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Abstract. We present a fast contour-integral eigensolver for finding selected or all the eigenpairs
of a non-Hermitian matrix based on a series of analytical and computational techniques, such as the
analysis of filter functions, quick and reliable eigenvalue count via low-accuracy matrix approxima-
tions, and fast shifted factorization update. The quality of some quadrature rules for approximating
a relevant contour integral is analyzed. We show that a filter function based on the Trapezoidal rule
has nearly optimal decay in the complex plane away from the unit circle (as the mapped contour),
and is superior to the Gauss-Legendre rule. The eigensolver needs to count the eigenvalues inside
a contour. We justify the feasibility of using low-accuracy matrix approximations for the quick and
reliable count. Both deterministic and probabilistic studies are given. With high probabilities, the
matrix approximations give counts very close to the exact one. Our eigensolver is built upon an
accelerated FEAST algorithm. Both the eigenvalue count and the FEAST eigenvalue solution need
to solve linear systems with multiple shifts and right-hand sides. For this purpose and also to con-
veniently control the approximation accuracy, we use a type of rank structured approximations and
show how to update the factorization for varying shifts. The eigensolver may be used to find a large
number of eigenvalues, where a search region is then partitioned into subregions. We give an optimal
threshold for the number of eigenvalues inside each bottom level subregion so as to minimize the
complexity, which is O(rn2)+O(r2n) to find all the eigenpairs of an order-n matrix with maximum
off-diagonal rank or numerical rank r. Numerical tests demonstrate the efficiency and accuracy and
confirm the benefit of our acceleration techniques.

Key words. contour-integral eigensolver, quadrature rule, low-accuracy matrix approximation,
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1. Introduction. In this paper, we consider the eigenvalue solution for a non-
Hermitian matrix A:

(1.1) Ax = λx, A ∈ Cn×n,

where λ ∈ C is an eigenvalue and x is the corresponding eigenvector. We study a
type of contour-integral eigensolvers and propose a series of acceleration techniques.
We suppose an eigenvalue decomposition of A exists:

(1.2) A = XΛX−1,

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix for the eigenvalues, and X =
(x1, x2, . . . , xn) is the eigenvector matrix.

Classical methods for solving (1.1) include power iterations, inverse iterations,
and QR iterations. The main operations involve matrix-vector multiplications, linear

∗Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (ye83@purdue.
edu, xiaj@math.purdue.edu). The research of Jianlin Xia was supported in part by an NSF CAREER
Award DMS-1255416.

†Department of Mathematics, the Chinese University of Hong Kong, Shatin, NT, Hong Kong
(rchan@math.cuhk.edu.hk).

‡Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Mas-
sachusetts General Hospital, Harvard University, Charlestown, MA 02129, USA (stcauley@nmr.mgh.
harvard.edu).

§School Of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907,
USA (ragu@ecn.purdue.edu).

1



2 X. YE, J. XIA, R. CHAN, S. CAULEY, AND V. BALAKRISHNAN

system solutions, or QR factorizations. In QR iterations, A is usually first reduced to
an upper Hessenberg form.

Recently, a class of contour-integral based eigensolvers have been developed to find
a partial spectrum. They have some very appealing features, such as the robustness
in terms of convergence rates, the natural accommodation of eigenvalue multiplicity,
and the nice scalability. In [43, 44], the Sakurai-Sugiura (SS) method is proposed to
reduce a generalized eigenvalue problem to a smaller one with Hankel matrices, and
later in [45] a stable version called CIRR is introduced by combining the contour-
integral technique with the Rayleigh-Ritz procedure. The FEAST algorithm is first
proposed in [41] for Hermitian matrices, where a spectral projector is constructed via
the integration of the resolvent of a matrix, followed by projected subspace iterations.
Some non-Hermitian FEAST methods can be found in [33, 36, 48, 62]. Contour-
integral eigensolvers utilize a filter function, whose quality is a key factor of the
effectiveness of the eigenvalue solutions. Rational filter functions are discussed in
[25, 49]. Other types of filter functions can be obtained via the solution of optimization
or least-squares problems [50, 53].

The basic idea of the FEAST algorithm is as follows. Suppose λi, i = 1, 2, . . . , s ≤
n are all the eigenvalues inside a Jordan curve Γ on the complex plane. Consider the
contour integral

(1.3) ϕ(z) =
1

2πi

∫
Γ

1

µ− z
dµ, z /∈ Γ, i =

√
−1.

A spectral projector to the desired eigenspace span{x1, x2, . . . , xs} is constructed
based on Cauchy’s residue theorem [47] in complex analysis:

Φ ≡ ϕ(A) = 1

2πi

∫
Γ

(µI −A)−1dµ =
1

2πi

∫
Γ

(µI −XΛX−1)−1dµ(1.4)

= X

(
1

2πi

∫
Γ

(µI − Λ)−1dν

)
X−1 = X

(
Is

0

)
X−1.

In practice, the spectral projector Φ is not explicitly formed. Instead, the basis of
the eigenspace can be extracted with randomization, where the product of Φ and an
appropriately chosen random matrix Y is computed:

(1.5) Z = ΦY =
1

2πi

∫
Γ

(µI −A)−1Y dµ.

This needs to evaluate the contour integral, which is done by numerical quadratures.
In the process, linear systems are solved for (µI −A)−1Y . After Z is evaluated, it is
used as starting vectors in projected subspace iterations to compute the desired eigen-
pairs. The accuracy of the quadrature approximation is essential to the convergence
rate of the subspace iterations.

In the FEAST algorithm and other contour-integral eigensolvers, it needs an
estimate of the number of eigenvalues of A inside Γ, denoted #Λ(A,Γ), which is
sometimes assumed to be known in advance. Some estimation methods have been
proposed in [40, 43, 62] based on stochastic strategies.

In both the eigenvalue count and the projected subspace iterations, it needs to
evaluate the numerical quadrature by solving linear systems with multiple shifts µI
and multiple right-hand sides. This poses challenges to both direct and iterative linear
solvers. For example, direct solvers are suitable for multiple right-hand sides, but each
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additional shift typically requires a new factorization. If A is a general dense matrix,
each factorization costs O(n3) flops. The total eigenvalue solution cost may be quite
high, depending on the number of eigenvalues desired and the accuracy.

Here, we seek to design a fast contour-integral eigensolver. There are three major
tasks. (1) One task is to analyze some numerical quadrature rules for the design of
filter functions and understand their quality. This helps us choose an appropriate
quadrature with justified optimality for the contour integration. (2) The next task is
to show why some low-accuracy approximations can be used to quickly and reliably
count the eigenvalues inside Γ. Both deterministic and probabilistic justifications are
included. (3) The third task is to present a fast algorithm to find selected or all
eigenpairs of A based on the analysis and a type of fast shifted factorizations. Some
tools to use include structured matrices and shifted structured factorization update.
The matrices we consider include some rank structured ones and more general cases.
Previously, for non-Hermitian rank-structured eigenvalue problems, fast QR iterations
are designed for special cases such as companion matrices [5, 10, 14, 51]. Here, we
consider more general cases.

Our first task is to perform some analysis on the quality of some commonly
used quadrature rules for approximating (1.3). The quadrature approximation is
expected to be not too far away from 1 for z inside Γ and not too close to Γ, and
to decay quickly for z outside and away from Γ. Existing FEAST algorithms usually
use the Gauss-Legendre rule [36, 41, 62], though recent numerical observations find
that the Trapezoidal rule may be preferable [48, 50]. Here, we analytically show
that the Trapezoidal rule is much superior in the sense that it yields quadrature
approximations with nearly optimal decay outside the unit circle (as the mapped
contour Γ) in the complex plane. Thus, the Trapezoidal rule will be used in our
eigensolver. We would like to mention that interesting analysis has been performed for
approximating the operator exponent by contour integration of the matrix resolvent
[19], where an exponentially convergent sinc quadrature rule is proposed and is also
applicable to other common kernel functions such as 1/|x− y| and log |x− y| [29].

The next task is to show the feasibility of using low-accuracy matrix approxima-
tions for the quick and reliable estimate of #Λ(A,Γ). The eigenvalue count involves
quadrature approximations similar to (1.5) and needs linear solutions with multiple
shifts and multiple right-hand sides. Certain low-accuracy matrix approximations
with fast solutions enable us to quickly estimate #Λ(A,Γ), as long as the count is
unchanged or remains close. We show that, when Γ is not too close to the eigenvalues
inside it, A can be approximated by a matrix Ã with a low accuracy so that the
eigenvalue count remains the same (#Λ(A,Γ) = #Λ(Ã,Γ)). The farther away Γ is
from the eigenvalues, the lower the approximation accuracy of Ã is allowed to be.
On the other hand, if there are eigenvalues close to Γ, we use probabilistic methods
to justify the reliability of #Λ(Ã,Γ). We show that, for some situations, with high
probabilities, the eigenvalue count is off by only a very small number α. Roughly
speaking, the probability of miscounting the eigenvalues by α decays exponentially
with α. This is sufficient for us since we do not need the count to be exact.

Our choice of Ã is based on rank structured forms, since it is convenient to con-
trol the approximation accuracy and also quick to perform structured direct solutions
with multiple right-hand sides and even multiple shifts. (Note that the approximation
analysis for the eigenvalue count is not restricted to rank structured forms.) The rank
structured forms involve low-rank approximations of some off-diagonal blocks. Exam-
ples of such forms include H [26], H2 [27, 6], and hierarchically semiseparable (HSS)
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[8, 60] representations. For matrices with small off-diagonal ranks or numerical ranks,
fast direct solvers exist. Such matrices widely appear in numerical computations, such
as polynomial root finding, Toeplitz problems, and some discretized problems. Here,
even if A itself is not rank structured, we may still use a rank structured approxima-
tion Ã to quickly count the eigenvalues.

Our third task is then to design a fast contour-integral eigensolver for rank struc-
tured A and even more general cases. This is based on fast factorizations of rank
structured approximations, as well as fast factorization update with varying shifts for
the quadrature evaluations. We will adaptively choose the approximation accuracy
to balance the efficiency and the accuracy. Previously, for Hermitian HSS matrices, a
shifted structured LDL factorization update is designed [4, 56]. Here, we further show
that, even for non-Hermitian HSS matrices, we can still update the factorization for
varying shifts so as to save nearly 40% of the factorization cost for each shift.

To find the eigenvalues inside a search region, our eigensolver recursively parti-
tions the region into subregions, until the number of eigenvalues inside each subregion
is smaller than a threshold k. This process can be organized into a quadtree. For sub-
regions corresponding to the leaf nodes, we then increase the approximation accuracy
of Ã and switch to projected subspace iterations. The shifted structured factorization
update can benefit both the eigenvalue count and the subspace iteration. The saving
in the eigenvalue count is especially significant, since the count is done for each in-
termediate subregion or each node of the quadtree and the subspace iteration is done
just for the leaf nodes. Additionally, deflation is incorporated into the eigensolver.

In particular, if A itself is rank structured and has maximum off-diagonal rank or
numerical rank r, we show that the optimal threshold for the eigenvalue count in the
leaf level subregions is k = O(r). This minimizes the total complexity for finding all
the eigenpairs, which is O(rn2) +O(r2n) under a modest assumption.

Various applications are then discussed. We also discuss the choice of the initial
search region. Numerical tests are done for some problems. We can clearly see the
benefits of shifted factorization update and low-accuracy matrix approximation. The
cost for the eigenvalue counts has been reduced to a very small portion of the total.

The outline of the remaining presentation is as follows. In Section 2, we show
our analysis of the quadrature rules for the filter function design. The idea of low-
accuracy matrix approximations for the eigenvalue count is given in Section 3. Our fast
contour-integral eigensolver is presented in Section 4. Section 5 gives the numerical
experiments to illustrate the efficiency and accuracy.

The following notation is used throughout the paper:

• Cγ(z) denotes the circle centered at z with radius γ;
• Dγ(z) denotes the open disk centered at z with radius γ;
• Aγ,δ(z) = {ω ∈ C : γ − δ < |ω − z| < γ + δ} is the open annulus region

centered at z with outer radius γ + δ and inner radius γ − δ.

2. Analysis of quadrature rules for filter function design. In contour-
integral eigensolvers, the quality of the quadrature approximation is critical for the
accuracy of the eigenvalue computation. Here, we first perform analysis on some
quadrature rules so as to choose an appropriate one for (1.3) and (1.5).

If the contour Γ has a parametrization Γ = {h(t) : t ∈ [a, b)}, then (1.3) becomes

(2.1) ϕ(z) =
1

2πi

∫ b

a

h′(t)

h(t)− z
dt.
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A q-point quadrature rule can be used to approximate ϕ(z) by the filter function

(2.2) ϕ̃(z) =
1

2πi

q∑
j=1

wj
h′(tj)

h(tj)− z
,

where tj ’s and wj ’s are the quadrature nodes and weights, respectively.

We focus on the case when Γ is a circle Cγ(z0). Specifically when Cγ(z0) is the

unit circle C1(0), write ϕ(z) in (1.3) and (2.1) as ϕ0(z) and write ϕ̃(z) in (2.2) as
ϕ̃0(z). Then ϕ(z) can be transformed directly into ϕ0(z) by

ϕ(z) =
1

2πi

∫
Cγ(z0)

1

µ− z
dµ =

1

2πi

∫
C1(0)

γ

z0 + γν − z
dν

=
1

2πi

∫
C1(0)

1

ν − (z − z0)/γ
dν = ϕ0

(
z − z0
γ

)
.

Thus, it is sufficient to focus only on ϕ0(z) and its approximation ϕ̃0(z). Let the
parametrization of the unit circle C1(0) be h(t) = eiπt, −1 ≤ t < 1. Then

ϕ0(z) =
1

2

∫ 1

−1

eiπt

eiπt − z
dt,(2.3)

ϕ̃0(z) =
1

2

q∑
j=1

wj
eiπtj

eiπtj − z
≡ 1

2

q∑
j=1

wjzj
zj − z

,(2.4)

where zj ’s are the mapped quadrature nodes on C1(0):

(2.5) zj = eiπtj , j = 1, 2, . . . , q.

Rewrite (2.4) as a rational form

(2.6) ϕ̃0(z) ≡
f(z)

g(z)
with g(z) =

q∏
j=1

(z − zj),

where g(z) is a polynomial of degree dg ≡ q and with roots zj , j = 1, 2, . . . , q, and
f(z) is a polynomial uniquely determined by the choice of the quadrature rule (tj ’s

and wj ’s). The degree df of f(z) satisfies 0 ≤ df ≤ q − 1. For ϕ̃0(z) to be a good
approximation of the exact function ϕ0(z), we would expect:

• |ϕ̃0(z)| is not too far away from 1 when z is inside C1(0) and not too close to
zj ’s;

• |ϕ̃0(z)| decays fast when z is outside C1(0) and moves away from it.

The following proposition indicates that the first criterion is always satisfied when
an interpolatory quadrature is used.

Proposition 2.1. For z ∈ C and ϕ̃0(z) in (2.4) resulting from any interpolatory
quadrature rule applied to (2.3),

• ϕ̃0(0) = 1;

• |ϕ̃0(z)| > 1
2 when |z| < 1;

• |ϕ̃0(z)| < 1
δ when |zj − z| > δ > 0, j = 1, 2, . . . , q.
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Proof. For any interpolatory quadrature rule, the weights {wj}qj=1 satisfy
∑q

j=1 wj =
2. Then directly from (2.4), we get

ϕ̃0(0) =
1

2

q∑
j=1

wjzj
zj

=
1

2

q∑
j=1

wj = 1.

When |z| < 1, we have

Re(ϕ̃0(z)) =
1

2

(
ϕ̃0(z) + ϕ̃0(z)

)
=

1

4

q∑
j=1

(
wjzj
zj − z

+
wjzj
zj − z

)

=
1

4

q∑
j=1

wj
zj(zj − z) + zj(zj − z)

(zj − z)(zj − z)
=

1

4

q∑
j=1

wj
2− (zjz + zjz)

1 + |z|2 − (zjz + zjz)
.

Note that zjz + zjz ∈ R and |zjz + zjz| ≤ 2|z| < 1 + |z|2 < 2. Then,

Re(ϕ̃0(z)) >
1

4

q∑
j=1

wj
2− (zjz + zjz)

2− (zjz + zjz)
=

1

4

q∑
j=1

wj =
1

2
.

This yields |ϕ̃0(z)| ≥ Re(ϕ̃0(z)) > 1/2.
Finally, when |zj − z| > δ > 0, j = 1, 2, . . . , q,

|ϕ̃0(z)| <
1

2

q∑
j=1

wj

δ
=

1

δ
.

The proposition means, if z is inside D1(0), then |ϕ̃0(z)| has a lower bound 1/2. It
also has an upper bound 1/δ for z not within a distance δ of any mapped quadrature
point zj . If z is too close to any zj , then it is possible for |ϕ̃0(z)| to be large. This
can also be observed from Figure 2.1 below.

We then study the decay property of |ϕ̃0(z)|. From the rational form (2.6), we can
see that |ϕ̃0(z)| decays as O(|z|df−dg ) for |z| > 1. This means, the smaller the degree
df is, the faster |ϕ̃0(z)| decays outside C1(0) and thus the better the quadrature
approximation is. The next theorem compares two popular quadrature rules: the
Trapezoidal rule and the Gauss-Legendre quadrature, in terms of the degree df .

Theorem 2.2. For ϕ̃0(z) in (2.4)–(2.6), the degree df of f(z) satisfies:

1. If the Trapezoidal rule is used, where tj = −1 + 2(j−1)
q and wj =

2
q , then

df = 0 (in fact, f(z) = (−1)q+1).

That is, the Trapezoidal rule gives the optimal df .
2. If the Gauss-Legendre quadrature is used, where {tj}qj=1 are the roots of the

Legendre polynomial of degree q and {wj}qj=1 are the corresponding weights,
then

df ≥ 1.

Proof. Comparing (2.4) and (2.6) yields

f(z) = −1

2

q∑
j=1

wjzj
∏
i̸=j

(z − zi).
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Let the coefficient of the term zq−k in f(z) be Cq−k for 1 ≤ k ≤ q, which has the
following form:

(2.7) Cq−k =
(−1)k

2

∑
1≤i1<i2<···<ik≤q

(wi1 + wi2 + · · ·+ wik)zi1zi2 · · · zik .

For the Trapezoidal rule, the mapped quadrature nodes zj in (2.5) satisfy

zqj = eiπqtj = eiπ(2j−2−q) = (−1)q, 1 ≤ j ≤ q.

Hence, zj ’s are the roots of zq − (−1)q, so that

(2.8) g(z) = zq − (−1)q.

Since all the weights wj are equal, (2.7) can be simplified as

Cq−k =
k

q

[
(−1)k

∑
1≤i1<i2<···<ik≤q

zi1zi2 · · · zik
]
, 1 ≤ k ≤ q.

Note that the part in parenthesis in the above equation is the coefficient of the term
zq−k in the polynomial g(z) in (2.6) and also in (2.8). Thus,

Cq−k = 0, 1 ≤ k ≤ q − 1, C0 = (−1)q+1.

Therefore, f(z) = (−1)q+1 and df = 0.

For the Gauss-Legendre quadrature, we prove the result by contradiction. Sup-
pose df = 0. Some well-known properties of the Gauss-Legendre quadrature are

(2.9)

q∑
j=1

tj = 0, tj + tq+1−j = 0, wj = wq+1−j , 1 ≤ j ≤ q,

where we assume t1 < t2 < · · · < tq. As a result, the mapped nodes satisfy

(2.10)

q∏
j=1

zj = 1, zjzq+1−j = 1, 1 ≤ j ≤ q.

Define Sk = {(i1, i2, . . . , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ q} to be the set of index
sequences of the summation in (2.7). Then for any 1 ≤ k ≤ q−1, the two sets Sk and
Sq−k have a one-to-one correspondence in the sense that, for any sequence σ ∈ Sk,
there is a unique sequence β ∈ Sq−k such that σ ∪ β = {1, 2, . . . , q} and σ ∩ β = ∅.
Therefore, for any 1 ≤ k ≤ q − 1, similar to (2.7),

Ck =
(−1)q−k

2

∑
(i1,i2,...,iq−k)∈Sq−k

(wi1 + wi2 + · · ·+ wiq−k
)zi1zi2 · · · ziq−k

.
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We can then use (2.9) and (2.10) to get

Ck =
(−1)q−k

2

∑
(i1,i2,...,ik)∈Sk

(2− (wi1 + wi2 + · · ·+ wik))
1

zi1zi2 · · · zik

=
(−1)q−k

2

∑
(i1,i2,...,ik)∈Sk

(2− (wq+1−i1 + · · ·+ wq+1−ik))zq+1−i1 · · · zq+1−ik

=
(−1)q−k

2

∑
(i1,i2,...,ik)∈Sk

(2− (wi1 + wi2 + · · ·+ wik))zi1zi2 · · · zik

=

(
(−1)q−k

∑
(i1,i2,...,ik)∈Sk

zi1zi2 · · · zik
)

−
(
(−1)q−k

2

∑
(i1,i2,...,ik)∈Sk

(wi1 + wi2 + · · ·+ wik)zi1zi2 · · · zik
)

=

(
(−1)q−k

∑
(i1,i2,...,ik)∈Sk

zi1zi2 · · · zik
)
− (−1)q−2kCq−k.

By assumption, we have Ck = 0, Cq−k = 0 for 1 ≤ k ≤ q − 1, so∑
(i1,i2,...,ik)∈Sk

zi1zi2 · · · zik = 0, 1 ≤ k ≤ q − 1.

The above equation together with
∏q

j=1 zj = 1 indicate that zj in (2.5) must be roots
of the polynomial zq + (−1)q. Thus, the roots of Legendre polynomial must be

tj = −1 +
2j − 1

q
, j = 1, 2, . . . , q.

This is clearly a contradiction, and hence df ≥ 1.

This theorem indicates that the filter function ϕ̃0(z) from the Trapezoidal rule
decays as

|ϕ̃0(z)| ∼ O(|z|−q) for large |z|,

Thus, the Trapezoidal rule yields nearly optimal decay. The decay in the Gauss-
Legendre case is at best O(|C1||z|1−q), where

C1 =

q∑
j=1

(1 + wj) cos(πtj).

It can be verified numerically, though not analytically yet, that |C1| is not small and
actually increases when q increases.

To illustrate the decay, we plot |ϕ̃0(z)| from the two quadrature rules with q = 8
and 16 in Figure 2.1. Outside C1(0), |ϕ̃0(z)| decays quickly when |z| increases, and
moreover, the Trapezoidal rule yields much faster decay than the Gauss-Legendre
quadrature. For q = 8, |ϕ̃0(z)| from the Trapezoidal rule is about two orders of
magnitude smaller at the corners of the mesh (with |z| not even very large). For
q = 16, this difference increases to over four orders of magnitude.
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(a) 8-point Trapezoidal rule (b) 8-point Gauss-Legendre rule

(c) 16-point Trapezoidal rule (d) 16-point Gauss-Legendre rule

Fig. 2.1. log10 |ϕ̃0(z)| on the [−4, 4]× [−4, 4] mesh obtained with the Trapezoidal rule and the
Gauss-Legendre rule.

Theorem 2.2 and Figure 2.1 also align with the numerical observations in [48, 50].
In [50], an optimization method is used to design filter functions, and in the unit circle
case, the best filter function is observed to be precisely the one obtained by applying
the Trapezoidal rule. Our analysis provides a theoretical justification.

Therefore, unlike in [36, 41, 62], our eigensolver below uses the Trapezoidal rule
to evaluate (1.5) in both the eigenvalue counts and the subspace iterations.

3. Low-accuracy matrix approximation for fast eigenvalue counts.

3.1. Motivations. In contour-integral eigensolvers, it usually requires to know
the eigenvalue count #Λ(A,Γ) inside a contour Γ in advance. In our eigensolver in the
next section, we may need to estimate eigenvalue counts for many subregions, so it
is essential to quickly perform the estimation. Some methods to estimate eigenvalue
counts have been proposed in [18, 40, 43, 62] based on stochastic evaluations of the
rank or trace [30] of Φ in (1.4). The basic idea is as follows.

According to (1.4), the trace and also the rank of Φ give the exact eigenvalue count
#Λ(A,Γ). To estimate the trace, we can pick a small number of random vectors to
form an n×m matrix Y , and compute Y TΦY = Y TZ, where Z looks like (1.5). Then

(3.1) #Λ(A,Γ) ≡ trace(Φ) ≈ 1

m
trace(Y TZ).
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Theoretically, a small number m can lead to a high probability of accurate estimation.
However, since Z in (1.5) is approximated by numerical quadratures, m may not be
too small. We can start from a very small m and gradually include more random
vectors in Y until a reliable estimate is reached.

In the eigenvalue counts with quadrature approximations, it needs to solve linear
systems for µI−A with multiple shifts µI, multiple right-hand sides, and for possibly
many contours, which amounts to a significant computational cost. However, notice
the following important aspects:

1. Since we are just interested in the eigenvalue count (at this stage) instead of
the precise eigenvalues, as long as the eigenvalues are not too close to Γ, a
small perturbation to A does not alter the eigenvalue count.

2. Moreover, in our eigensolver, we will quadsect a search region containing the
eigenvalues and only need to know whether the eigenvalue count inside each
subregion is much larger than a threshold k or not. Thus, the eigenvalue
count does not even have to be very accurate.

As a result, we can use a matrix Ã that approximates A and satisfies the following
two requirements:

1. #Λ(Ã,Γ) ≈ #Λ(A,Γ) and it is convenient to control how accurately Ã ap-
proximates A;

2. #Λ(Ã,Γ) can be quickly estimated, i.e., the linear systems with multiple
shifts and right-hand sides in the quadrature approximation of (1.5) (with A
replaced by Ã) can be quickly solved.

A natural tool that satisfies both requirements is the rank structure, which allows
fast direct factorizations. (Note that the fundamental approximation analysis for
the eigenvalue count in this section is not restricted to rank structured forms.) In
particular, HSS type methods is a convenient algebraic tool with systematic error
control, stability analysis, and fast factorizations. In the next section, we will further
show the feasibility of updating the factorization for multiple shifts. More general
H-matrix representations may be used to accommodate even broader applications,
though it is not clear how to perform fast factorization updates for varying shifts.

Before justifying the reliability of our low-accuracy matrix approximation for fast
eigenvalue counts, we briefly review HSS representations. The reader is referred to
[8, 60] for more details. An HSS matrix Ã can be recursively bipartitioned following
a postordered binary tree T (called HSS tree) with nodes i = 1, 2, . . . , t, where t is
the root. Initially, let Dt = Ã. For any nonleaf node i of T , the partition of Di looks

like Di =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
, where c1 and c2 are the children of i. Here, the

off-diagonal basis matrices U, V also satisfy a nested property: Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =(

Vc1Wc1

Vc2Wc2

)
. All such matrices D,U, V,R,W,B are called HSS generators that define

Ã. The block row or column corresponding to Di but excluding Di is called an HSS
block. The HSS matrix has l levels of partition if the HSS tree T has l levels, where
the root is at level 0 and the leaves are at level l. The maximum rank (or numerical
rank) of all the HSS blocks at all the levels is called the HSS rank.

A matrix is rank structured if all its off-diagonal blocks have small ranks or
numerical ranks. That is, the singular values of the off-diagonal blocks decay quickly.
Here to be more specific, by saying a matrix is rank structured, we mean it can be
accurately approximated by a compact HSS form.
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3.2. Reliability of eigenvalue count with low-accuracy matrix approx-
imation. In our eigensolver, we will use an HSS form Ã to approximate A. To see
how such an approximation perturbs the eigenvalues, we give following lemma that
extends a Hermitian version in [52].

Lemma 3.1. Suppose A has simple eigenvalues, and Ã is an l-level HSS approx-
imation to A in (1.2), so that each off-diagonal block UiBiV

T
j of Ã approximates the

corresponding block in A to an accuracy τ which is sufficiently small. Let λ be a
simple eigenvalue of A, then there exists an eigenvalue λ̃ of Ã such that

(3.2) |λ− λ̃| ≤ κ(λ)lτ +O((lτ)2),

where κ(λ) is the 2-norm condition number of λ.
The lemma follows directly from the HSS approximation error ∥A− Ã∥2 ≤ lτ [52]

and standard eigenvalue perturbation analysis [3, 13].
Throughout this section, we will assume that all eigenvalues λi of A are simple

and the perturbation to the matrix is sufficiently small, so as to identify a one-to-one
correspondence between the eigenvalues of A and those of its approximation Ã. More
specifically, Lemma 3.1 indicates that for any eigenvalue λi, there must be a perturbed
eigenvalue λ̃ within a disk centered at λi and with radius κ(λi)lτ + O((lτ)2). λ̃ is
unique if this disk is isolated from all the other such disks which yields the desired
one-to-one correspondence, we can guarantee this by enforcing the following sufficient
condition:

(3.3) κ̃lτ +O((lτ)2) ≤ 1

2
min

1≤i,j≤n,i ̸=j
|λi − λj |,

where κ̃ is a sharp upper bound for all κ(λi). In more general cases when any ap-
proximation Ã is used, the following analogous condition is assumed:

(3.4) κ̃∥A− Ã∥+O(∥A− Ã∥2) ≤ 1

2
min

1≤i,j≤n,i ̸=j
|λi − λj |.

The following theorem shows when Ã can be used to obtain the exact eigenvalue
count inside Cγ(z), and also gives a necessary condition for the eigenvalue count to be
off by a certain number. We assume the perturbations to the eigenvalues are strictly
bounded by δ, which is related to the perturbation in the matrix according to the
discussions above.

Theorem 3.2. Suppose A has simple eigenvalues λ with |λ| < ρ, Ã is an ap-
proximation to A satisfying (3.4), and any eigenvalue λ of A and the corresponding
eigenvalue λ̃ of Ã satisfy

(3.5) |λ− λ̃| < δ < γ < ρ.

1. If A has no eigenvalue inside Aγ,δ(z), then

#Λ(A, Cγ(z)) = #Λ(Ã, Cγ(z)).

2. If |#Λ(A, Cγ(z)) −#Λ(Ã, Cγ(z))| ≥ α for an integer α > 0, then there must
be at least α eigenvalues of A inside Aγ,δ(z).

Proof. Figure 3.1 can be used to assist in the understanding of the results and
proof.
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z0

Fig. 3.1. The annulus region Aγ,δ(z) (shaded area) related to a circle Cγ(z), where the outer
disk Dρ(0) is where all the eigenvalues are located.

The first statement can be shown as follows. Since no eigenvalue of A lies inside
Aγ,δ(z), any eigenvalue λ satisfies |λ− z| ≥ γ+ δ or |λ− z| ≤ γ− δ. If |λ− z| ≥ γ+ δ,
according to (3.5),

|λ̃− z| = |λ− z − (λ− λ̃)| ≥ |λ− z| − |λ− λ̃| > γ + δ − δ = γ.

Thus, λ̃ is outside Cγ(z), just like λ. If |λ− z| ≤ γ − δ, then

|λ̃− z| = |λ̃− λ+ λ− z| ≤ |λ̃− λ|+ |λ− z| < δ + γ − δ = γ.

Thus, λ̃ is inside Cγ(z), just like λ. That is, λ and λ̃ must be both inside or outside

Cγ(z). Then A and Ã have the same number of eigenvalues inside Cγ(z), and the first
statement holds.

We then show the second statement by contradiction. Suppose there are less
than α eigenvalues of A inside Aγ,δ(z). If #Λ(A, Cγ(z)) ≥ #Λ(Ã, Cγ(z)), let n1 be the
number of eigenvalues of A satisfying |λ− z| ≤ γ − δ. Then #Λ(A, Cγ(z)) < n1 + α.

Also according to the proof above, #Λ(Ã, Cγ(z)) ≥ n1. Thus,

|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))| = #Λ(A, Cγ(z))−#Λ(Ã, Cγ(z)) < n1 + α− n1 = α.

Thus, we get a contradiction. Similarly, if #Λ(A, Cγ(z)) < #Λ(Ã, Cγ(z)), let n1 be the

number of eigenvalues of Ã satisfying |λ̃− z| ≤ γ − δ. Then #Λ(Ã, Cγ(z)) < n1 + α,

#Λ(A, Cγ(z)) ≥ n1, and we similarly get #Λ(Ã, Cγ(z)) −#Λ(A, Cγ(z)) < α and thus
a contradiction.

Theorem 3.2 means, if the contour is not too close to the eigenvalues, then Ã can
be used to obtain the exact eigenvalue count. The farther away the contour is from
the eigenvalues, the lower accuracy of Ã can be used. This is especially effective if
the eigenvalues are scattered. On the other hand, if the eigenvalue count with Ã is
off by α or more, then there must be at least α eigenvalues within a distance δ of the
contour. We then use probabilistic methods to study the error in the count based on
the relation between the eigenvalues and Aγ,δ(z).

Lemma 3.3. Suppose the eigenvalues λ of A are uniformly i.i.d. in Dρ(0). Then
for any fixed z ∈ C and γ, δ ∈ (0, ρ), the probability for any λ to lie inside Aγ,δ(z)
satisfies

(3.6) Pr{λ ∈ Aγ,δ(z)} ≤ P ≡
4δmax(γ, δ)

ρ2
.



A FAST CONTOUR-INTEGRAL EIGENSOLVER 13

Proof. The probability density function for λ has the form ψ(λ̂) =

{
1

πρ2 , |λ̂| < ρ,

0, |λ̂| ≥ ρ.
If γ ≥ δ,

Pr{λ ∈ Aγ,δ(z)} ≤
∫
γ−δ<|λ̂−z|<γ+δ

ψ(λ̂)dλ̂ =
π(γ + δ)2 − π(γ − δ)2

πρ2
=

4δγ

ρ2
.

If γ < δ,

Pr{λ ∈ Aγ,δ(z)} ≤
∫
|λ̂−z|<γ+δ

ψ(λ̂)dλ̂ =
π(γ + δ)2

πρ2
<

4δ2

ρ2
.

The result holds in both cases. (Note that the bounds may highly overestimate the
probability when Aγ,δ(z) is not fully inside Dρ(0).)

Lemma 3.3 gives a probability bound for λ to fall inside Aγ,δ(z) when the eigen-
values are random and uniformly distributed in Dρ(0). Thus, if A is approximated by

Ã as in Theorem 3.2, then the probability of incorrectly counting λ for #Λ(A, Cγ(z))
is at most P. If Ã is an HSS approximation as in Lemma 3.1, δ can be chosen to be
a strict upper bound for the error in (3.2).

In addition, Lemma 3.3 means that, the larger ρ is or the smaller δ and γ are, the
less likely λ falls inside Aγ,δ(z). In particular, later in our eigensolver, since the search
region is recursively partitioned into smaller ones, γ gets smaller along the partition
and so does the probability P. This combined with Theorem 3.2 means that it is
more likely to get reliable eigenvalue counts based on Ã.

Lemma 3.3 assumes the circle Cγ(z) is fixed and the eigenvalues are random.
We can also assume an eigenvalue λ is fixed and Cγ(z) is random, and study the
probability of Aγ,δ(z) to include λ.

Lemma 3.4. Suppose λ is a fixed point in the complex plane, z is uniformly
i.i.d. in Dρ(0), γ is random and uniformly distributed on (0, ρ), and z and γ are
independent. Then for any δ ∈ (0, ρ),

Pr{λ ∈ Aγ,δ(z)} < 2
δ

ρ
+

1

3

(
δ

ρ

)3

.

Proof. The probability density function for γ has the form φ(γ̂) =

{
1
ρ , 0 < γ̂ < ρ,

0, otherwise.

By the law of total probability,

Pr{λ ∈ Aγ,δ(z)} =
∫ ρ

0

Pr{λ ∈ Aγ,δ(z) | γ = γ̂}φ(γ̂)dγ̂

=
1

ρ

∫ δ

0

Pr{|z − λ| < γ̂ + δ}dγ̂ +
1

ρ

∫ ρ

δ

Pr{γ̂ − δ < |λ− z| < γ̂ + δ}dγ̂.

Similarly to the proof of Lemma 3.3, we can get

Pr{|z − λ| < γ̂ + δ} ≤ (γ̂ + δ)2

ρ2
, Pr{γ̂ − δ < |λ− z| < γ̂ + δ} ≤ 4δγ̂

ρ2
.

Thus,

Pr{λ ∈ Aγ,δ(z)} ≤
1

ρ

∫ δ

0

(γ̂ + δ)2

ρ2
dγ̂ +

1

ρ

∫ ρ

δ

4δγ̂

ρ2
dγ̂ = 2

δ

ρ
+

1

3

(
δ

ρ

)3

.
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We then give the probability for miscounting #Λ(A, Cγ(z)) when the eigenvalues

of A are random and A is approximated by an HSS form Ã.
Theorem 3.5. Suppose the eigenvalues of A are uniformly i.i.d. in Dρ(0), and

Ã is an l-level HSS approximation to A as in Lemma 3.1 and satisfies (3.3). Also,
suppose δ < ρ is a strict upper bound for the right-hand side in (3.2) for all the
eigenvalues. Let P be given in (3.6). Then for any integer α ≥ nP and any fixed
z ∈ C and γ ∈ (0, ρ),
(3.7)

Pr{|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))| ≥ α} ≤
(α+ 1)

α+1−(n+1)P

(
n

α

)
Pα(1− P)n−α+1.

Proof. According to Theorem 3.2,

Pr{|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))| ≥ α}(3.8)

≤Pr{there are at least α eigenvalues of A in Aγ,δ(z)}.

Now from Lemmas 3.1 and 3.3, the eigenvalues satisfy

(3.9) Pr{λ ∈ Aγ,δ(z)} ≡ P̂ ≤ P.

Let ŷ be the number of eigenvalues inside Aγ,δ(z). Since the eigenvalues are i.i.d.,

ŷ has a binomial distribution with parameters P̂ and n. Also, let y be a binomial
random variable with parameters P and n. Thus, (3.8) and (3.9) yield

Pr{|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))| ≥ α} ≤ Pr{ŷ ≥ α} ≤ Pr{y ≥ α}.

Since α ≥ nP, by [34, Proposition 1], the tail probability of the binomial random
variable y is bounded by

Pr{y ≥ α} ≤ (α+ 1)(1− P)
α+ 1− (n+ 1)P

(
n

α

)
Pα(1− P)n−α.

The result then follows.
The theorem can be understood as follows. Due to the term Pα, roughly speaking,

the probability of miscounting the eigenvalues by α decays exponentially with α for
reasonably small P. Thus, the probability is very small even for modest α. This is
sufficient for us since we only need an estimate of the count.

To give an idea of this probability bound in (3.7), we show it with different
eigenvalue perturbation errors δ. See Table 3.1, where the parameters correspond to
a matrix in Example 1 below. Clearly, even though δ is not very small, the probability
of miscounting the number of eigenvalues by α > 2 is extremely low. When α slightly
increases and/or δ decreases, the probability decreases rapidly.

We would also like to mention that Theorem 3.5 is still a very conservative es-
timate. For example, consider A to be the matrix with size n = 1600 in Exam-
ple 1 below. Let Ã be an HSS approximation obtained with a relative tolerance
τ = 10−1, 10−2, . . . , 10−5. We run the eigenvalue counts for 100 randomly selected
circles. For 57 of the cases, we get the exact counts for all these τ ’s. For the other
cases, #Λ(A, Cγ(z0)) and #Λ(Ã, Cγ(z0)) differ by a very small number with τ = 10−1

or 10−2. With smaller τ , exact counts are obtained for almost all the cases. Table
3.2 shows some of the results.
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Table 3.1
Bounds for the probability of miscounting the number of eigenvalues inside Cγ(z) by α or more,

where n = 1600, ρ = 4000.

γ δ
Bound for Pr{|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))| ≥ α}

α = 1 α = 2 α = 3 α = 4 α = 5

100

1e− 1 3.99e− 3 7.97e− 6 1.06e− 8 1.06e− 11 8.45e− 15

1e− 2 4.00e− 4 7.99e− 8 1.06e− 11 1.06e− 15 8.48e− 20

1e− 3 4.00e− 5 7.99e− 10 1.06e− 14 1.06e− 19 8.48e− 25

1000

1e− 1 3.92e− 2 7.79e− 4 1.03e− 5 1.03e− 7 8.20e− 10

1e− 2 3.99e− 3 7.97e− 6 1.06e− 8 1.06e− 11 8.45e− 15

1e− 3 3.99e− 4 7.99e− 8 1.06e− 11 1.06e− 15 8.48e− 20

Table 3.2
Eigenvalue counts of A and Ã inside some circles Cγ(z), where A is a Cauchy-like matrix

corresponding to n = 1600 in Example 1 below, τ is the relative tolerance in a randomized HSS
construction, and r is the HSS rank.

|#Λ(A, Cγ(z))−#Λ(Ã, Cγ(z))|
z γ #Λ(A, Cγ(z)) τ=10−1 10−2 10−3 10−4 10−5

r = 4 7 9 11 14

976.8517 − 596.6716i 109.5545 2 0 0 0 0 0

122.4701 + 395.7090i 221.7331 42 1 0 0 0 0

−250.9437 + 91.2499i 395.2032 147 1 0 0 0 0

−1029.6903 − 1599.1273i 986.0082 127 1 1 0 0 0

1646.1010 + 2850.7448i 1315.6815 10 0 0 0 0 0

−493.2565 + 1022.0571i 1526.3885 865 0 0 0 0 0

115.6055 − 2472.7009i 2063.6158 400 2 0 0 0 0

−1014.5968 + 1995.9028i 3004.7346 1220 1 0 0 0 0

660.5523 + 507.5861i 3954.0531 1596 0 0 0 0 0

Table 3.2 also shows the HSS ranks r. Note that when τ reduces from 10−1 to
10−4 (and all the counts then become exact), the HSS rank increases from r = 4 to
r = 11. Since HSS factorization and solution have asymptotic complexities O(r2n)
and O(rn) [60], respectively, using τ = 10−1 makes the factorization about 7.6 times
faster and the solution about 2.8 times faster than using τ = 10−4. For examples
where the HSS ranks are higher, the difference is even bigger. See Example 2 below.
This clearly demonstrates the benefit of low-accuracy matrix approximations for the
eigenvalue count.

4. Our fast contour-integral eigensolver. In this section, we show the design
of our fast contour-integral eigensolver for finding a partial spectrum or the full spec-
trum of A. We will start from an initial contour that encloses the desired eigenvalues,
and then repeatedly quadsect the search region into smaller subregions. When the
total number of desired eigenvalues is large, a significant amount of efforts is to make
sure each subregion includes no more than a certain number of eigenvalues. Before
a contour gets very close to the eigenvalues, the discussions in the previous section
indicate that we can use low-accuracy approximations to A to obtain a reliable count
of the eigenvalues enclosed by the contour.
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We first briefly review the non-Hermitian FEAST algorithm, and then discuss our
fast eigensolver based on several strategies for accelerating the FEAST algorithm.

4.1. Review of the non-Hermitian FEAST algorithm. The basic proce-
dure of the FEAST algorithm for non-Hermitian matrices is as follows [33, 36, 41, 48,
62]. Consider the case when Γ in (1.4) is a circle Cγ(z0). The matrix Z in (1.5) is
used to extract an approximation to the eigenspace span{x1, x2, . . . , xs}. Φ in (1.4)
can be approximated by numerical integration:

Φ̃ =
1

2

q∑
j=1

wj(zj − z0)(zjI −A)−1,

where zj = z0 + γeiπtj , j = 1, 2, . . . , q are the mapped quadrature nodes on Cγ(z0).
Then Z can be approximated by

(4.1) Z̃ = Φ̃Y =
1

2

q∑
j=1

wj(zj − z0)(zjI −A)−1Y ≡ 1

2

q∑
j=1

cjSj ,

where cj = wj(zj − z0) and Sj ’s are solutions to the shifted linear systems

(4.2) (zjI −A)Sj = Y, j = 1, 2, . . . , q.

Solve the linear systems and evaluate Z̃, which is used to compute the desired eigen-
pairs in Rayleigh-Ritz iterations. This is summarized in Algorithm 1.

Algorithm 1 Basic FEAST algorithm with projected subspace iteration [41, 62]

Input : A, Cγ(z0) (contour)
Output : (Λ̂, X̂) (eigenvalues inside Cγ(z0) and the corresponding eigenvectors)

1: procedure FEAST
2: ŝ← upper bound of #Λ(A, Cγ(z0)) ◃ Initial subspace size
3: Y ← n× ŝ Gaussian random matrix
4: cj = wj(zj − z0), j = 1, . . . , q ◃ Weights wj & nodes zj in a quadrature rule
5: repeat
6: Sj ← (zjI −A)−1Y, j = 1, . . . , q ◃ Solving (4.2)

7: Z̃ ← 1
2

∑q
j=1 cjSj ◃ Evaluating Z̃ = Φ̃Y by (4.1)

8: Q̃← orthonormal basis of Z̃ ◃ This is important and is added in [62]

9: Â← Q̃TAQ̃ ◃ Reduced problem
10: Â = X̂Λ̂X̂−1 ◃ Solving the reduced eigenvalue problem
11: Y ← Q̃X̃ ◃ Recovery of approximate eigenvectors of A
12: until convergence
13: X̂ ← Y ◃ Convergent approximate eigenvectors of A
14: end procedure

In steps 2–3 of Algorithm 1, it is sufficient for convergence when the initial sub-
space size ŝ is not smaller than the actual eigenvalue count. To ensure a good overall
convergence rate, it is preferable to make ŝ a little larger than the actual eigenvalue
count [25, 41]. In the iterations, after step 11, (Λ̂, X̂) gives the Ritz pairs of A. It
is easy to identify spurious eigenvalues by either checking whether they are inside Γ
or computing the relative residuals. Discussions on the convergence criteria can be
found in [25, 33, 62].
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4.2. Fast contour-integral eigensolver. Our fast contour-integral eigensolver
includes two major stages.

1. Quadsection stage. Start from an initial search region, estimate the number of
eigenvalues inside. If the number is much larger than a given threshold, quad-
sect the region into subregions. Then repeat the procedure. This stage in-
volves eigenvalue counts with low-accuracy structured matrix approximations
as discussed in Section 3. Fast structured matrix factorization, factorization
update for varying shifts, and fast structured solution will be used.

2. Subspace iteration stage. In the subregions generated by the previous stage,
apply projected subspace iteration as in the FEAST algorithm, where struc-
tured accelerations for the matrix factorizations and linear solutions also ap-
ply if A is rank structured.

We focus on rank structured A, and adaptively control the accuracy of its HSS
approximation Ã. Lower accuracies are used for the eigenvalue count, and higher
accuracies are used for the eigenvalue solution. For convenience, our discussions are
based on search regions enclosed by circles.

4.2.1. Structured factorization update for varying shfits. Both the quad-
section stage and the subspace iteration stage involve solutions of linear systems of
the following form for multiple shifts µI:

(4.3) (µI − Ã)S̃ = Y.

We precompute a ULV factorization for the HSS matrix Ã with the algorithms in
[8, 60, 61] and it costs O(r2n) flops, where r is the HSS rank of Ã. Then for each
shifted matrix µI− Ã, we can update the ULV factorization, and the ULV factors are
used to solve (4.3). If µ is set to be zj in (4.2), we can get an approximation to Sj .

This shifted ULV factorization is an extension of the Hermitian version in [56].
Suppose the HSS generators of Ã are Di, Ui, Vi, Ri,Wi, Bi as defined in Section 3.1.
We briefly outline the ULV factorization procedure for Ã in [8, 60] without justifica-
tion, and then show which steps can be updated to quickly get the factors of µI − Ã.
For notational convenience, we present the update for Ã− µI.

First, for a leaf node i of the HSS tree, compute a QR factorization

(4.4) Ui = Qi

(
0

Ũi

)
,

and apply QT
i to the block row on the left. This needs to modify Di as

(4.5) D̃i = QT
i Di ≡

(
D̃i;1,1 D̃i;1,2

D̃i;2,1 D̃i;2,2

)
,

where the partition is done so that D̃i;2,2 is a square matrix with the same row size

as Ũi.
Second, perform an LQ factorization of the first block row of D̃i:(

Li;1,1 0
)
Pi =

(
D̃i;1,1 D̃i;1,2

)
,

and apply PT
i to the corresponding block column on the right. This needs to update

D̃i and Vi (with conformable partitions):

D̃iP
T
i ≡

(
Li;1,1 0
Li;2,1 Li;2,2

)
, PiVi ≡

(
V̂i
Ṽi

)
.



18 X. YE, J. XIA, R. CHAN, S. CAULEY, AND V. BALAKRISHNAN

Then Li;1,1 can be eliminated, which corresponds to the elimination of node i.
Similarly, eliminate the sibling node j of i. The parent node then becomes a new leaf
corresponding to D,U, V generators

(4.6)

(
Li;2,2 ŨiBiṼ

T
j

ŨjBj Ṽ
T
i Lj;2,2

)
,

(
ŨiRi

ŨjRj

)
,

(
ṼiWi

ṼjWj

)
,

respectively. We can then repeat the steps on the parent node.
Now, when the shifted HSS matrix Ã− µI is considered, a significant amount of

computations can be saved:
• No HSS construction is need for Ã− µI, since all the generators remain the
same except the Di generators which just need to be shifted as:

Di ← Di − µI.

• In the ULV factorization, (4.4) remains unchanged.
• (4.5) can be quickly updated as

D̃i ← D̃i − µQT
i .

This avoids a dense block multiplication.
• In (4.6), the following multiplications remain unchanged:

(4.7) ŨiBi, ŨiRi, ŨjBj , ŨjRj .

Thus, the entire HSS construction cost and part of the ULV factorization cost
are saved. The steps (4.4), (4.5), and (4.7) can be precomputed. For convenience,
we call these operations the pre-shift factorization. The remain operations are to be
done for each shift µI in a post-shift factorization. Assuming the leaf level diagonal
block size is 2r as often used [60], then the costs for the precomputations and the
update are given in Table 4.1. Clearly, for each shift µI, we save about 40% of the
HSS factorization cost (which is 116

3 r2n [57, Section 4.2]).

Table 4.1
Costs of the precomputations for Ã and the factorization update for Ã− µI.

Precomputations Factorization update

Construction Pre-shift factorization (Post-shift factorization)

Flops ≈ O(r2n) ∼ O(rn2) 46
3 r

2n 70
3 r

2n

A similar precomputation strategy can also be applied when a type of structure-
preserving HSS construction in [61] is used. The corresponding pre-shift factorization
cost is 6r2n, which is about 30% of the total factorization cost 58

3 r
2n [61, Section 3.6].

The algorithm is similar to that of the one mentioned above is thus omitted.

4.2.2. Fast eigenvalue count. To count the eigenvalues inside a circle Cγ(z0),
we choose a random matrix Y with a small column size m and evaluate Z̃ just like in
(4.1). Then (3.1) becomes

(4.8) #Λ(A, Cγ(z0)) ≈
1

m
trace(Y T Z̃).

As in [62], we can start from m that is very small and gradually increase it. The
algorithm stops if the estimate converges to a number s smaller than a prespecified
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threshold k or if the estimate is much larger than k. The selection of k will be discussed
in Section 4.2.4 based on an optimality condition. In addition, we may even use a
power method similar to [23] to improve the quality of this estimator.

As discussed in Section 3, we use a low-accuracy HSS approximation Ã ≈ A
to evaluate Z̃ in (4.8). Ã may be constructed directly with an algorithm in [60]
or via randomization. The randomized HSS construction in [61] is used here. It is
especially attractive when A can be quickly applied to vectors. In the construction,
we first compute the product of A and a skinny random matrix (with column size
equal to r plus a small constant). This product is adaptively modified to yield the
product of each off-diagonal block of A and a certain subblock of the random matrix,
so as to apply randomized compression to produce the relevant basis matrices. The
reader is referred to [61, Section 3.3 and Algorithm 1] for the details. The cost
of this construction is O(r2n) plus the cost for matrix-vector multiplications. The
matrix-vector multiplication cost typically ranges from O(rn) to O(rn2). The cost
of O(rn2) is the most general case when the construction is performed directly on a
dense matrix A. Sometimes when A results from discretizations of certain kernels,
then an analytical construction can be done quickly [7].

The shifted factorization update in the previous subsection is then applied to
Ã. This leads to the fast eigenvalue count method in Algorithm 2. Following the
discussions in Section 2, the Trapezoidal rule is used for the numerical integration. In
addition, Section 3 also means that we can use a smaller number of quadrature points
in the eigenvalue counts than in the later subspace iterations.

Algorithm 2 Fast eigenvalue count

1: procedure s = EigCount(Ã, Cγ(z0), k)
Input : HSS factors of Ã (from precomputations); Cγ(z0) (contour); k (threshold

for eigenvalue count)
Output : s ≈ #Λ(A, Cγ(z0)) if #Λ(A, Cγ(z0)) is not much larger than k

2: m← a small integer ◃ Initial number of random vectors
3: Y ← n×m random matrix
4: t← 0 ◃ Total trace
5: cj = wj(zj − z0), j = 1, . . . , q ◃ Weights wj & nodes zj in Trapezoidal rule

6: Update the HSS factors of Ã to get those of zjI − Ã, j = 1, . . . , q
7: repeat ◃ Adaptive estimate of the eigenvalue count
8: Sj ← (zjI − Ã)−1Y, j = 1, . . . , q ◃ HSS ULV solution

9: Z̃ ← 1
2

∑q
j=1 cjSj , t← t+ trace(Y T Z̃)

10: s← t
m ◃ Current-step estimate of the eigenvalue count

11: if s remains the same for some consecutive steps then
12: Return ◃ Estimate count is identified
13: else ◃ Attaching one extra vector a time; multiple may be attached
14: Y ← random vector
15: m← m+ 1
16: end if
17: until s is much larger than k ◃ Further partitioning of the region is needed
18: end procedure

4.2.3. Structured FEAST eigenvalue solution with deflation. For a sub-
region, if the approximate eigenvalue count s is smaller than or near the threshold k,
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we then solve for the eigenpairs with a structured FEAST algorithm. The FEAST
Algorithm 1 can be accelerated with a high-accuracy HSS approximation Ã to A.
Similarly to Algorithm 2, the factorizations and solutions can be performed in HSS
forms. In particular, the structured factorization update for varying shifts can greatly
save the cost. Moreover, the matrix-vector multiplications needed to form the reduced
problem (step 10 of Algorithm 3) can also be performed quickly in HSS forms.

In practice, due to different convergence rates of the eigenpairs in the subspace
iteration, a deflation technique called locking [31, 42] is often used to save some com-
putation costs. Those eigenpairs that have already converged to a desired accuracy
can be locked and excluded from later iterations. This structured FEAST algorithm
with deflation is summarized in Algorithm 3.

Algorithm 3 Structured FEAST eigenvalue solution with subspace iteration and de-
flation

1: procedure [Λ̂, X̂] = SFEAST(Ã, Cγ(z0), k̃)
Input : HSS factors of Ã (high-accuracy approximation of A); Cγ(z0) (contour);

s (eigenvalue count)

Output : (Λ̂, X̂) (eigenvalues inside Cγ(z0) and the corresponding eigenvectors)
2: cj = wj(zj − z0), j = 1, . . . , q ◃ Weights wj & nodes zj in Trapezoidal rule

3: Update the HSS factors of Ã to get those of zjI − Ã, j = 1, . . . , q

4: Λ̂← ∅, X̂ ← ∅, Q̂← ∅ ◃ Q̂: convergent eigenspace
5: Y ← n× ( 32s) random matrix

◃ More than s columns used for faster convergence
6: repeat
7: Sj ← (zjI − Ã)−1Y, j = 1, . . . , q ◃ HSS ULV solution

8: Z̃ ← 1
2

∑q
j=1 cjSj ◃ Approximating Z̃ = Φ̃Y in (4.1) based on Ã

9: Q← basis of Z̃ orthonormalized with respect to Q̂
10: Â← QTAQ ◃ Reduced problem via HSS matrix-vector multiplication
11: Â = X̃Λ̃X̃−1 ◃ Solving the reduced eigenvalue problem
12: Y ← QX̃ ◃ Recovery of approximate eigenvectors of A
13: ( Λ̂1 Λ̂2 )← Λ̂ ◃ Partition with convergent eigenvalues in Λ̂1

14: ( Y1 Y2 )← Y ◃ Partition with convergent eigenvectors in Y1
15: ( Q1 Q2 )← Q ◃ Partition with convergent eigenspace in Q1

16: Λ̂← diag(Λ̂, Λ̂1), X̂ ← ( X̂ X1 ), Q̂← ( Q̂ Q1 )
17: Y ← Y2
18: until convergence
19: end procedure

4.2.4. Algorithm for all eigenpairs, complexity, and optimal threshold
for subregion eigenvalue count. To find a large number of eigenpairs or even
all the eigenpairs of A, we recursively partition the search region into smaller subre-
gions until each target subregion contains no more than k eigenvalues, where k is the
eigenvalue count threshold. The structured FEAST algorithm is then applied to each
target subregion to find the eigenpairs.

Discussion on the initial search region will be given in Section 4.3. For conve-
nience, we assume all the intermediate search regions are squares. (In practice, de-
pending on the actual problem, the regions may be made more flexible and more pre-
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cise.) For each square, we estimate the number of eigenvalues based on #Λ(Ã, Cγ(z0))
in Algorithm 2, where Cγ(z0) is the smallest circle that encloses the square. Since the
area of Dγ(z0) is about 1.57 times the area of the square, this gives an intuitive way of
choosing the column size in step 5 of Algorithm 3, which is suggested in [25, 41] to be
around 1.5 times the actual eigenvalue count. In practice, Algorithm 3 may then find
eigenvalues belonging to neighbor subregions (squares). In this case, we can deflate
those eigenvalues when the neighbor subregions are visited.

The complete algorithm of our fast eigensolver is summarized in Algorithm 4,
where we assume A can be approximated accurately by an HSS form in step 14. Then
the low-accuracy HSS approximation in step 3 can be simply obtained by appropriate
truncations.

Algorithm 4 Fast structured non-Hermitian contour-integral eigensolver

1: procedure [Λ, X] = FastEig(Ã,Γ, k)
Input : A (explicit or implicit via matrix-vector multiplications); Γ (contour that

encloses desired eigenvalues); k (threshold for subregion eigenvalue count)
Output : (Λ, X) (partial or full spectrum of A)

◃ 2D Quadsection stage
2: Push the initial search region enclosed by Γ onto a stack S
3: Ã ≈ A ◃ Low-accuracy HSS construction for A and ULV factorization
4: while S ̸= ∅ do
5: Pop a subregion Ri from S
6: Find the smallest circle Cγ(z0) that encloses Ri

7: si = EigCount(Ã, Cγ(z0), k) ◃ Algorithm 2

8: if k̃i ≤ k then ◃ No further quadsection is needed
9: Mark Ri as a target subregion

10: else
11: Quadsect Ri into 4 subregions and push the subregions onto S
12: end if
13: end while

◃ Eigenpair solution stage
14: Ã ≈ A ◃ High-accuracy HSS construction for A and ULV factorization
15: Λ← ∅, X ← ∅
16: for each target subregion Ri do
17: [Λ̂, X̂] = SFEAST(Ã,Ri, si) ◃ Algorithm 3 (with minor modifications)

18: Λ← diag(Λ, Λ̂), X ← ( X X̂ )
19: end for
20: end procedure

We now analyze the asymptotic complexity of Algorithm 4 for finding all the
eigenpairs of a matrix A with maximum off-diagonal (numerical) rank r, and also
decide the optimal threshold k. Due to the nature of quadsection, a quadtree can be
used to organize the process. Each node of the tree represents a subregion, and the
leaf nodes represent the target subregions with roughly k eigenvalues or less. Note
that this tree may be unbalanced.

Due to the independence of the computations for non-overlapping subregions, the
complexity is directly related to the number of nodes in the quadtree. Without loss
of generality, suppose each leaf of the tree corresponds to a subregion with about k
eigenvalues, so that the tree has O(nk ) leaves and also O(nk ) nodes. (This modest
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assumption just eliminates extreme cases where the eigenvalues are highly clustered
so that the tree has too many empty nodes. In fact, as long as each node is nonempty,
the quadtree has at most n leaves and the asymptotic complexity count would remain
about the same for small r.) The computation costs of some basic operations are
listed in Table 4.2.

Table 4.2
Computation costs of some basic operations, where r is the HSS rank of A.

Operation Flops
HSS construction Up to O(r2n)
ULV factorization/post-shift factorization update O(r2n)
HSS solution O(rn)
HSS matrix-vector multiplication O(rn)
Orthonormalization (QR factorization) of a tall n× k matrix O(k2n)

In the quadsection stage, the eigenvalue count Algorithm 2 is performed for every
node of the quadtree. The HSS construction cost will be counted in the eigenvalue
solution stage since the low-accuracy HSS approximation can be obtained from trun-
cation. We count the costs associated with each node. A smaller HSS rank (r̃ ≤ r)
is used in the low-accuracy HSS approximation, and the pre-shift ULV factorization
costs ξ1,0 = O(r̃2n). The post-shift factorization update costs

ξ1,1 = O(qr̃2n) = O(r̃2n),

where q is the number of quadrature nodes and is small (see Section 2). Approximating
(4.1) needs to solve m systems and to add q solution matrices, where m is in (4.8).
The cost is

ξ1,2 = O(qmr̃n) + (q − 1)mn = O(r̃mn).

All the trace computations for (4.8) cost ξ1,3 = O(m2n). Thus, the total cost for the
quadsection stage is

ξ1 = ξ1,0 +O
(n
k

)
(ξ1,1 + ξ1,2 + ξ1,3) = O

(
r̃2n2

k

)
+O(mr̃n

2

k
) +O(m

2n2

k
)

= O
(
r̃2n2

k

)
+O(r̃n2) +O(kn2),

where we have relaxed m to be k, although m may be actually a very small constant
and much smaller than k.

In the second stage, we use Algorithm 3 to solve for the eigenpairs in the subre-
gions associated with all the leaves of the quadtree. A high-accuracy HSS approxima-
tion and the pre-shift ULV factorization cost no more than ξ2,0 = O(rn2) + O(r2n)
in the precomputation. We then count the costs associated with each leaf. Similar to
the above, the post-shift factorization update costs

ξ2,1 = O(qr2n) = O(r2n).

The linear system solutions for the quadrature approximation costs

ξ2,2 = β [O(qkrn) + (q − 1)kn] = O(rkn),
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where β is the number of iterations and is assumed to be bounded since it is usually
small. Getting the orthonormal basis costs ξ2,3 = O(k2n). Forming the reduced

matrix Â via HSS matrix-vector multiplications costs

ξ2,4 = β[O(rkn) +O(k2n)] = O(rkn) +O(k2n).

Solving the reduced eigenvalue problem and recovering the eigenvectors of A costs

ξ2,5 = β[O(k3) +O(k2n)] = O(k3) +O(k2n).

The cost for this stage is then

ξ2 = ξ2,0 +O
(n
k

)
(ξ2,1 + · · ·+ ξ2,5) = O

(
r2n2

k

)
+O(rn2) +O(kn2) +O(k2n).

Therefore, due to r̃ ≤ r, the total computation cost is

(4.9) ξ = ξ1 + ξ2 = O(rn2) + [O(k2n) +O(kn2)] +O
(
r2n2

k

)
.

We can then use this to decide the optimal threshold k that minimizes ξ.
Theorem 4.1. If A has HSS rank r, then the optimal eigenvalue count threshold

for the subregions in Algorithm 4 is k = O(r), and the optimal cost of the algorithm
to find all eigenpairs of A is

(4.10) ξ = O(rn2) +O(r2n).

Proof. In (4.9), the termO(k2n)+O(kn2) increases with k, and the termO
(

r2n2

k

)
decreases with k. Clearly, the minimum of ξ is achieved when k = O(r).

In addition, the backward stability of relevant HSS construction and factorization
algorithms has been studied in [54, 55].

4.3. Applications and initial search region.

4.3.1. Applications and extensions. Our fast contour-integral eigensolver
has a wide range of applications. One category of matrices is rank structured A,
and selected examples include:

• Banded matrices, where the HSS rank r is the bandwidth and the HSS form
can be obtained on the fly. If the bandwidth is finite, the cost (4.10) to find
all the eigenpairs is ξ = O(n2). Banded eigenvalue problems arise in many
computations and applications. For example, tridiagonal eigenvalue solution
is needed in one type of non-Hermitian eigensolvers that reduce more general
matrices (such as complex symmetric ones) to tridiagonal forms. Banded non-
Hermitian eigenvalue problems also appear in the study of some 1D PDEs
and in sparse neural networks [1].

• Companion matrices, where the HSS rank is r = 2 and the HSS form can
be directly written out. Companion eigenvalue solution is usually used to
find the roots of univariate polynomials. Our algorithm can achieve the same
asymptotic complexity O(n2) as other fast QR-type companion eigensolvers
(e.g., [10]). However, since the companion matrix has more delicate structures
that are not fully utilized here, the actual cost is likely higher than that in
[10]. On the other hand, the scalability is likely better due to the partitioning
of the search region into independent subregions.
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• Toeplitz matrices, which in Fourier space have HSS ranks r = O(log n)
and the HSS construction costs O(n log2 n) [61]. The cost (4.10) is ξ =
O(n2 log n). Toeplitz eigenvalue problems are often involved in the studies of
time series, wave phenomena in periodic lattices, quantum spin chains, and
many other physics and engineering problems [11, 12, 16, 32, 39].

• Some kernel functions (e.g., 1/|x−y| and log |x−y|) discretized on 1D curves,
where r = O(log n) and the HSS construction costs O(n log n) [7]. The cost
(4.10) is ξ = O(n2 log n). Related eigenvalue problems appear in the studies
of radial basis functions and integral kernels, in data science areas such as
spectral clustering and kernel principal component analysis [46], and in some
physics areas such as entanglement theory [35].

For the last two examples, a much smaller HSS rank r̃ may be used for the
eigenvalue counts. In addition, the matrix-vector multiplication needed in forming
the reduced eigenvalue problem can also be quickly conducted using FFTs or the fast
multipole method (FMM) [22].

Another category is A with slowly decaying off-diagonal singular values, where a
low-accuracy compact HSS approximation can be used to accelerate the eigenvalue
count. Examples include some discretized kernel functions in two dimensions. Po-
tential applications of our methods also include more general matrices where the
eigenvalues are roughly uniformly distributed, so that a low-accuracy matrix approx-
imation has a high probability of reliably counting the eigenvalues.

For some cases, extensions and modifications can be made to accommodate ad-
ditional matrix properties. For some structured sparse problems [58, 59], we may
extend our eigensolver by replacing the HSS methods by structured sparse factoriza-
tions, where low-accuracy HSS approximations are used for the intermediate fill-in.
This is particularly effective for discretized elliptic PDEs. For cases such as those
with tensor product structures, the structured approximation and factorization costs
may be significantly reduced. See [20, 21] for some examples, where the structured
approximation cost is sublinear in n. Tensor structured methods for the eigenvalue
solution of these problems can be found in [28]. For such problems, when n is large,
it may be more practical to use our method to extract selected eigenvalues.

We can also adopt the eigensolver to extract certain specific types of eigenvalues,
such as the real ones. This will be useful in applications such as control. The search
for eigenvalues is then restricted to the real line. More effective filter functions can
be designed by setting the contour close to the interval, e.g., with a flat ellipse [25].

4.3.2. Determining the initial search region. When Algorithm 4 is used to
find the entire spectrum, it requires an initial search region. There are many strategies
to obtain the region, such as the estimation of the spectral radius and the study of
inclusion regions for the field of values. Depending on specific applications, efficient
and effective estimations may be available. Here, we just briefly mention the most
basic and general method based on the spectral radius. To estimate the spectral
radius, we may use the Gershgorin theorem, an estimate of certain matrix norms, or
the following well-known result.

Lemma 4.2. Let ρ be the spectral radius of A ∈ Cn×n and ∥ · ∥ be a consistent
matrix norm. Then ρ = limj→∞ ∥Aj∥1/j.

For A with fast matrix-vector multiplications, we may choose an appropriate j
and estimate ∥Aj∥1 using Hager’s method or a randomized Hager’s method [23].

For some matrices, it may be quick to find ||A||1 exactly. For example, if A is a
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Toeplitz matrix, let u be its first column and vT be its first row. We can compute

c1 = ||u||1, ci = ci−1 − |un−i+2|+ |vi|, i = 2, . . . , n.

Then ||A||1 = max |ci|.
If A is a companion matrix, other than the bound from ||A||1, we can find a nearly

optimal bound on the eigenvalues based on a result for the roots of a polynomial
p(λ) =

∑n
i=0 aiλ

i (an ̸= 0) [17]:

|λ| ≤ 2max

(∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2 , . . . , ∣∣∣∣ a1an
∣∣∣∣1/(n−1)

,

∣∣∣∣ a02an

∣∣∣∣1/n
)
.

5. Numerical experiments. Now, we show the performance of our fast eigen-
solver (FastEig Algorithm 4) for some test examples. In order to observe how the
complexity depends on the matrix size n, we use quadsection to find all the eigen-
pairs and report the total clock time. The structure-preserving HSS construction
and the corresponding shifted factorization schemes mentioned at the end of Section
4.2.1 are used. Since our eigensolver uses structured direct linear solutions in the
intermediate computations, some comparisons are performed with structured direct
solutions without our acceleration techniques for one example. (Standard dense direct
solvers are obviously much slower and are thus not compared.) It will demonstrate
the benefits of the shifted structured factorization update and the eigenvalue count
with low-accuracy HSS approximations.

The maximum number of subspace iterations is set to be 10. We report several
different accuracy measurements:

• ei = |λi−λ̃i|
|λi| : relative error, where λ̃i is the computed eigenvalue and the

eigenvalue returned by the Intel MKL subroutine ZGEEV is treated as the
exact eigenvalue λi;

• ê =

√∑n
i=1 |λi−λ̃i|2

n
√∑n

i=1 |λi|2
: relative error as used in [52];

• ri =
∥Ax̃i−λ̃ix̃i∥2

∥Ax̃i∥2+∥λ̃ix̃i∥2
: relative residual, where x̃i is the computed eigenvector;

• r̂i =
∥Ax̃i−λ̃ix̃i∥2

n∥A∥2
: relative residual as used in [24].

• mean(·): geometric mean.
The algorithm is implemented in (sequential) Fortran using the Intel Math Kernel

Library (MKL) and Intel Fortran compiler. All the tests are done on an Intel Xeon-
E5 processor with 64 GB memory on Purdue’s computing cluster Conte. In the first
example, we also compare the performance of our eigensolver with the Intel MKL
subroutine ZGEEV, which is based on QR iterations.

Example 1. First, consider a Cauchy-like matrix A of the form

Aij =
uivj
si − tj

,

where si = e2iπi/n and tj = e(2j+1)πi/n are located on the unit circle, and {ui}ni=1 and
{vj}nj=1 are random.

The matrix is related to the discretization of G(s, t) = 1
s−t and is known to be

rank structured. Table 3.2 above includes the HSS ranks for one matrix size. That
table already shows how low-accuracy HSS approximation can be used to reliably
estimate the eigenvalue counts.
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According to FMM, the maximum off-diagonal numerical rank is O(log n). The
complexity of the eigensolver is then expected to be O(n2 log n). In the test, we let the
matrix size n range from 1, 600 to 25, 600. We use relative tolerance τ1 = 10−1 for the
HSS compression in the quadsection stage and τ2 = 10−8 in the eigenvalue solution
stage. The clock times are reported in Figure 5.1 for reaching modest accuracies in
Table 5.1, and are compared with the runtimes of the Intel MKL subroutine ZGEEV.
Two reference lines for O(n2 log n) and O(n3) are also included. We can see that the
CPU times are roughly consistent with the complexity analysis. In fact, the slope
for the plot of FastEig is significantly lower. The crossover point between these two
algorithms for this particular test can also be observed.

n
1600 3200 6400 12800 25600

T
im

e 
(s

)

101
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104
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ZGEEV
FastEig

O(n3)

O(n2log(n))

Fig. 5.1. Example 1. Clock times of FastEig for finding all the eigenvalues.

Table 5.1
Example 1. Accuracies of the eigenvalue solution.

n 1, 600 3, 200 6, 400 12, 800 25, 600

max(ei) 1.59e−7 9.47e−7 9.56e−7 9.99e−7 9.82e−7
mean(ei) 1.87e−9 2.08e−9 1.99e−9 3.08e−9 7.63e−9

ê 3.96e−12 1.79e−10 1.83e−9 7.67e−10 1.58e−9
max(ri) 2.27e−7 2.63e−5 3.00e−5 2.89e−5 2.99e−5
mean(ri) 1.89e−8 2.45e−8 2.79e−8 3.39e−8 5.46e−8
max(r̂i) 6.35e−11 2.91e−8 1.69e−7 7.85e−8 4.52e−8
mean(r̂i) 1.13e−11 7.04e−12 4.43e−12 2.74e−12 2.12e−12

Example 2. Next, consider A to be a discretized matrix from the Foldy-Lax
formulation for studying scattering effects due to multiple point scatters [15, 37]. Let

Aij =

{
1, if i = j,

−G(si, tj)σj , otherwise,

where σj ’s are the scattering coefficients, and G(s, t) is the Green’s function of the
3D Helmholtz equation:

(5.1) G(s, t) =
eiω|s−t|

4π|s− t|
, s ̸= t.
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Here, ω = 4π and σj is random in (0, 1), as used in [2].

If the problem is discretized on one dimensional meshes, we observe performance
similar to that in the previous example. Thus, we only consider A resulting from
the discretization of (5.1) on M × N regular meshes with equidistance h = 0.1 in
each direction. The matrix has order n = MN . Here, we fix M = 20 and let N
increase from 80 to 1, 280. We use a rank bound 40 in the quadsection stage and
a relative tolerance τ = 10−8 in the eigenvalue solution stage. In this case, the off-
diagonal ranks are much higher than in the pervious example, so that our acceleration
strategies make a significant difference.

Since our eigensolver involves direct linear solutions, we give some comparisons
with different structured direct solution methods, depending on whether to use shifted
factorization update in the linear solutions and/or low-accuracy approximation for the
eigenvalue count. The timings are given in Figure 5.2. We can observe the overall
complexity of O(n2 log n). The scaling of the complexity is much better than that
of ZGEEV (though it needs larger n to see a significant advantage in timing). We
can also see how the acceleration strategies help to improve the performance. In
particular, we show in Table 5.2 the detailed time for one of the matrices. The shifted
factorization update accelerates both the quadsection stage and the subspace iteration
stage. By using low-accuracy HSS approximations for the eigenvalue count, the cost
of the quadsection stage becomes significantly lower.
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Fig. 5.2. Example 2. Clock times of FastEig for finding all the eigenvalues, where “shifted”
means structured linear solution with shifted factorization update, and “adaptive accuracy” means
using low-accuracy HSS approximation for the eigenvalue count and high accuracy approximation
for the later eigenvalue solution.

Table 5.2
Example 2. Detailed times for the matrix with n = 6, 400 in Figure 5.2, depending on whether

the acceleration strategies are used or not.

Shifted factorization Eigenvalue count with Quadsection Subspace iteration

update low-accuracy HSS stage stage

7 7 1.30e3 1.89e3

7 3 7.40e2 1.88e3

3 7 1.27e3 1.70e3

3 3 6.84e2 1.72e3
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The benefit of the low-accuracy HSS approximation can also be seen from another
aspect. Table 5.3 lists the HSS ranks of Ã used in the two stages of FastEig. A small
rank in the eigenvalue counts leads to significant savings.

Table 5.3
Example 2. HSS ranks of Ã in the two stages of FastEig.

n (matrix size) 1, 600 3, 200 6, 400 12, 800 25, 600

Quadsection/eigenvalue count stage 40 40 40 40 40

Subspace iteration stage 118 227 253 297 360

The accuracies of the eigenpairs are given in Table 5.4. In addition, Figure 5.3
illustrates how the quadsection of the search region is performed.

Table 5.4
Example 2. Accuracies of the eigenvalue solution.

n (matrix size) 1, 600 3, 200 6, 400 12, 800 25, 600

max(ei) 3.27e−8 7.58e−6 3.77e−7 9.61e−6 9.58e−6
mean(ei) 3.31e−10 5.06e−10 6.13e−10 6.95e−10 7.20e−10

ê 1.16e−12 2.23e−11 3.27e−9 1.71e−9 4.09e−10
max(ri) 4.82e−8 1.32e−7 4.23e−7 7.69e−5 9.00e−5
mean(ri) 4.78e−9 1.07e−8 1.74e−8 2.44e−8 4.61e−8
max(r̂i) 1.20e−11 1.09e−8 3.04e−8 3.34e−8 8.26e−9
mean(r̂i) 1.22e−12 1.11e−12 6.09e−13 3.36e−13 2.63e−13
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-4
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Fig. 5.3. Example 2. Eigenvalue distribution and quadsection process for finding the eigenvalues
of the matrix with n = 1600.

6. Conclusions. In this paper, we have designed a fast contour-integral eigen-
solver based on a series of analytical and computational techniques. We show that the
Trapezoidal rule is an ideal quadrature for constructing filter functions in contour-
integral eigenvalue solutions. This is based on the study of the decay away from the
unit circle. We then provide a strategy to use low-accuracy matrix approximations to
achieve reliable eigenvalue counts. Such counts are either exact or only off by a small
number with low probabilities under some assumptions. Probability estimates are
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given. In the eigenvalue count algorithm and the FEAST algorithm, rank structured
methods are used to accelerate the computations, especially the factorization update
for varying shifts. The eigensolver may be used to find a large number of eigenval-
ues or the full spectrum in a quadsection framework, where we derive an optimal
threshold for the number of eigenvalues within each subregion. The eigensolver has
nearly O(n2) complexity for rank structured matrices, and some strategies can also
benefit more general matrices. Due to the nice scalability of both contour-integral
eigensolvers and HSS methods, our algorithms have a great potential to be paral-
lelized. We plan to produce a scalable implementation. We are also in the process
of extending the methods to more general matrix classes and matrices with clustered
eigenvalues.
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[6] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[7] D. Cai and J. Xia, A stable and efficient matrix version of the fast multipole method, preprint
to be submitted, 2016.

[8] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver
for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 603–622.

[9] S. Chandrasekaran, M. Gu, X. Sun, J. Xia, and J. Zhu, A superfast algorithm for Toeplitz
systems of linear equations, SIAM J. Matrix Anal. Appl., 29 (2008), pp. 1247–1266.

[10] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion ma-
trices, Oper. Theory Adv. Appl., Birkhauser Basel, 179 (2007), pp. 111–143.

[11] I. Chremmos and G. Fikioris, Spectral asymptotics in one-dimensional periodic lattices with
geometric interaction, SIAM J. Appl. Math., 76 (2016), pp. 950–975.

[12] H. Dai, Z. Geary, and L. P. Kadanoff, Asymptotics of eigenvalues and eigenvectors of
Toeplitz matrices, J. Stat. Mech., (2009) P05012.

[13] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[14] Y. Eidelman, I. Gohberg and, V. Olshevsky, The QR iteration method for Hermitian

quasiseparable matrices of an arbitrary order, Linear Alg. Appl., 404 (2005), pp. 305–324.
[15] L. Foldy, The multiple scattering of waves, Phys. Rev., 67 (1945), pp. 107–119.
[16] P. J. Forrester and N. E. Frankel, Applications and generalizations of Fisher–Hartwig

asymptotics, J. Math. Phys., 45 (2004), pp. 2003–2028.
[17] M. Fujiwara, Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen
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