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Abstract� We consider the solution of n�by�n Toeplitz systems Tnx 
 b by precon�

ditioned conjugate gradient methods� The preconditioner Cn is the T� Chan circulant

preconditioner which is de�ned to be the circulant matrix that minimizes kBn � TnkF
over all circulant matrices Bn� For Toeplitz matrices generated by positive 	��periodic

continuous functions� we have shown in �
� that the spectrum of the preconditioned system

C��
n Tn is clustered around � and hence the convergence rate of the preconditioned system

is superlinear� However� in this paper� we show that if instead the generating function is

only piecewise continuous� then for all � su�ciently small� there are O�log n� eigenvalues

of C��
n Tn that lie outside the interval ��� �� � � ��� In particular� the spectrum of C��

n Tn

cannot be clustered around �� Numerical examples are given to verify that the convergence

rate of the method is no longer superlinear in general�
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x� Introduction�

An n�by�n matrix Tn is said to be Toeplitz if it has constant diagonals� i�e� �Tn�j�k 


tj�k for all � � j� k � n� It is said to be circulant if we further have �Tn�j�n�� 
 �Tn�j����

for all � � j � n � �� In this paper� we consider the convergence rate of the precon�

ditioned conjugate gradient method for solving Toeplitz systems Tnx 
 b with circulant

matrices as preconditioners� Strang in ���� showed that for such method the cost per

iteration is of O�n logn� operations� In contrast� super�fast direct Toeplitz solvers require

O�n log� n� operations� see for instance Ammar and Gragg ���� Thus one has to analyze

the convergence rate of the iterative method in order to compare it with direct methods�

To analyze the convergence rate� which is a function of the matrix size n� we assume

that the given Toeplitz matrix Tn is the n�by�n principal submatrix of a semi�in�nite

Toeplitz matrix T � The function f which has the diagonals ftjg�j��� of T as Fourier

coe�cients is called the generating function of the sequence of Toeplitz matrices fTng�n���

Chan and Strang ��� proved that if the Strang preconditioner Sn ���� is used� the method

will converge superlinearly whenever f is a positive function in the Wiener class� i�e� when

the sequence ftjg�j��� is absolutely summable� The superlinear result is established by

�rst showing that the spectra of the preconditioned matrices S��n Tn are clustered around

��

Since then several other circulant preconditioners have been proposed and analyzed

under the same assumption that Tn are generated by a �xed function f � see T� Chan ����

Huckle ����� Ku and Kuo ����� Tismenetsky ����� Trefethen ���� and Tyrtyshnikov ��
��

The most noticeable one is the T� Chan preconditioner Cn ��� which is de�ned to be the

minimizer jjBn � TnjjF over all circulant matrices Bn� Here jj � jjF denotes the Frobenius

norm� The preconditioner Cn has a distinct advantage over Sn in that Cn is always

positive de�nite whenever Tn is� see Tyrtyshnikov ��
�� Chan �	� proved that under the

Wiener class assumption� the spectra of C��
n Tn and S��n Tn will be the same as n tends to

in�nity and hence for su�ciently large n� the preconditioned system C��
n Tn converges as

�



the same rate as the system S��n Tn provided that f is in the Wiener class�

However� in our recent papers� we have shown that the two preconditioners are funda�

mentally di�erent� By using Weierstrass� theorem� we showed in �
� that if the underlying

generating function f is a positive 	��periodic continuous function� then the T� Chan

preconditioned systems C��
n Tn have clustered spectrum around � and hence the systems

converge superlinearly if the conjugate gradient method is employed� But the proof used

there does not work for Strang�s preconditioner� In ���� we resorted to a stronger form

of Weierstrass� theorem� namely the Jackson theorem in approximation theory and we

are able to show that the Strang preconditioned systems S��n Tn have clustered spectrum

around � and hence converge superlinearly whenever f is a positive 	��periodic Lipschitz

continuous function� One explanation of this fundamental di�erence� though not a for�

mal mathematical proof� is that we can associate the Strang preconditioner Sn with the

Dirichlet kernel whereas the T� Chan preconditioner Cn can be associated with the Fej�er

kernel� see Chan and Yeung ���� It is well�known in Fourier analysis that if f is 	��periodic

continuous �or respectively Lipschitz continuous�� then the convolution product of f with

the Fej�er kernel �or respectively the Dirichlet kernel� will converge to f uniformly� see for

instance� Walker ���� p���� p�����

In this paper� we will consider f that are not positive 	��periodic continuous but only

nonnegative piecewise continuous� We will show that for these generating functions� the

spectra of C��
n Tn will no longer be clustered around �� More precisely� we show that for all

su�ciently small � � �� the number of eigenvalues of C��
n Tn that lie outside ��� �� � � ��

will be at least of O�log n�� If moreover f is strictly positive� then we can show further

that the number of outlying eigenvalues is exactly of O�log n�� Numerical examples are

then given to demonstrate that for the preconditioned systems� the numbers of iterations

required for convergence do increase like O�log n� and hence the convergence rate of the

method cannot be superlinear in general� Recalling the explanation made in the preceding

paragraph� it is interesting to note that for piecewise continuous f � its convolution product

�



with the Fej�er kernel will no longer converge to f uniformly�

The outline of the paper is as follows� In x	� we list some of the useful lemmas that will

be used in later sections� In x�� we show that for piecewise continuous generating functions

f � the number of outlying eigenvalues of the matrix Tn � Cn is at least of order O�logn�

and hence the spectra of Tn � Cn cannot be clustered around zero� Using this result� we

prove in x� that the spectra of C��
n Tn cannot be clustered around � for any nonnegative

piecewise continuous function f � We then prove in x� that if f is strictly positive� then

the number of outlying eigenvalues of C��
n Tn is exactly of O�logn�� Numerical results

are given in x
 to illustrate how the discontinuities in f a�ect the rate of convergence�

They show that the convergence rate is no longer superlinear and in general the number

of iterations required for convergence increases at least like O�log n� when n increases�

Concluding remarks are �nally given in x��

x� Preliminary Lemmas�

Let L�� be the space of all 	��periodic Lebesgue integrable real�valued functions

de�ned on the real line R� For f � L��� its Fourier coe�cients are de�ned as�

tk�f � 

�

	�

Z �

��
f���e�ik�d� � k 
 ������	� � � �

Let Tn�f � be the n�by�n Toeplitz matrix with the �j� k�th entry given by tj�k�f �� � � j� k �

n and Cn�f � be the n�by�n circulant matrix that minimizes jjCn�Tn�f �jjF over all n�by�n

circulant matrices Cn� The matrix Cn�f � is called the T� Chan circulant preconditioner

and its �j� l�th entry is given by cj�l�f � where

ck�f � 


� �n� k�tk�f � � ktk�n�f �
n

� � k � n�

cn�k�f � � � �k � n�

see T� Chan ���� In this paper� we will consider the spectrum of C��n �f �Tn�f � as n goes to

in�nity for piecewise continuous functions f � L��� Since f is real�valued� t�k�f � 
 �tk�f �

and hence Tn�f � and Cn�f � are Hermitian matrices for all n� For f � L��� let fmax and

fmin be its essential supremum and in�mum respectively�

�



Lemma �� Let f � L�� with fmax �
 fmin� Then for all n � ��

fmin � 	min�Tn�f �� � 	min�Cn�f �� � 	max�Cn�f �� � 	max�Tn�f �� � fmax�

where 	max and 	min denote the maximum and minimum eigenvalues respectively�

Proof� For the two strict inequalities� see Chan ��� Lemma ��� For the other inner inequal�

ities� see Tyrtyshnikov ��
� Theorem �����

Notice that if fmax 
 fmin� then Tn�f � 
 Cn�f � 
 fmin � In where In is the n�by�n identity

matrix� Thus in the following� we assume for simplicity that f is non�constant�

Given a Hermitian matrix A� N���A� will be used to denote the number of eigenvalues

of A with absolute values exceeding �� A sequence of Hermitian matrices fAngn�������� is

said to have clustered spectra around 
 if for any � � �� there exists a c � � such that for

all n � �� N���An � 
In� � c� If 
 
 �� we simply say fAngn�������� has clustered spectra�

Lemma �� Let An and Bn be n�by�n Hermitian matrices and 	 and � be any positive

numbers� Then

�i� N�	���An� 
 N�
	

�
�An��

�ii� N�	� ��An �Bn� � N�	�An� �N���Bn��

Proof� �i� is trivial and �ii� can be proved by Cauchy�s interlace theorem� see Wilkinson

�	�� p����� or Widom ���� p�����

It follows immediately from Lemma 	 that if fAng and fBng are two sequences of Her�

mitian matrices with clustered spectra� then f
An � �Bng also has clustered spectra for

any real numbers 
 and ��

Lemma �� Let fAngn�������� be a sequence of Hermitian matrices� If sup
n
kAnkF � 	�

then fAng has clustered spectra�

Proof� Since kAnk�F is equal to the sum of the square of the eigenvalues of An� it follows

that for any given � � �� N���An� � sup
n
kAnk�F

�
���

�



Lemma 	� �Chan and Yeung 
�� Theorem �
� Let f � L�� be continuous� Then the

sequence of matrices

�n�f � 
 Tn�f �� Cn�f � � n 
 �� 	� � � �

has clustered spectra�

Lemma � �Widom 
��� p���
� Let Hn be the n�by�n Hilbert matrix

Hn 


�
�������

� �
�

�
� � � � �

n
�
�

�
�

� �
� �

n��

�
�

� �
� ���

��� � �
�

� �
� ���

�
n

�
n��

� � � � � � �
�n��

�
������	

�

Then for any � � � � �� we have

N���Hn� 

	

�
logn � sech�� �

�
� 
� � o���

�

where o��� tends to zero as n increases�

Lemma �� Let f � L�� be bounded� De�ne Hn�f � to be the n�by�n Hankel matrix with

entries given by

�Hn�f ��j�k 
 �tj�k�f �� � j� k 
 �� �� � � � � n� ��

Then kHn�f �k� � kfk��

Proof� By Nehari�s theorem ��	� Theorem ��� the in�nite Hankel matrix H�f � satis�es

kH�f �k�� 
 max
jjxjj���

�
x�H�f ��H�f �x


 � kfk���

Hence for any n�vector y with jjyjj� 
 �� we have

kfk�� � �y�� ��H�f ��H�f �

�
y
�

�
� y�H�

n�f �Hn�f �y�

In particular� kHn�f �k� � kfk��

�



x� Spectra of �n�f ��

In this section� we prove that if f � L�� is piecewise continuous� the spectrum of

�n�f � 
 Tn�f � � Cn�f � cannot be clustered around zero� More precisely� we show that

N����n�f �� � O�logn�� For simplicity� we will present the proof for the case n 
 	m�

When n is odd� the proof can be modi�ed accordingly�

Before we start� let us give a brief motivation of our proof� Suppose we have an

f � L�� which has only one jump discontinuity at 
 � ���� ��� Then by adding multiple

of the function g��� de�ned in Lemma � below� the sum of the functions will be a 	��

periodic continuous function� In view of Lemmas 	 and �� we then only have to consider

N����n�g��� In Lemma �� we will show that the spectrum of �n�g� is basically the same

as the spectrum of the Hilbert matrix Hn with only small norm perturbation� Hence by

Lemma �� we get the result� The proof below however will be more complicated because

we need to show further that if f has multiple jumps� then the outlying eigenvalues derived

from one jump will not be canceled out by the outlying eigenvalues from the other jumps

and thus leave us with a clustered spectrum�

Let f � L�� be a piecewise continuous function with points of discontinuity in ���� ��

at �� � �� � � � � � �� � � and jumps


k 
 lim
����

k

f���� lim
����

k

f���� k 
 �� � � � � ��

Let the biggest jump be at �k� � i�e�

j
k� j 
 max
��k��

j
kj�

Insert arbitrary � points ��� ��� � � � � �� into f��� ��� � � � � ��g such that

�� � �� � �� � �� � �� � � � � � �� � �� � ��

De�ne the functions

g���� 


�
� � � � �k� �� � � � �k� �

� � � � �k� �k� � � � ��

�



gk��� 


���������
��������

� �� � � � �k�

� � �k
	��k � �k�

�k � � � �k�

� � �k��
	��k�� � �k�

�k � � � �k���

� �k�� � � � ��

for k 
 �� 	� � � � � � � � and

g���� 


������
�����

� �� � � � �� �

� � ��
	��� � ���

�� � � � �� �

� � �

	�� � ���
�� � � � ��

if �� � � or

g���� 


������
�����

� � ��
	��� � ��

�� � � � ���

� �� � � � �� �

� � ��
	�� � ���

�� � � � ��

if �� 
 �� All functions gk���� k 
 �� �� � � � � � are to be extended into functions in L���

Now we write f as

f 
 f �

k�
�

g� �

�X
k��


k�kgk � 
k�
�

g� �
�X

k��


k�kgk

where

�k 


� �� k 
 k��

� k �
 k��

Then we have

��m�f � 
 ��m�f �

k�
�

g� �

�X
k��


k�kgk�� 
k�
�

��m�g�����m

� �X
k��


k�kgk

�
� ���

In the next three lemmas� we consider the limiting behavior� as m tends to in�nity� of the

eigenvalues of the three terms in the right hand side of ��� respectively�

Lemma �� The sequence of matrices

f��m�f �

k�
�

g� �
�X

k��


k�kgk�gm��������

has clustered spectra�






Proof� By Lemma �� it su�ces to show that the function

f �

k�
�

g� �

�X
k��


k�kgk

is a 	��periodic continuous function� However� from the de�nitions of gk� k 
 �� �� � � � � ��

it is clear that the function is already 	��periodic and that the points �j � j 
 �� 	� � � � � ��

are its only possible points of discontinuity in ���� ��� However� for �j �
 �k� � we have

lim
����

j

�f��� �

k�
�

g���� �

�X
k��


k�kgk����


 lim
����

j

�f��� �

k�
�

g���� �
�X

k��
k ��j


k�kgk��� � 
j�jgj����


 lim
����j

f��� �

k�
�

g���j� �

�X
k��
k ��j


k�k � � � �

	

j�j


 lim
����j

f��� �

k�
�

g���j� �

�X
k��
k ��j


k�k � �� �

	

j�j


 lim
����

j

�f��� �

k�
�

g���� �
�X

k��
k ��j


k�kgk��� � 
j�jgj����


 lim
����j

�f��� �

k�
�

g���� �

�X
k��


k�kgk�����

At �k� � we have

lim
����

k�

�f��� �

k�
�

g���� �
�X

k��


k�kgk����


 lim
����

k�

�f��� �

k�
�

g����� 
k�gk���� �
�X

k��
k ��k�


k�kgk����


 lim
����

k�

f��� �

k�
�

� � � �

	

k� �

�X
k��
k ��k�


k�k � �


 lim
����

k�

f��� �

k�
�

����� ���

	
�
k� �

�X
k��
k ��k�


k�k � �


 lim
����

k�

�f��� �

k�
�

g����� 
k�gk���� �
�X

k��
k ��k�


k�kgk����


 lim
����

k�

�f��� �

k�
�

g���� �

�X
k��


k�kgk�����

�



Lemma �� Let 
 be an arbitrary point in ���� ��� Let g � L�� be de�ned by

g��� 


�
� � � � 
 �� � � � 
�

� � � � 
 
 � � � ��

Then

��m�g� 
 A�m �B�m� �	�

where A�m and B�m are both Hermitian matrices with

N���A�m� 

�

�
logm � sech�� �

�
� �� � o����� ���

for any � � � � � and

sup
m
kB�mkF � 	 � 	

p
ln 	 �	� ���

Proof� The Fourier coe�cients tk�g� of g are given by

tk�g� 

�

	�

Z �

��
g���e�ik�d� 


�
� k 
 ��

i

k
e�ik� k 
 ����	 � � � � �

Thus the �rst row of ��m�g� is given by�
��

�

	m
�t���g� � t�m���g��� � � � �

j

	m
�t�j �g�� t�m�j �g��� � � � �

	m� �

	m
�t��m���g� � t��g��

�




�
��� ie�i��m����

	m� �
� � � � �� ie�i��m�j��

	m� j
� � � � ��ie�i�

�

�

�
��
i�e�i��m���� � ei��

	m
� � � � � i�e

�i��m�j�� � eij��

	m
� � � � � i�e

�i� � ei��m�����
	m

�
�

Let �A�m and �B�m be the 	m�by�	m Hermitian Toeplitz matrices with their �rst rows

given by �
��� ie�i��m����

	m� �
� � � � �� ie�i��m�j��

	m� j
� � � � ��ie�i�

�
���

and �
��
i�e�i��m���� � ei��

	m
� � � � � i�e

�i��m�j�� � eij��

	m
� � � � � i�e

�i� � ei��m�����
	m

�
�
�

respectively� Then we have ��m�g� 
 �A�m � �B�m� From �
�� we have

�� �B�m

���
F

 	

�m��X
j��

�	m� j�
��� i

	m



e�i��m�j�� � eij�

�����

� 	
�m��X
j��

	m� j

m�



	�	m� ��

m
� �� ���

��



We next partition �A�m as

�A�m 


�
� Um

U�
m �

�
�

�
Vm �
� Vm

�
�

By ���� we see that Vm is a Hermitian Toeplitz matrix with its �rst row given by

�
��� ie�i��m����

	m� �
� � � � �� ie�i��m�j��

	m� j
� � � � �� ie�i�m����

m� �

�
�

Hence

kVmk�F 


m��X
j��

�m� j�

������ ie�i��m�j��

	m� j

����
�

�

���� iei��m�j��	m� j

����
�
�


 	

m��X
j��

m� j

�	m� j��
� 	

m��X
j��

�

	m� j
� 	

Z �m��

m

�

x
dx � 	 ln 	� ���

Thus if we de�ne

B�m 
 �B�m �

�
Vm �
� Vm

�
�

then by ��� and ���� we have

kB�mkF � jj �B�mjjF �
p
	kVmkF � 	 � 	

p
ln 	�

It remains to show that the matrix

A�m 
 ��m�g��B�m 
 �A�m � �B�m �B�m 
 �A�m �
�
Vm �
� Vm

�



�
� Um

U�
m �

�

satis�es ���� To prove that� we �rst de�ne

Jm 


�
��
� �

�
� �
�

� �

�
�	 �

Pm 
 diag��� ei� � � � � � ei�m���� � ei�m������

and

Qm 
 diag��ie�im���ie�i�m����� � � � ��ie��i���ie�i���

��



It is straightforward to check that Um 
 P �
mHmJmQm where Hm is the Hilbert matrix

de�ned in Lemma �� Hence

A�m 


�
� Um

U�
m �

�



�
P �
m �
� Q�

m

� �
� HmJm

JmHm �

� �
Pm �
� Qm

�



�

	

�
P �
m �
� Q�

m

� �
Im Im
Jm �Jm

� �
Hm �
� �Hm

� �
Im Jm
Im �Jm

� �
Pm �
� Qm

�



�

	

�
P �
m P �

m

Q�
mJm �Q�

mJm

� �
Hm �
� �Hm

� �
Pm JmQm

Pm �JmQm

�
�

Since

�p
	

�
Pm JmQm

Pm �JmQm

�

is an orthogonal matrix for all 
� A�m is orthogonally similar to�
Hm �
� �Hm

�
�

By Lemma �� ��� follows�

Lemma �� The matrix ��m�
�P

k��


k�kgk� can be written as

��m�

�X
k��


k�kgk� 
 D�m �E�m� ���

where D�m and E�m are Hermitian matrices with

N

� j
k� j
	

�D�m

�

 � ����

and

sup
m
jjE�mjjF � c �	 ����

for some c independent of m�

Proof� For simplicity� let us write

h 

�X

k��


k�kgk�

De�ne Wm to be the m�by�m Toeplitz matrix

Wm 


�
�����

tm�h� tm���h� � � � t��h�

tm���h�
� � � t��h�

���
t�m���h� t�m���h� tm�h�

�
����	 � ��	�

��



It is clear that the entries of the Hankel matrix WmJm are just Fourier coe�cients of the

function h���e�i�� Therefore� by Lemma 
� we have

kWmJmk� � sup
�
jh���e�i�j 
 khk��

where by the de�nitions of h and gk� � � k � ��

khk� 
 jh��k��j 

j
k� j
	

�

Hence if we let

D�m 


�
� �Wm

�W �
m �

�
�

then we have

kD�mk� 
 kWmk� 
 kWmJmJmk� � kWmJmk�kJmk� � j
k� j
	

�

Thus N�j
k� j�	�D�m� 
 ��

It remains to show that E�m 
 ��m�h� � D�m satis�es ����� To estimate kE�mkF �

we partition the Hermitian Toeplitz matrix ��m�h� as

��m�h� 


�
Xm Ym
Y �
m Xm

�
�

Clearly Xm is an m�by�m Hermitian Toeplitz matrix with its �rst row given by

�
��

�

	m
�t���h��t�m���h��� 	

	m
�t���h��t�m���h��� � � � � m� �

	m
�t�m���h��tm���h��

�
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and Ym is given by the m�by�m Toeplitz matrix

�
�����

m
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Therefore
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m � Y �

m Xm
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and hence

kE�mk�F 
 	kXmk�F � 	kWm � Ymk�F � ����

By direct computations� the Fourier coe�cients tj �h� of h are given by

tj �h� 
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In either case� there exists a constant c such that

jtj �h�j � c

jjj � j 
 ����	� � � � �

Hence by �����
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Moreover� by ��	� and �����

kWm � Ymk�F 
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Putting this and ��
� back into ����� we have kE�mkF � 	c�

We now combine Lemmas ��� to show that the spectra of ��m�f � cannot be clustered�

Theorem �� Let f � L�� be piecewise continuous with points of discontinuity in ���� ��

at �� � �� � � � � � �� � � and jumps


k 
 lim
����

k

f���� lim
����

k

f���� k 
 �� � � � � ��

De�ne j
k� j 
 max��k�� j
kj� Then for any � � � � j
k� j��� there exists a constant b�

independent of m� such that

N�����m�f �� � �

�
�� � o���� logm � sech����

	
�

	�

j
k� j
�� b

where o��� tends to zero as m increases�

Proof� Putting �	� and ��� into ���� we �nd
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g� �

�X
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where
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�X
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We note that by ���� ����� Lemmas � and �� the sequence of matrices fG�mg has clustered

spectra� Moreover� by Lemma 	 and �����
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k� j
	

� 	��

k�
�

A�m

�
� N���G�m� �N

� j
k� j
	

��D�m

�
�N������m�f ��


 N���G�m� �N

� j
k� j
	

�D�m

�
�N�����m�f ��


 N���G�m� �N�����m�f ��

��



for all � � �� Thus by ����
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j
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�
�N���G�m�

for all � � � � j
k� j��� Finally� since fG�mg has clustered spectra� it follows that for any

� � � � j
k� j��� there exists a constant b such that N���G�m� � b for all m� Hence the

theorem is proved�

x	 Spectrum of the Preconditioned Systems�

In this section� we consider the spectrum of the preconditioned matrices C��n �f �Tn�f ��

We note that by Lemma �� f should be nonnegative to guarantee that Tn�f � and Cn�f � are

positive de�nite� When Cn�f � is positive de�nite� C��	�n �f � is well�de�ned and C��n �f �Tn�f �

is similar to the Hermitian matrix C��	�n �f �Tn�f �C��	�n �f �� The following theorem shows

that the spectrum of

Cn�f �� �

��n�f �Cn�f �� �

� 
 C��	�n �f �Tn�f �C��	�n �f �� In

cannot be clustered around zero�

Theorem �� Let f � L�� be nonnegative and piecewise continuous� Let its points of

discontinuity in ���� �� be at �� � �� � � � � � �� � � with jumps
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 lim
����

k
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����

k

f���� k 
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and j
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j
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where o��� tends to zero as n increases�
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Proof� For simplicity� we write �n�f � and Cn�f � as �n and Cn respectively� For any nonzero

vector x� let y 
 �nC�
�
�

n x� Then
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n x
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Hence by the Courant and Fischer theorem� see Wilkinson �	�� p������ we have� for any

nonzero vectors fvkgj��k�� in C n �
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where the eigenvalues 	j are ordered as 	� � 	� � � � � � 	n� Since fvkgj��k�� are arbitrary�

by the Courant�Fischer theorem again� we then have
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Hence by Theorem �� we have
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x� Bounds on the Number of Outlying Eigenvalues�

In this section� we show that if f is strictly positive� then the number of outlying

eigenvalues of C��n �f �Tn�f � cannot be more than O�log n�� We begin with the following

Lemma�

Lemma ��� Let f � L�� be piecewise continuous with points of discontinuity in ���� ��

at �� � �� � � � � � �� � � and jumps 
k� k 
 �� � � � � �� Then for all su�ciently small

� � �� there exist positive constants c� and c�� independent of m� such that

c� logm � N�����m�f �� � c� logm �

Proof� For k 
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and write f as

f 
 ff �
�X

k��


k
	�

�gkg �
�X

k��


k
	�

�gk �

�




It is easy to check that the �rst term on the right side is continuous� By Lemma ��
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where Ak��m and Bk��m satisfy the properties in ��� and ��� respectively� Hence by Lemmas

	��� we have for any � � � � ���
� j
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By combining this result with Theorem �� the Lemma follows�

As a corollary� we can show that the matrix Cn�f ���Tn�f � � In will have at most

O�log n� outlying eigenvalues provided that fmin � � �

Theorem �� Let f � L�� be piecewise continuous with fmin � �� Then for all su�ciently

small � � �� there exist positive constants c� and c	 such that

c� log
n

	
� N��� Cn�f �� �

��n�f �Cn�f �� �

� � � c	 log
n

	
�

Proof� The proof is similar to Theorem 	 with ���� replaced by

y�C��n y 

y�C��n y

y�y
� y�y � 	max�C��n � � y�y � �

fmin
� y�y�

where the last inequality above follows from Lemma ��
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x� Numerical Results�

In this section� we illustrate by numerical examples how the discontinuities in the

generating function f a�ect the convergence rate of the method� In the examples� test

functions f de�ned on ���� �� are used to generate Toeplitz matrices Tn�f � and the systems

Tn�f �x 
 b� where b 
 �p
n
��� �� � � � � �� ���� are then solved by the preconditioned conjugate

gradient method with or without the preconditioner Cn�f �� All computations are done by

Matlab on a Sparc II workstation at UCLA� The zero vector is used as the initial guess

and the stopping criterion is jjrqjj��jjr�jj� � ���
� where rq is the residual vector after q

iterations� Table � shows the numbers of iterations required for convergence� In the table�

the �rst row gives the generating functions and the second row indicates the preconditioner

used� The function f
�� � � � � � �� is a piecewise linear function de�ned by

ff
��g��� 


���
��

� � �

�
� � � �� � � � ��

� � �

�
� � � � � � � ��

where � and � are the maximum and minimum values of ff
��g on ���� �� respectively�

�	 � � �� � ��� � � ff������g �� � ��� ff����g
n None Cn�f � None Cn�f � None Cn�f � None Cn�f � None Cn�f �
�
 � � �
 � � � �
 �� � �
�	 	� � �� �� �
 � �� �� �
 �

� �� � �� �� 	
 � �� �� 	� �
�	� �
 
 �� �� �
 �� �
� 	� �� ��
	�
 
� 
 �� �� �� �� ��
 �� �� �	
��	 �� 
 �� �� �� �� ��� 
� �
 ��
��	� �� � �� �� 
� �� ���
 ��� ��
 ��

Table �� Number of iterations for di	erent generating functions�

We note that the �rst generating function �	 � � is a 	��periodic function and the

convergence rate obtained here is typical for such class of functions� see Chan �	�� The

other four functions are all piecewise continuous� Note that the second and the third

functions are strictly positive� Therefore Tn�f �� Cn�f � and hence C��n �f �Tn�f � are all well�

conditioned in view of Lemma �� In particular� the corresponding systems will converge

linearly� i�e� the method will converge in �nite number of steps independent of the matrix

��



size� So although the O�log n� e�ect can be seen for the preconditioned systems for small

n� it will level o� when n gets larger� For the last two functions� since their fmin 
 ��

the matrices Tn�f � will no longer be well�conditioned� In fact� we see that for the non�

preconditioned systems� the numbers of iterations required for convergence increase like

O�n� and O�
p
n� respectively� cf� Chan ��� p������ In these cases� the number of iterations

for the preconditioned systems grows even faster than O�log n��

For comparison� the spectra of the preconditioned systems for n 
 
� were computed

and shown in Figure � with the �rst test function �	 � � at the bottom �i�e� y 
 � in the

�gure� to the �fth one ff����g at the top� For the last four functions� we can see that their

corresponding spectra are less clustered than the �rst one�
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x� Concluding Remarks�

We have proved in this paper that when the T� Chan circulant preconditioner is used

to precondition Toeplitz matrices that are generated by nonnegative piecewise continu�

ous functions� the resulting matrices cannot have spectrum clustered around � and the

number of outlying eigenvalues grows at least like O�log n�� We then show by numerical

examples that these outlying eigenvalues do a�ect the convergence rate of the method

and in general the convergence rate is no longer superlinear and the number of iterations

required for convergence increases at least like O�log n� too� For such systems� it is better

to use band�Toeplitz preconditioners instead of circulant preconditioners for they guaran�

tee linear convergence rate whenever f is nonnegative piecewise continuous� see Chan and

Ng ��� Theorem ��� We �nally remark that recently� Tyrtyshnikov ���� has established a

generalized Szeg�o theorem and used that to prove that if f is in L� with fmin � �� then

the number of outlying eigenvalues grows no more than o�n�� Theorem � in this paper

can be viewed as a stronger form of his result under a stronger assumption�
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