa k=0,1,---
Thus the eigenvalues of S,,[f] can also be expressed as
NS = (F D)D), 0<j<n

2) T. Chan’s preconditioner T,[f].

Given A, [f], the corresponding T. Chan’s preconditioner T},[f] is defined
to be the circulant matrix with diagonals that are arithmetic average of the
diagonals of A,[f] (extended to length n by wrap-around when necessary),
see T. Chan [10]. More precisely, the entries in the first column of T,[f] are
given by

(T F)ro = %{(n ~ B)ax + kil 0 <k <n.

By (7) and (8) again, the eigenvalues of T},[f] are given by

n—1 n—1
n—k k
k=0 k=1
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n—1 n k n—1 n k
= Y —alf Y
k=0 k=1
1 n—1
= - (n— k){akCJk —i—dkgf}Jrag
k=1
1 n—1
= Y - Hat, 0<i<n
k=—(n-1)

We note that this is a Cesaro summation process of order 1 for the Fourier
series of f, see Zygmund [25, p.76]. Using the definition of partial sum and
after some rearrangements of the terms, we get

,_.

n—

M) = =Y s, 0<j<n

0

=
Il

Thus the eigenvalues of T,[f] are just the values of the arithmetic mean of
the first n partial sums of f at 27j/n. It is well-known that this arithmetic
mean is given by the convolution of f with the Fejér kernel F),, i.e.

%Z / F@) (0 — d)dp = (f + F)(0),  (10)

2

. 1 | sin(£6)

F — 2 —1.2. ...
k(g) k‘ {sm(%ﬁ)} 9 k ) “y )

see Zygmund [25, p.88]. Thus the eigenvalues of T,,[f] can be expressed as

where

21y

N(TD) = (f  F) (2

), 0<j<n. (11)

3) R. Chan’s preconditioner R,[f].

Given A,[f], the R. Chan’s circulant preconditioner R,[f] has the first

column given by
. ao k= 0,
(Bl fDro = { ap + Gn . 0 <k <n,
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see R. Chan [5]. Thus the eigenvalues of R,,[f] are given by

MBS = a0+ Y fan + ani}¢S
k=1

n—1 n—1
_ § : k E :— ~k
= Q + ak§3 + ak§3
k=1 k=1

= ), 0<ji<n
Using (9), we then have
ML) = (7D (), 0<j<n, (12)

4) Huckle’s preconditioner H,[f].

Given any 0 < p < n, the Huckle’s circulant preconditioner HP[f], see
Huckle [16], is defined to be the circulant matrix with eigenvalues given by

p
(IS = }3 S (0 - [Kact, 0<j<n,

k=—p

which is also a Cesaro summation process of order 1 for the Fourier series of
f. In fact, using (10) and after some simplifications, we have

Ni(HR[f]) = lpi:Sk[f](@) = (f = Fp)(@), 0<j<n.
p n n

5) Ku and Kuo’s preconditioner K,|f].

One of the preconditioners proposed in Ku and Kuo [17] is the skew-
circulant matrix K,[f] which, using our notations, can be defined as

}{ﬁ[f]:: 2"4an]_'}LJf]

Notice that if ©, is the n-by-n diagonal matrix with (0,);; = ¢™/" for
0 < j < n, then ©;K,[f]©, is a circulant matrix. In fact, this property
holds for any skew-circulant matrix, see Davis [12].
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By (7) and (8) again, it is then straighforward to verify that

S 1ty

n n

Comparing this with (12), we see that the eigenvalues of K,[f] and the
eigenvalues of R,[f] are just the values of f x D, ; sampled at different
points in [0, 27].

3 Circulant Preconditioners from Kernels

In this section, we apply the idea explored in §2 to design other circulant
preconditioners from kernels that are commonly used in function theory and
signal processing. These kernels are listed in Table 1, see Hamming [15],
Natanson [18, p.58] and Walker [23, p.88|.

Kernel H Co(0) ‘
1 - R
Modified Dirichlet §{Dn,1(9) + D, 2(0)}
De la Vallée Poussin 2FQWQJ (0) — Fl_n/?j (0)
1 - . N
von Hann Z{Dn,l(e — )4+ 2D, 1(0) + Dy a (0 4+ 5)}
Hamming 0.23{Dy_1(0 — Z) + Dy (0 + Z)} + 0.54D,,_; (6)
. 1 - N

Bernstein §{Dn_1(9) + Dp1 (0 + )}

Table 1. Some kernels and their definitions.



Given a kernel C,, (6) defined on [0, 27], we let C,[f] to be the circulant matrix
with eigenvalues given by

A 1, 2T )
NG =17+ G, 0<j<n. (13)
The first column of C,,[f] can be obtained by using (5).
Let us illustrate the construction process by using the De la Vallée Poussin’s
kernel which is defined as

A

where F}, is the Fejér kernel and m = |n/2]. For simplicity, let us consider
the case where n = 2m. Then by (10), (8) and (4), we have

[+ G (2

n

= 2f B ) — (1 ) 2

g Solf1+- - sam-11/] (2:7) slf]+ o Sm11f] (22‘75

21y

= {salfl e s )

- smm@)%{ S n-Bad+ Y (n—k)akc‘f}

n
k=m+1 k=m+1
2m—1

= Z(ak + %an—k)ff + Z (wak + k)G

k=0 k=m+1
Hence the first column of C,[f] is given by

ar + %4, 0<k<m,
(Calfio = { e

=——ap+a, r m<k<n.

Table 2 lists the first column of the circulant preconditioners for the
kernels in Table 1. The main diagonal of C,[f], i.e. (C,[f])j;, is equal
to ag, hence is omitted from the table.
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‘ Kernel H (ColfDro, 1<k<n
a; + %Eln_l k=1
Modified Dirichlet A+ 0n—p 2<k<n-—2
%an,l—i-dl k=n-—-1
(Zk—Fﬁdgmk 1<k<m
De la Vallée Poussin . kak + Qo M <k <2m, m=|n/2|
0 k =2m.

von Hann cos?(2E)ay, + cos? (™ (g;k))dn_k

Hamming (0.54 4 0.46 cos ™)y + (0.54 + 0.46 cos "%E)q,,
. 1 ik ik \\ 7

Bernstein 5{(1 + exp (%)) ag + (1 — exp(Z*))Gn—k }

Table 2. The first column of the circulant preconditioner.

4 Clustering of the Eigenvalues

In this section, we discuss the convergence property of the circulant precondi-
tioned systems for those circulant preconditioners derived from kernels. We
prove that if the kernel C,, is such that the convolution product of C, * f
tends to the generating function f uniformly, then the corresponding pre-
conditioned system C,*A,[f] will have clustered spectrum. ;From Fourier
analysis, see Zygmund [25, p.89], we know that for the Fejér kernel F,, f % F),
tends to f uniformly on [0, 27| for all f in Co,. Hence the T. Chan’s circulant

preconditioned system T),[f]™!

A,[f] should have clustered spectrum for all

[ in Cy,. This result was proved in R. Chan and Yeung [7] and we restate it
here as the following Lemma.
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Lemma 1 Let f € Cy;. Then for all € > 0, there exist positive integers N
and M such that for alln > N, at most M eigenvalues of A,[f]—Tn[f] have
absolute value greater than e.

This Lemma basically states that the spectrum of A, [f] — T,[f] is clus-
tered around zero. Using this Lemma, we can easily get the same result for
other circulant preconditioners derived from kernels.

Lemma 2 Let f € Cor. Let C’n be a kernel such that én x f tends to f
uniformly on [0,27]. If Cy,[f] is the circulant matriz with eigenvalues given
by (13), then for all € > 0, there exist positive integers N and M such that
for alln > N, at most M eigenvalues of A,[f] — Culf] have absolute value
greater than €.

Proof: We first rewrite A,[f] — C,[f] as
Anlf] = Culf] = {Aulf] = Tl A1} +{T0S] = Cul /1Y,

where T,,[f] is the T. Chan’s circulant preconditioner. In view of Lemma 1,
it suffices to show that

Tim (T[] = Cal ] = 0. (14

Since T,[f] and C,[f] are both circulant matrices and hence can be diago-
nalized by the same Fourier matrix F,,, we see that (14) is equivalent to

lim max [X,(Z[]) = A (Calf])] = 0. (15)

n—o0 0<j<n
However, by (11) and (13), we have

21y 21y

ma (TS = MG = o I(Fus ) = (e I

1 E % f— Cox flloo
By 5 = Flloo + [1f = Cn # fl]oo

Since F), x f and C, = f both converge to f uniformly, (15) follows. O

)|

n

<
<

Next we will show that if f is positive, then C,,[f] is positive definite and
uniformly invertible for large n.
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Lemma 3ALet f € Cor with minimum value fuin > 0. Let C’n be a kernel
such that Cy, = f tends to f uniformly on [0,2x]. If C,[f] is the circulant
matriz with eigenvalues given by (13), then for all n sufficiently large, we
have

1
Ai(Calf]) = §fmin >0, 0<j7<n.

Proof: Since C,, * f converges to f uniformly and f;, > 0, there exists an
N > 0, such that for all n > N,

21y

=5 CEDI<If = f 5 Clloo < Sfuime 0<j<n

n
Thus by (13), we have

21y 21y

)
)

NCT) = [ %G = ) + £
> foim— [f — f % Co) (2™

1 )
Z §fmina 0§]<TL 0

n

Combining Lemmas 2 and 3, we have our main theorem, namely that the
spectrum of C'7'[f]A,[f] is clustered around one.

Theorem 1 Let f € Cy, be positive. Let én be a kernel such that én*f tends
to f uniformly on [0,2x]. If Cy[f] is the circulant matriz with eigenvalues
given by

M) =[G AT, 0 <n,

then for all € > 0, there exist positive integers N and M such that for all
n > N, at most M eigenvalues of I, —C [ f]An[f] have absolute value greater
than e.

Proof: We just note that

I — L [f1Aulf] = CACLf] = Anlf]). O
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It follows easily from Theorem 1 that the conjugate gradient method,
when applied to the preconditioned system C'A,[f], converges superlin-
early, see Chan and Strang [3] for a proof. Thus the number of iterations
required to achieve a fixed accuracy remains bounded as the matrix order n
is increased. Recall that in each iteration, the work is of order O(nlogn),
therefore, the total work of solving the equation A,[f]z = b to a given accu-
racy is also of order O(nlogn).

5 Numerical Results

In this section, we test the convergence rate of the preconditioned systems
with generating functions given by the Hardy-Littlewood series:

o0 iklogk —iklogk
HOC(H) = Z(e ka elkg + : ka eilk&)’
k=1

see Zygmund [25, p.197]. It converges uniformly to a function in Cy; when
a > 0.5. In the examples below, we investigate the convergence rate of the
preconditioned systems for a = 1.0 and 0.5. We note that for « = 0.5, Hy 5
is not even a function in L?[0, 2n| for its Fourier coefficients are not in (5.

We remark that in general, H,(f) is not a positive function in [0, 27].
In fact, we find numerically that when n = 512, the minimum values of
the partial sum s,[H,](f) are approximately equal to —4.146 and —6.492
for a« = 1.0 and 0.5 respectively. Thus, in the experiments, we choose the
functions H;(6) + 4.2 and Hy5(#) + 6.5 as our generating functions.

Eight different circulant preconditioners are tested. Tables 3 and 4 below
shows the number of iterations required to make ||r,||2/||70|]2 < 1077, where
14 is the residual vector after ¢ iterations. The right hand size b is the vector
of all ones and the zero vector is our initial guess. The computations are
done by using double precision arithmetic on a Vax 6420.

We see that as n increases, the number of iterations increases for the
original matrix A,, while it stays almost the same for the preconditioned
matrices. Moreover, all preconditioned systems converge at the same rate
for large n. We note that the convergence rate depends on the degree of
smoothness of the generating function. For the Strang’s preconditioner, this
dependence has been proved in Chan and Yeung [9]. Specifically, we have
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proved that for generating function which is either Lipschitz of order 0 <
v < 1 or has a continuous vth order derivative, v > 1, then the estimate in

(3) becomes
& (clogk 2
lewl) < IT (Z2%) ol
k=2

Finally, we notice that for n small, some of the preconditioners may have
negative eigenvalues (Cf. Lemma 3). However, it is interesting to note that
the preconditioned conjugate gradient method still converges in these cases.

Preconditioner n
Used 16 ‘ 32 ‘ 64 ‘ 128 ‘ 256 ‘ 512
No 13|18 | 27| 43 | 51 | 58
Strang 81919 9 9 9
T. Chan 8 |10 |11 | 11 | 10 9
R. Chan 8 10| 9 9 9 9
Modified Dirichlet || 8% | 10| 9 9 9 9
De la Vallée Poussin || 9 | 9 | 9 9 9 9
von Hann 81919 9 9 9
Bernstein 9 110110 9 9 9
Hamming 81919 9 9 9
Table 3. Number of Iterations when f(#) = H,(6) + 4.2.

* Preconditioner has negative eigenvalues.
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Preconditioner n

Used 16 [ 32 64 | 128256 | 512
No 12 [18] 20 [ 44 [ 66 | 67
Strang OF [11 16| 16 | 16 | 15
T. Chan 8 [12]13 [ 14 [15 | 14
R. Chan 10F[12] 14 [ 16 | 17 | 15

Modified Dirichlet o* | 12| 14 16 16 15
De la Vallée Poussin || 8* | 11| 14 | 15 | 16 | 15

von Hann 8 11| 12 13 15 15
Bernstein 9 12| 14 14 16 15
Hamming 8 |11 12 | 13 | 15 | 15

Table 4. Number of Iterations for f(6) = Hy5(0) + 6.5
* Preconditioner has negative eigenvalues.

6 Concluding Remarks

In this paper, we introduce a new method of finding good circulant precondi-
tioners for Toeplitz systems. We see from the derivation that these circulant
preconditioners are designed so that their eigenvalues approximate the values
of fat 2mj/n, 0 < j < n. Thusif f(27j/n) can be computed efficiently, then
the circulant preconditioners with eigenvalues given by f(27j/n) is certainly
a good choice. Its corresponding kernel is just the Dirac delta function. For f
that are trigonometric polynomials of degree n—1 say, as is in the case of finite
Toeplitz systems, then this circulant preconditioner reduces to the R. Chan’s
preconditioner, which has eigenvalues given by s, 1[f](27j/n) = f(27j/n).
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