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Abstract. In this paper, we propose a structured bisection method with adaptive randomized
sampling for finding selected or all of the eigenvalues of certain real symmetric matrices A. For
A with a low-rank property, we construct a hierarchically semiseparable (HSS) approximation and
show how to quickly evaluate and update its inertia in the bisection method. Unlike some existing
randomized HSS constructions, the methods here do not require the knowledge of the off-diagonal
(numerical) ranks in advance. Moreover, for A with a weak rank property or slowly decaying off-
diagonal singular values, we show an idea of aggressive low-rank inertia evaluation, which means that
a compact HSS approximation can preserve the inertia for certain shifts. This is analytically justified
for a special case, and numerically shown for more general ones. A generalized LDL factorization
of the HSS approximation is then designed for the fast evaluation of the inertia. A significant
advantage over standard LDL factorizations is that the HSS LDL factorization (and thus the inertia)
of A − sI can be quickly updated with multiple shifts s in bisection. The factorization with each
new shift can reuse about 60% of the work. As an important application, the structured eigensolver
can be applied to symmetric Toeplitz matrices, and the cost to find one eigenvalue is nearly linear
in the order of the matrix. The numerical examples demonstrate the efficiency and the accuracy
of our methods, especially the benefit of low-rank inertia evaluations. The ideas and methods can
be potentially adapted to other HSS computations where shifts are involved and to more problems
without a significant low-rank property.
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1. Introduction. Large eigenvalue problems are frequently encountered in sci-
entific computing and numerical simulations. In this paper, we consider eigenvalue
problems of the form

(1.1) Ax = λx,

where A is an n×n real and symmetric matrix. A typical approach to solve for λ is to
first reduce A to a tridiagonal form by orthogonal transformations and then apply QR
iterations [15, 28], the divide-and-conquer algorithm [16], the bisection method [28],
etc. The tridiagonal reduction step usually requires O(n3) floating point operations
(flops) for a general symmetric A.

This work focuses on A with certain rank structures. That is, its off-diagonal
blocks have decaying singular values. If the decay is fast, A has small off-diagonal
ranks or numerical ranks and is often said to have a low-rank property. A can then be
approximated by rank structures such as quasiseparable, hierarchically semiseparable
(HSS), or hierarchical matrices [4, 6, 7, 13, 37]. Rank structured techniques, and even
more generally, the fast multipole method [17] have been used in QR iterations [13],
bisection [1, 2], and divide-and-conquer [8] to solve certain classes of eigenvalue prob-
lems, especially companion [3, 9, 31] and block diagonal plus semiseparable matrices
[8]. Note that for these two special cases, the off-diagonal blocks have ranks at most
1.
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1.1. Main results. We intend to handle symmetric A with the low-rank prop-
erty (where the off-diagonal ranks or numerical ranks may be greater than 1), as well
as A with a weak rank property (where the off-diagonal singular values decay slowly).
We first approximate A with a compact HSS form using some recent randomized
techniques, and then give a fast structured bisection method to compute some or all
of the eigenvalues of A. In particular, we exploit the following three ideas.

1. Adaptive and matrix-free randomized HSS approximation methods. By com-
bining the adaptive randomized compression techniques in [20] with the HSS construc-
tion methods in [23, 24, 39], we can quickly compute an HSS approximation to A to a
given accuracy, without the requirement of knowing the actual off-diagonal numerical
ranks or their overestimates as in [23, 24, 39]. The construction schemes make our
eigensolver also applicable to problems where only matrix-vector products (instead of
the explicit matrix A) are available. Various efficiency and flexibility improvements
are made over existing randomized compression and HSS construction methods.

2. Aggressive low-rank inertia evaluation for matrices with the weak low-rank
property or with high off-diagonal numerical ranks. Since only the inertia (numbers of
positive, zero, and negative eigenvalues) is needed in bisection, we study the potential
of using a compact or low-accuracy HSS approximation, even if the off-diagonal blocks
may have high numerical ranks. The effectiveness can be proven for a special case,
and is discussed and shown numerically for more general ones. In fact, our tests
indicate that we can often use a much lower accuracy in the HSS construction for our
structured eigenvalue solution of some matrices than for their linear system solutions
in [10, 39]. Such an idea helps extend the applicability of rank structured techniques
to potentially more general problems with or without the low-rank property.

3. Fast inertia evaluation and update for varying shifts in bisection via a gener-
alized LDL factorization of the HSS approximation. In standard LDL factorizations
of A, when the diagonal is changed due to a shift s in bisection, the factorization
of A − sI usually needs to be recomputed. Here, we first apply a fast generalized
HSS LDL factorization (modified from [37]) to the HSS approximation Ã of A in a
precomputation. The generalized LDL factorization can be used to quickly evaluate
the inertia, as justified in Theorem 4.2. Then we show that we can quickly update
such a factorization (and thus the inertia) to get that of Ã−sI. In fact, about 60% of
the work is performed on the off-diagonal blocks of Ã and can be reused for multiple
shifts s.

Assume r is the maximum off-diagonal rank after truncating the off-diagonal
singular values of A. Then it usually costs about O(r2n) flops to find one eigenvalue
of A, with the overall memory requirement of O(rn). The low-rank property or the
aggressive low-rank inertia evaluation idea suggests that often a small r can be used.
An important application of our structured eigensolver is to find the eigenvalues of
symmetric Toeplitz matrices, since they have the low-rank property in Fourier space
[10, 25, 27, 39]. The eigensolver is tested on some important classes of Toeplitz
matrices, as well as some more general problems. We show both the efficiency and the
accuracy for finding selected or all of the eigenvalues. In particular, we demonstrate
that, unlike the case of HSS direct solutions in [37, 39], lower accuracies or smaller
r in HSS constructions are usually sufficient for the inertia evaluation. The methods
here can be conveniently extended to complex Hermitian matrices.

1.2. Outline and notation. The remaining sections are organized as follows.
In Section 2, adaptive randomized sampling is reviewed and our adaptive matrix-free
HSS construction is introduced. We present the idea of aggressive low-rank inertia
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evaluation in Section 3. Section 4 is devoted to the fast inertia evaluation for an HSS
matrix via the generalized HSS LDL factorization, as well as the fast LDL/inertia
update for varying shifts in bisection. The numerical results are shown in Section 5,
and some concluding remarks are given in Section 6. Throughout the paper, we use
the following notation and terminology:

• T denotes a postordered full binary tree with its nodes labeled as 1, 2, . . . , k,
where k ≡ root(T ) is the root of T , so that each node i is either a leaf or has
two children c1 and c2 ordered as c1 < c2 < i;
• for each node i ̸= root(T ) of T , par(i) and sib(i) denote its parent and sibling,
respectively;
• for a matrix A and two index sets I and J, A|I denotes a submatrix of A
formed by the rows corresponding to the row index set I, and A|I×J denotes
a submatrix of A corresponding to the row index set I and the column index
set J;
• randn(n, k) represents an n× k matrix with independent and identically dis-
tributed (i.i.d.) standard Gaussian random entries;
• diag() represents a diagonal or block diagonal matrix formed by the subse-
quent numbers or matrices in the parentheses.

2. Randomized HSS construction: adaptive and matrix-free schemes.
The HSS structure provides an efficient way of handling matrices with small off-
diagonal (numerical) ranks. (Later, we use ranks to also mean numerical ranks.) A
formal definition of an HSS matrix can be found in [37, 38]. As a special case, a
symmetric HSS matrix A with an associated HSS tree T can be defined as follows:

• T is a postordered full binary tree with nodes i = 1, 2, . . . , k, and k ≡ root(T )
is at level 0;
• there is a contiguous index set Ii associated with each node i such that Ik =
N ≡ {1, . . . , n}, and for any non-leaf node i with children c1 and c2,

Ic1 ∪ Ic2 = Ii, Ic1 ∩ Ic2 = ∅;

• there are matrices Di, Ui, Ri, and Bi, called HSS generators associated with
each node i, which satisfy the following recursive relation:

Di = DT
i ≡ A|Ii×Ii =

(
Dc1 Uc1Bc1U

T
c2

Uc2B
T
c1U

T
c1 Dc2

)
, Ui =

(
Uc1Rc1

Uc2Rc2

)
.

Figure 2.1 demonstrates an example. We refer to A−
i ≡ A|Ii×(N\Ii) and A

|
i ≡

A|(N\Ii)×Ii as the ith HSS block row and column, respectively, and the maximal rank
of all the HSS blocks as the HSS rank. In fact, the columns of Ui form a column basis
for A−

i . Once an HSS approximation to A is constructed, the well-established fast
HSS factorization and solution algorithms in [7, 34, 37] can be applied.

The standard HSS construction algorithms [35, 37] for an n× n dense matrix A
require A to be explicitly available so as to compress its off-diagonal blocks directly.
Those algorithms have a complexity of O(rn2), where r is the HSS rank of A. Recently,
randomized algorithms are utilized to speed up and facilitate the compression process
[23, 24]. Here, we discuss randomized and matrix-free HSS construction schemes.

2.1. Adaptive randomized sampling. Suppose Φ ∈ RM×N has a small nu-
merical rank r. The randomized algorithm in [20, 24] finds an approximate column
basis matrix Q for Φ in the following way:
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Fig. 2.1. A symmetric HSS matrix and its HSS tree.

1. pick a small integer α, called the oversampling size;
2. form X = randn(N, r̃), where r̃ = r + α is called the sampling size;
3. compute the product Y = ΦX;
4. compute an economy (or rank-revealing) QR factorization Y = QS, which,

for convenience, is denoted by

(2.1) Q = QR(Y ) or [Q, S] = QR(Y ).

Q is an approximate column basis matrix for Φ and it satisfies the following
accuracy bound with the probability at least 1− 6α−α [20]:

||Φ−Q(QTΦ)||2 ≤ (1 + 11
√
r + α

√
min(M,N))σr+1,

where σr+1 is the (r + 1)st singular value of Φ.
On the other hand, if the numerical rank r is not known in advance, an adaptive

procedure [20] as follows can be used to find r approximately. That is, the sampling
size r̃ or the column size of X is increased until the following bound is satisfied for a
given tolerance τ :

(2.2) ||Φ−Q(r)[(Q(r))TΦ]||2 ≤ τ,

where Q(r) is an M × r matrix obtained as in (2.1). However, the direct computation
of (2.2) for detecting the approximation error is quite expensive for each increment of
r̃. A more efficient stopping criterion to determine r is given in [20, 33] as follows.

Lemma 2.1. Suppose Φ ∈ RM×N , d is an integer, and x(i) ∈ RN , i = 1, 2, . . . , d
are i.i.d. random vectors. Then the following bound holds for any real number η with
the probability 1− η−d:

||Φ||2 ≤ η

√
2

π
max

i=1,2,...,d
||Φx(i)||2.

According to Lemma 2.1, the approximation error ||Φ−Q(β)((Q(β))TΦ)||2 for an
N×β computed basis matrix Q(β) satisfies the following bound with high probability:

||Φ−Q(β)[(Q(β))TΦ]||2 = ||[I −Q(β)(Q(β))T ]Φ||2(2.3)

≤ η

√
2

π
max

i=β−d+2,...,β+1
||[I −Q(β)(Q(β))T ]Φx(i)||2.
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That is, as long as

(2.4) max
i=β−d+2,...,β+1

||(I −Q(β)(Q(β))T )Φx(i)||2 ≤
τ

η
√
2/π

,

the error bound in (2.2) will automatically hold with the probability at least 1− η−d.
If (2.4) does not hold, let q = [I −Q(β)(Q(β))T ]Φx(β+1), and set

Q(β+1) =
(

Q(β) q
||q||2

)
.

Then repeat until (2.4) is satisfied. More details on this procedure can be found in
[20]. For convenience, we also write

X(β+1) =
(
X(β) x(β+1)

)
=
(
x(1) · · · x(β) x(β+1)

)
.

The above procedure uses matrix-vector multiplications in (2.3) instead of matrix-
matrix multiplications in (2.2). A new basis vector q is conveniently computed based
on the existing ones and Φx(β+1).

Remark 2.1. Under certain special circumstances, a matrix may have a small
(numerical) rank, and only its largest eigenvalues are desired. Then the method
in this section can be directly used to find the eigenvectors corresponding to those
eigenvalues. More details will appear in future work.

2.2. Adaptive and matrix-free HSS constructions. The adaptive random-
ized sampling method in Section 2.1 can be combined with some existing HSS con-
struction schemes. For matrices which are explicitly available, we can directly use the
methods in [24, 39]. These methods traverse the HSS tree T in a bottom-up order,
and only require the matrix to be multiplied with O(r) random vectors. We skip the
details and denote such an HSS construction with adaptive randomized sampling by
AHSS.

Our adaptive matrix-free HSS construction algorithm (denoted by AMFHSS) em-
ploys the HSS construction framework in [23] which needs only matrix-vector prod-
ucts instead of the matrix itself. However, we give various efficiency and flexibility
improvements over the scheme in [23]:

• we use (rank-revealing) QR factorizations instead of SVD (e.g., (2.6) and
(2.8) below);
• the R factors in the QR factorizations naturally help with the computation
of certain generators (e.g., (2.7) and (2.9) below), thus avoiding various extra
matrix multiplications in a peeling step in [23];
• fewer pseudo-inverses are needed (e.g., (2.7));
• moreover, we do not need to know the HSS rank or its overestimate in ad-
vance, and instead, we use adaptive randomized sampling so that the algo-
rithm can dynamically detect the sampling size at each level of the HSS tree
according to a pre-specified approximation tolerance τ .

These are explained as follows. The HSS construction for the symmetric matrix
A traverses T from the top level (level 0) to the leaf level. Assume each node i is
associated with an index set Ii as in Section 2, and define

Ĩl =
∪
{Ii|i: all the left nodes (with i < sib(i)) at level l},

Îl =
∪
{Ii|i: all the right nodes (with i > sib(i)) at level l}.
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The algorithm starts with X(β) ≡ randn(n, β), where β is a small integer which

is an initial estimate of r. At level l = 1, choose two matrices X̃
(β)
l and X̂

(β)
l which

have the same sizes as X(β) and satisfy

(2.5) X̃
(β)
l |̃Il = X(β) |̃Il , X̃

(β)
l |̂Il = 0, X̂

(β)
l |̂Il = X(β) |̂Il , X̂

(β)
l |̃Il = 0.

Compute

Ỹ
(β)
l = AX̃

(β)
l , Ŷ

(β)
l = AX̂

(β)
l .

Then treat Ỹ
(β)
l and Ŷ

(β)
l as Y in Section 2.1. Repeat the adaptive randomized

sampling procedure until (2.4) is satisfied. For each left node i and j = sib(i) at level
1, compute

(2.6) [Ûi, Ŝi] = QR(Ŷ
(β)
l |Ii), [Ûj , Ŝj ] = QR(Ỹ

(β)
l |Ij ).

Set Ui ≡ Ûi and Uj ≡ Ûj , which are the approximate column and row basis matrices
for A|Ii×Ij , respectively. Also, let

(2.7) B̂i = Ŝi(U
T
j X(β)|Ij )†,

where we assume the pseudo-inverse (UT
j X(β)|Ij )† exists, and set Bi ≡ B̂i. (In [23],

two pseudo-inverses and five matrix multiplications are needed.)

At level l ≥ 2, choose X̃
(β)
l and X̂

(β)
l as in (2.5). For a left node i at level l

and j = sib(i), we try to find A|Ii×Ij X̂
(β)
l |Ij (and A|Ij×IiX̃

(β)
l |Ii). This can be done

by subtracting the product of some upper level HSS blocks of A with appropriate

pieces of X̂
(β)
l from A|IiX̂

(β)
l . Since the upper level HSS blocks of A are already in

low-rank forms (part of the HSS approximation to A), this involves the multiplication
of such low-rank blocks with a vector x. This is just a partial computation of the HSS
multiplication [7], so we skip the details and denote it by

y = HSSpmv(A, x, l − 1).

Compute

Ŷ
(β)
l = AX̂

(β)
l − HSSpmv(A, X̂

(β)
l , l − 1), Ỹ

(β)
l = AX̃

(β)
l − HSSpmv(A, X̃

(β)
l , l − 1).

For a left node i and j = sib(i) at level l, treat Ŷ
(β)
l |Ii as Y in the adaptive randomized

sampling procedure until (2.4) is satisfied. Similarly, treat Ỹ
(β)
l |Ij as Y and repeat.

Then compute approximate row and column basis matrices Ûi and Ûj for A|Ii×Ij ,

respectively, as in (2.6), and compute B̂i as in (2.7).
At this point, let p = par(i) and partition Up as

Up =

(
U1
p

U2
p

)
,

where U1
p and U2

p have the same row sizes as Ui and Uj , respectively. In [23], the

matrices ( Ûi U1
p ) and ( Ûj U2

p ) are compressed with SVDs to obtain the left
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singular vectors as Ui and Uj , respectively, and are then multiplied by Ui and Uj on
the left to get Ri and Rj , respectively. Here instead, we use QR factorizations

(2.8) [Ui, ( Si Ri )] = QR( Ûi U1
p ), [Uj , ( Sj Rj )] = QR( Ûj U2

p ).

Then Up, Ûi, Ûj can be discarded. Also, set Bi as

(2.9) Bi = SiB̂iS
T
j .

Finally, for all the leaves i of T , we also compute the following in order to obtain
Di:

(2.10) Ỹl = A

 I
...
I

− HSSpmv(A,

 I
...
I

 , l − 1),

where each I is an identity matrix with size equal to the leaf level diagonal block size.
(Here, the leaf level Di blocks are all assumed to have the same size. Otherwise, we
can place appropriate zero columns beside the identity blocks in (2.10).) Then set

Di = Ỹl|Ii .

The complexity of AMFHSS can be counted as follows. There are O(r) matrix-
vector multiplications at each level of the HSS tree, which has O(log n) levels. Also,
for each node i, it costs O(r3) flops to compute the QR factorizations and the matrix
multiplications. Typically, the number of nodes is O(nr ). Thus, the total cost of
AMFHSS is O(rξ log n) +O(r2n), where ξ is the cost of multiplying A with a vector. ξ
is O(n2) for general dense A. But for some special matrices, ξ may be much smaller.
For example, if A is a Cauchy-like matrix corresponding to a Toeplitz matrix in
Fourier space [10, 25], then ξ = O(n log n) (such as when n is the product of small
prime numbers).

3. Aggressive low-rank inertia evaluation. Our eigensolver is a structured
bisection scheme and it computes the inertia of the matrix A with shifts. The inertia
of a symmetric matrix is defined as follows [12, 15].

Definition 3.1. For a symmetric matrix A, its inertia is the following triple of
integers:

Inertia(A) ≡ (n−(A),n0(A),n+(A)),

where n−(A), n0(A), and n+(A) denote the numbers of negative, zero, and positive
eigenvalues of A, respectively.

In the bisection scheme [28], Inertia(A − sI) with different shifts s is evaluated,
so as to detect the inertia change or find the number of eigenvalues in an interval.

Here, we seek to quickly evaluate Inertia(A − sI) with low-rank structures. We
illustrate an idea of aggressive low-rank approximation when only few eigenvalues are
desired. That is, it is possible to discard most of the off-diagonal singular values of
A to get a compact HSS approximation Ã with Inertia(A − sI) = Inertia(Ã − sI),
even if A does not have small off-diagonal numerical ranks. This can be analytically
verified for a special case and numerically shown for more general ones.

Partition A− sI into a block 2× 2 form

A− sI =

(
A11 A12

AT
12 A22

)
− sI,



8 Y. XI, J. XIA, AND R. CHAN

Compute orthogonal diagonalizations

A11 = Q1Λ1Q
T
1 , A22 = Q2Λ2Q

T
2 .

Then

A− sI =

(
Q1

Q2

)[(
Λ1 Φ
ΦT Λ2

)
− sI

](
QT

1

QT
2

)
,

where

(3.1) Φ = QT
1 A12Q2.

Thus, A− sI has the same eigenvalues (and inertia) as

(3.2) Â− sI ≡
(

Λ1 Φ
ΦT Λ2

)
− sI.

The idea of applying aggressive off-diagonal compression to A − sI with its inertia
preserved can be first illustrated with a special case:

(3.3) Â− sI ≡
(

I Φ
ΦT I

)
− sI.

(Such a special form is also useful in HSS preconditioning [38].) The following theorem
shows how the inertia can be preserved after the compression of Φ when only the
largest eigenvalues are desired.

Theorem 3.2. Assume σ1, σ2, . . . , σN are the nonzero singular values of Φ in
(3.3) ordered from the largest to the smallest, and r is a positive integer with r ≤ N .
Then for any shift s satisfying

(3.4) s > 1 + σr+1,

we have

Inertia(Â− sI) = Inertia(Ã− sI),

where Ã is obtained from Â in (3.3) with all the singular values σr+1, . . . , σN of Φ
truncated. In particular, if

1 + σr > s ≥ 1 + σr+1,

then the r largest eigenvalues of Â− sI and Ã− sI are the same.
Proof. Let Φ = UΣV T be the SVD of Φ and Σ = diag(σ1, . . . , σN ). Then

Â =

(
U

V

)(
I Σ
Σ I

)(
UT

V T

)
,

which indicates that the eigenvalues of Â− sI are either 1− s or

1± σi − s, i = 1, . . . , N.

The assumption for Ã indicates

Ã =

(
U

V

)(
I Σr

Σr I

)(
UT

V T

)
,
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where Σr = diag(σ1, . . . , σr, 0, . . . , 0). Similarly, the eigenvalues of Ã − sI are either
1− s or

1± σi − s, i = 1, . . . , r.

According to (3.4), if s > 1 + σ1, then all the eigenvalues of Â − sI and Ã − sI
are negative. If for certain integer j satisfying 1 ≤ j ≤ r,

(3.5) 1 + σj > s > 1 + σj+1,

then both Â− sI and Ã− sI have exactly j positive eigenvalues

1 + σi − s, i = 1, . . . , j.

All of their remaining eigenvalues are negative. If s = 1 + σj in (3.5) for certain

j ≤ r, then both Â− sI and Ã− sI have j− 1 same positive eigenvalues and one zero
eigenvalue. All of their remaining eigenvalues are negative.

Therefore, the results in the theorem hold.
Theorem 3.2 can be understood as follows. If we need to find the r largest

eigenvalues of Â and the shift s is larger than the (r+1)st eigenvalue as in (3.4), then
we can aggressively truncate the singular values σr+1, . . . , σN of Φ. That is, with s−1
as the threshold, all of the singular values smaller than it can be truncated, even if
the numerical rank of Φ may be larger or if the singular values of Φ do not decay fast
enough. After the truncation, the approximate matrix Ã − sI is in a compact HSS
form and has the same inertia as Â − sI. Inertia(Ã − sI) can be computed quickly,
as shown in the next section. Then we can apply the bisection method to Ã instead
of Â to compute the r largest eigenvalues of Â. See Figure 3.1 for an example, which
shows how the inertia can be preserved for a certain shift s.

One potential way of studying the connection of Theorem 3.2 to the general form
(3.2) (which has the same eigenvalues as the general symmetric matrix A) is as follows.
Write the SVD of Φ in (3.2) as

Φ = UΣV T ≡ ( Ur Uc )

(
Σr

Σc

)(
V T
r

V T
c

)
.

By truncating the trailing singular values in Σc, we get an approximation Ã to Â.
That is,

Â = Ã+

(
UcΣcV

T
c

VcΣcU
T
c

)
(3.6)

= Ã+

(
Uc

Vc

)(
Σc

Σc

)(
Uc

Vc

)T

.

Assume the eigenvalues of A (and Â) are λ1 ≥ λ2 ≥ · · · ≥ λn, and those of Ã are
λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n. According to (3.6), Â is equal to Ã plus a symmetric low-rank
update. Then the interlacing property of the eigenvalues (e.g., [15, p. 443]) means

λi ≥ λ̃i, i = 1, 2, . . . , n.

In fact, the removal of one singular value of Φ has the effect of shifting each λi toward
λi+1. If the eigenvalues of A11 and A22 do not significantly vary, then (3.2) can be
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Fig. 3.1. Truncation of the singular values σi of Φ and the eigenvalues of Ã− sI and Â− sI,
which indicate that Ã− sI and Â− sI have the same inertia.

approximately related to the form in (3.3) after scaling. Thus, it is possible for such
an aggressive low-rank truncation to roughly hold (in a weaker form) for more general
cases.

In Figures 3.2–3.3, we use an example to demonstrate this possibility, where A
has order n = 1000 and is the product of a random matrix with its transpose. The
eigenvalues of A are shown in Figure 3.2(i). The singular values of Φ are shown in
Figure 3.2(ii) and do not decay quickly.
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Fig. 3.2. Eigenvalues of A and singular values of Φ for an example, where A is the product of
a random matrix with its transpose.
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If we truncate most of the singular values of Φ and keep only the leading r of
them, the impact on the leading r eigenvalues of A is not very significant. In Figure
3.3, for r = 2, 4, 8, 16, we can observe that the leading r eigenvalues of Ã are quite
close to those of A. That is, the shifting of the leading r eigenvalues is much smaller
than that of the remaining ones. When r = 16, the two leading eigenvalues have more
than four digits of accuracy. Then, if only a small number of the largest eigenvalues
are desired, we can potentially truncate the off-diagonal singular values aggressively.
In this case, if the shift s is not too far from the largest eigenvalues, we can accurately
evaluate the inertia of A−sI via that of Ã−sI. In fact, Figure 3.3 shows a significant
gap between the leading r eigenvalues of Ã and the remaining ones, which indicates
a wide range for the choice of s.

Fig. 3.3. The eigenvalues λi of A in Figure 3.2 and the eigenvalues λ̃i of Ã with only the
leading r singular values of Φ kept in the compression of Φ.

Although a full analytical justification of such an effect for general A is not yet
available, we expect the results here to serve as a first effort in the study of low-
rank inertia evaluations, and to provide a possible future direction for applying low-
rank structures (which were previously applied often to problems with the low-rank
property). We expect to extend the analysis in future work, probably in a weaker
form. The experiments in Section 5 give further numerical support for this potential,
including the performance for problems without significant low-rank properties.

Remark 3.1. Using a smaller HSS rank in the HSS construction makes both
the construction and the factorization in the next section faster. Moreover, a smaller
HSS rank also means that we can use more levels in the HSS tree to further improve
the performance [35].
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4. Fast inertia/LDL update for varying shifts in bisection. Our eigen-
solver is based on the standard bisection scheme [12, 28]. For example, to find all of the
eigenvalues within an interval [a, b), we just need to compute n−(A−bI)−n−(A−aI).
Then we bisect the interval and repeat, until the interval size is small enough. In the
scheme, a sequence of shifts s is used in evaluating n−(A− sI).

To evaluate the inertia, Sylvester’s inertia theorem [29] is often used, which states
that the inertia is invariant under congruence transformations.

Theorem 4.1. (Sylvester’s inertia theorem) For a symmetric matrix A and any
invertible matrix S,

Inertia(A) = Inertia(STAS).

Thus, if an LDL factorization of A as follows is computed:

(4.1) A = LDLT ,

then Theorem 4.1 implies that

(4.2) Inertia(A) = Inertia(D).

Here, we focus on the fast evaluation of the inertia with a generalized LDL fac-
torization of the HSS approximation to A− sI, and especially the update of the fac-
torization (and thus the inertia) when the shift s varies. For notational convenience,
we use A to also represent its HSS approximation.

4.1. Fast inertia evaluation with HSS LDL factorization. For the pur-
pose of illustrating how to quickly evaluate Inertia(A) and how to update it with
varying shifts s in the next subsection, we first briefly show the generalized LDL fac-
torization of A. The factorization is a direct modification of the generalized Cholesky
factorization in [37]. A similar version is also mentioned in [1] without an actual
implementation. Other variants for Hl-matrices can be found in [1, 2]. (Here, we are
primarily interested in updating the factorization.) This generalized LDL factoriza-
tion is not a standard LDL factorization, but can be written as (4.1) with L given by
the product of a sequence of small orthogonal and triangular matrices.

The scheme traverses the nodes i of the HSS tree T following its postordering. If
i is a leaf of T , compute a QL factorization of Ui:

(4.3) Ui = Q̄i

(
0
Ūi

)
.

(This step is included for a general HSS form as in [7]. In our case, Ui already has
orthonormal columns.) Then let

(4.4) D̄i = Q̄T
i DiQ̄i ≡

(
D̄i;1,1 D̄i;1,2

D̄i;2,1 D̄i;2,2

)
,

where D̄i is partitioned so that D̄i;2,2 is a square matrix and has the same row size
as Ūi. Compute an LDL factorization

(4.5) D̄i;1,1 = L̂i;1,1D̂iL̂
T
i;1,1.

This yields

(4.6)

(
D̄i;1,1 D̄i;1,2

D̄i;2,1 D̄i;2,2

)
=

(
L̂i;1,1

L̂i;2,1 I

)(
D̂i

Si

)(
L̂T
i;1,1 L̂T

i;2,1

I

)
,
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where

Si = D̄i;2,2 − L̂i;2,1D̂iL̂
T
i;2,1, L̂i;2,1 = D̄i;2,1(D̂iL̂

T
i;1,1)

−1.

If i is a non-leaf node with children c1 and c2, let

(4.7) D̃i =

(
Sc1 Ūc1Bc1Ū

T
c2

Ūc2B
T
c1Ū

T
c1 Sc2

)
, Ũi =

(
Ūc1Rc1

Ūc2Rc2

)
.

We can then remove c1 and c2 from T . By induction, i becomes a new leaf with
the associated generators D̃i, Ũi, Ri, Bi. Repeat the above process on node i. When
i = root (T ) is reached, compute an LDL factorization

(4.8) D̃i = L̂iD̂iL̂
T
i .

See Figure 4.1 for a demonstration.
This factorization can be represented in the form of (4.1), where L is given by

Q̄i, L̂i;1,1, etc., and D is a diagonal matrix with the diagonal given by the diagonal

matrices D̂i for all nodes i. Thus, (4.2) still holds. Unlike in [37], here we do not need
to store L. The cost of the scheme is O(r2n), with r the HSS rank of A.

Next, the inertia is counted with the D̂i matrices as follows.
Theorem 4.2. After the generalized HSS LDL factorization, we have

Inertia(A) =
k∑

i=1

Inertia(D̂i),

where k = root(T ) and D̂i is given in (4.6) or (4.8).
Proof. The matrix resulting from the removal of a node in the factorization

process is a called a reduced (HSS) matrix in [36] (Figure 4.1(v)). Let
• H(lmax) ≡ A be the initial HSS form, where T has lmax levels;
• H(l) be the reduced matrix resulting from the partial elimination of H(l+1)

due to the removal of all the nodes at level l + 1 of T ;
• P (l) be an appropriate permutation matrix that merges the remaining blocks
(from the partial elimination of H(l+1)) corresponding to all the siblings at
level l + 1 to form H(l);
• Q(l) be a block diagonal matrix consisting of part of the factors:

Q(l) = diag

(
Q̄T

i1

(
L̂i1;1,1

L̂i1;2,1 I

)
, . . . , Q̄T

iµ

(
L̂iµ;1,1

L̂iµ;2,1 I

))
,

where i1, . . . , iµ are the nodes at level l + 1 of T .
With a mechanism similar to that in [36], it can be shown that the generalized

HSS LDL factorization can be represented recursively as

(P (l)Q(l))H(l+1)(P (l)Q(l))T =

(
diag(D̂i1 , . . . , D̂iµ)

H(l)

)
.

According to Theorem 4.1, we then have

Inertia(H(l+1)) = Inertia

(
diag(D̂i1 , . . . , D̂iµ)

H(l)

)
= Inertia(H(l)) +

∑
i: all nodes at level l

Inertia(D̂i).
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Fig. 4.1. Illustration of the generalized LDL factorization scheme based on [37] and the inertia
count for an HSS matrix.

Thus,

Inertia(A) = Inertia(H(lmax))

=

0∑
l=lmax

( ∑
i: all nodes at level l

Inertia(D̂i)

)

=
k∑

i=1

Inertia(D̂i).

Remark 4.1. In the generalized HSS LDL factorization, the orthogonal trans-
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formations (4.3)–(4.4) for introducing zeros into the off-diagonal blocks are stable.
The regular LDL factorization is applied to only the small diagonal blocks D̄i;1,1 as in
(4.5). In our algorithm, for the stability purpose, we incorporate the Bunch-Kaufman
pivoting [5] in the LDL factorization of D̄i;1,1. The LDL factorization then actually

looks like PT
i D̄i;1,1Pi = L̄iD̂iL̄

T
i; , where Pi is a permutation matrix. Thus, in (4.5),

we eventually have L̂i;1,1 ≡ PiL̄i. In addition, it is shown in [34] that such type of
HSS factorizations usually have much better stability than standard dense factoriza-
tions (for the same matrix) due to the hierarchical structure and the use of orthogonal
off-diagonal operations.

4.2. Fast inertia/LDL update for varying shifts. Next, we show how to
quickly update the generalized HSS LDL factorization of A in order to get that of
A−sI in bisection. This enables us to update the inertia evaluation for different shifts
s. We make the following essential observations for the major steps when multiple
shifts are involved:

1. For all the nodes i of T , the zero introduction step (4.3) is identical.
2. For all the leaves i of T , the diagonal update step (4.4) is identical up to a

diagonal update −sI to D̄i, since

(4.9) Q̄T
i (Di − sI)Q̄i = D̄i − sI.

(For all the non-leaf nodes i of T , it is also possible to save, since Ūc1Bc1Ū
T
c2

in (4.7) remains the same. We do not yet take advantage of this feature.)
3. For all the nodes i of T , the merging step (4.7) is identical (in terms of the

multiplications).
Thus, the results in steps (4.3) and (4.7) only need to be computed once and

then remain the same for multiple s. The result in step (4.4) is also computed once
(for half of the nodes) and can then be updated for multiple s with little additional
work. That is, we can first store the appropriate results from the generalized LDL
factorization of A in a precomputation. The results are then used to quickly update
the factorization in order to get that of A− sI. See Algorithms 1 and 2. Notice that
some steps in Algorithm 1 are totally omitted in Algorithm 2. Also in practice, the
precomputation is done for the first shift s.

Algorithm 1 Precomputation (generalized LDL factorization of A)

1: procedure (Input: HSS generators for A; output: stored results)
2: for node i from 1 to k − 1 do ◃ k ≡ root(T )
3: Compute (4.3)–(4.6) ◃ Some results are not needed by Algorithm 2
4: if i is a non-leaf node then
5: Di ← D̃i, Ui ← Ũi for D̃i and Ũi in (4.7)
6: Store Q̄i and Fi = Ūc1Bc1Ū

T
c2

7: else
8: Store D̄i

9: end if
10: end for
11: end procedure

The difference between the precomputation and the additional factorizations can
also be clearly seen from Table 4.1, where we list the costs of the major operations in
the factorization. The saving in the cost of the LDL factorization for each s can be
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Algorithm 2 Fast evaluation of Inertia(A− sI)

1: procedure (Input: stored results and a shift s; output: I ≡ Inertia(A− sI))
2: I ← 0
3: for node i from 1 to k − 1 do ◃ k ≡ root(T )
4: if i is a leaf then ◃ Reusing stored result from line 8 of Algorithm 1
5: D̄i ← D̄i − sI
6: else ◃ Reusing stored result from line 6 of Algorithm 1

7: D̄i ← Q̄T
i

(
Sc1 Fi

FT
i Sc2

)
Q̄i

8: end if
9: Compute (4.5)–(4.6)

10: I ← I + Inertia(D̂i)
11: end for
12: D̄k = L̂kD̂kL̂

T
k

13: I ← I + Inertia(D̂k)
14: end procedure

counted accordingly. In fact, the precomputation and each additional factorization
cost about ξ1 = 68

3 kr3 = 68
3 r2n and ξ2 = 28

3 kr3 = 28
3 r2n flops, respectively, where the

low order terms have been dropped. Thus,

ξ2
ξ1

=
28
3 r2n
68
3 r2n

≈ 41%.

That is, after the precomputation, the factorization for each s can save nearly 60% of
the work. In fact, the saving may be even bigger, due to the statement below (4.9).

Table 4.1
Flops (leading terms only) of the major steps in the HSS LDL factorization, where we assume

that the leaf level Di generators have sizes 2r and the HSS rank is r.

Operation Flops
Number of times used

Precomputation Each s

(4.3) 10r3

3 ×k 0
(4.4) 12r3 ×k ×k

2

(4.5) r3

3 ×k ×k
(4.6) 3r3 ×k ×k
(4.7) 8r3 ×k

2 0

The complexity of finding one eigenvalue is O(r2n), where we assume that the
number of bisection steps for each eigenvalue is bounded.

5. Numerical experiments. We use some examples to demonstrate the com-
plexity and the accuracy of our structured eigensolver. The following notation is used
in the tests:

• n: the order of the matrix A under consideration;
• m: the size of the leaf level diagonal blocks in an HSS approximation;
• r̃: the initial sampling size or rank estimate in the off-diagonal compression
in adaptive randomized HSS constructions;
• τ : the relative tolerance for off-diagonal compression;
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• δ: the minimal interval length in bisection;
• λi or λi(A): the eigenvalues of A ordered from the largest (λ1) to the smallest
(λn) (here, we use the results from the Matlab function eig as these exact
eigenvalues);
• λ̃i: the computed numerical eigenvalue with our eigensolver;
• x: the vector of all the (or selected) eigenvalues λi;
• x̃: the vector of all the (or selected) computed eigenvalues λ̃i;

• γ: the relative error ||x−x̃||2
||x||2 ;

• AHSS: the adaptive HSS construction mentioned at the beginning of Section
2.2;
• AMFHSS: the adaptive matrix-free HSS construction in the remaining part of
Section 2.2;
• NEW: our new eigensolver with either AHSS or AMFHSS for the HSS construction.

Example 1. We start with an illustration of the feasibility of using a compact
HSS approximation for the inertia evaluation of a matrix A (with shifts), when the off-
diagonal numerical ranks of A are not very small. Consider the following Helmholtz
equation defined in a 3D cube Ω:

(−∆− ω2

v(x)2
)u(x, ω) = f(x, ω),

u = 0 on δΩ,

where v(x) is the velocity and ω = 10Hz is the angular frequency. The matrix A
under consideration is the last Schur complement in the factorization of the discretized
matrix on a 30×30×30 mesh after the nested dissection ordering. A has size n = 900
and is symmetric and indefinite.

It is known that the off-diagonal singular values of A usually do not decay fast
enough in these 3D cases, such that the off-diagonal numerical ranks (with a small
tolerance τ) are not small [32]. Figure 5.1(i) shows the first 100 singular values of
Φ = A|(1:450)×(451:900). For τ = 10−4, the numerical rank of Φ is already about 94.

Even so, we can still construct a compact HSS approximation Ã to A so as to
accurately evaluate the inertia of A − sI for some shifts s. For example, when T
has two levels and s ∈ (λi+1(A), λi(A)) for i = 10 and 100, we plot the difference
|n−(A−sI)−n−(Ã−sI)| in Figure 5.1(ii–iii). Clearly, if we manually set a numerical
rank r for Φ to be about 35, we can already get n−(Ã− sI) = n−(A− sI). Even the
choices of r = 1 in Figure 5.1(ii) and r = 8 in Figure 5.1(iii) give quite close estimates
to n−(A− sI), where |n−(A− sI)− n−(Ã− sI)| = 2.

Example 2. Next, we look at a symmetric Toeplitz matrix T with its first column
given by

t0:n−1 = randn(n, 1).

To find the eigenvalues of T , we first convert it into the following matrix (called
Cauchy-like matrix) by an orthogonal transformation:

(5.1) C = FnTF∗
n,

where Fn is the order-n normalized inverse discrete Fourier transform matrix

Fn =
1√
n
(ω2(i−1)(j−1)+i

n )1≤i,j≤n, with ωn = e
πi
n , i =

√
−1.
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(Ã

−
s
I
)|

10 20 30 40
0

5

10

15

20

r (Number of singular values of Φ kept)

|n
−
(A

−
s
I
)
−

n
−
(Ã
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Fig. 5.1. Example 1: Accuracy in the evaluation of Inertia(A−sI) by keeping only few singular
values of Φ = A|(1:450)×(451:900).

This choice of Fn enables C to remain real and symmetric [25, Lemma 2(iii)], and the
entries of C can be conveniently found with displacement structures [14, 18, 19, 21,
22, 26]. In fact, each entry of C can be computed in about O(log n) flops on average.

It is known that C has small off-diagonal numerical ranks. In fact, the off-diagonal
numerical ranks r (with a given tolerance) satisfy r = O(log n) [10, 25, 27, 39]. This
rank property together with the fast matrix-vector multiplication based on (5.1) en-
able us to quickly approximate C by randomized HSS construction algorithms. In
fact, the cost is either O(n log2 n) with AHSS, or O(n log3 n) with AMFHSS. Note that
the idea of a rank pattern [35] makes the actual performance of the methods better
than the estimates, similarly to [39].

We first demonstrate the performance of the adaptive randomized HSS construc-
tions for C. We compare AHSS and AMFHSS. See Table 5.1 and Figure 5.2. Two
reference lines corresponding to ĉn log2 n and c̃n log3 n with appropriate constants ĉ
and c̃ are plotted and marked as O(n log2 n) and O(n log3 n) in Figure 5.2. These
two lines are used as references to compare with the slopes of the lines for the flops
of AHSS and AMFHSS. The performance of both methods follows the prediction, and in
fact, these complexity bounds overestimate the costs.

AHSS is faster, but requires selected entries of C. Here, since the entries of C can
be quickly computed, we use AHSS in our Toeplitz eigenvalue solutions.

Note that τ = 10−4 is used in the HSS construction, so that the accuracy of the
HSS construction is lower than that used in Toeplitz solutions [39]. This accuracy
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Table 5.1
Example 2: Flops of the adaptive HSS construction method AHSS and the adaptive matrix-free

version AMFHSS, where τ = 10−4, δ = 10−8, m = 40, and r̃ = 30.

n 80 160 320 640 1, 280 2, 560 5, 120 10, 240 20, 480

AMFHSS 2.03e6 9.48e6 3.40e7 1.02e8 2.99e8 8.90e8 2.40e9 6.18e9 1.62e10
AHSS 8.14e5 2.10e6 4.74e6 1.07e7 2.20e7 4.65e7 9.58e7 1.99e8 4.06e8
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O(n log2

n)
AHSS

Fig. 5.2. Example 2: Costs of the HSS construction methods as in Table 5.1, together with the
complexity bounds.

is sufficient for our purpose of inertia evaluations here. In fact, Table 5.2 shows the
performance of NEW for finding some interior eigenvalues of T with different τ in the
HSS construction. Using τ = 10−4 costs less than with a higher accuracy such as
10−8, but gives comparable accuracies in the eigenvalue solutions (with the same δ).
This is also the case for the tests below.

Table 5.2
Example 2: Performance of our eigensolver to compute 10 eigenvalues λi for i =

325, 326, . . . , 334 of the random Toeplitz matrix of order n = 1, 280, where m = 40, r̃ = 30, and
δ = 10−8.

τ 1e−1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7 1e−8

Flops

HSS construction 1.63e7 1.80e7 1.94e7 2.21e7 2.31e7 2.42e7 2.47e7 2.51e7
Precomputation 6.52e6 8.39e6 1.18e7 1.19e7 1.62e7 2.04e7 2.41e7 2.72e7
LDL per shift 1.68e6 2.68e6 4.49e6 4.24e6 6.49e6 8.77e6 1.08e7 1.25e7
Total (all steps) 3.72e8 6.43e8 9.43e8 1.09e9 1.65e9 2.05e9 2.52e9 2.92e9

Time 6.68e0 7.89e0 7.16e0 8.80e1 8.96e0 8.77e1 8.86e1 8.93e1
γ 3.91e−35.37e−44.42e−37.53e−64.72e−61.00e−66.90e−71.14e−6

We would like to mention that a smaller τ may be needed for other problems,
especially those with clustered eigenvalues. For such cases, the fast bisection method
here may be used to provide an initial guess for Newton’s method as in [11]. We
expect to study how the choice of τ affects the accuracy of clustered eigenvalues in
future work.
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Example 3. We now consider the Kac-Murdock-Szegö (KMS) Toeplitz matrix T
as in [30], with its first column given by

ti−j = ρ|i−j|, ρ = 0.5, i = 1, . . . , n, j = 1, . . . , n.

We first show the performance of NEW for finding all of the eigenvalues. The size
of the matrix ranges from 80 to 10, 240. The results (flops, time, and errors) are given
in Table 5.3. The cost of NEW scales roughly quadratically. This can also be seen
from Figure 5.3, where a reference line for O(n2 log2 n) is included. Figure 5.3 also
gives the comparison of the scaling between NEW and the Matlab function eig, which
costs O(n3). NEW is slower since n is not large enough. We expect NEW to be faster for
n > 4 × 104. In fact, when n grows beyond 10, 240, eig runs out of memory which
scales as O(n2). On the other hand, NEW needs only about O(n) memory.

Table 5.3
Example 3: Flops, time (in seconds), and relative errors of NEW for finding all the eigenvalues

of the KMS matrix of size n, where m = 40, r̃ = 10, and τ = 10−4.

n 80 160 320 640 1, 280 2, 560 5, 120 10, 240

Flops 9.08e7 3.17e8 1.19e9 4.72e9 1.82e10 7.14e10 2.82e11 1.12e12
Time (s) 2.06e0 7.45e0 2.93e1 1.13e2 4.47e2 1.75e3 6.88e3 2.74e4

γ 1.27e−9 1.28e−9 1.33e−9 1.42e−9 1.51e−9 1.62e−9 1.65e−9 1.64e−9
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Fig. 5.3. Example 3: Comparison of how the computation time of NEW and eig scales for finding
all the eigenvalues of the KMS matrix of size n, where the details for NEW are given in Table 5.3.

We also plot the absolute difference |λi − λ̃i| for each eigenvalue in Figure 5.4.
With δ = 10−8 or δ = 10−15, we can get the desired accuracy. Note that τ = 10−4 is
still sufficient.

Table 5.4 shows the performance of NEW for the computation of 10 interior eigen-
values clustered around 0.49. Clearly, the cost of NEW scales roughly linearly, while
that of the Matlab function eigs scales nearly quadratically, as can be seen from
Figure 5.5.

6. Conclusions. This paper studies the structured eigenvalue solution of sym-
metric matrices with the low-rank property or even the weak rank property. We
specifically present an adaptive matrix-free HSS construction, and justify theoreti-
cally (for certain cases) or numerically the effectiveness of using aggressive low-rank
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Fig. 5.4. Example 3: |λi − λ̃i| for a 1, 280× 1, 280 KMS matrix in Example 3, where n̂ = 40,
r̃ = 10, and τ = 10−4 in NEW.

Table 5.4
Example 3: Flops, time (in seconds), and relative error of NEW for finding 10 eigenvalues near

0.49 of the KMS matrix, where m = 40, r̃ = 10, and τ = 10−4.

n 80 160 320 640 1, 280 2, 560 5, 120 10, 240 20, 480

Flops 1.04e7 1.91e7 3.88e7 7.76e7 1.48e8 2.82e8 5.39e8 1.02e8 1.93e9
Time (s) 2.94e−1 9.31e−1 1.30e0 2.60e0 5.12e0 1.04e1 2.14e1 4.70e1 9.31e1

γ 4.18e−9 4.62e−9 3.51e−9 3.36e−9 4.05e−9 2.81e−9 3.15e−9 3.09e−9 3.79e−9
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Fig. 5.5. Example 3: Comparison of how the computation time of NEW and eigs scales for
finding 10 eigenvalues near 0.49 of the KMS matrix, where the details for NEW are given in Table
5.4.
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off-diagonal approximations for inertia evaluations. The fast inertia evaluation with
the generalized HSS LDL factorization is shown. A feature of quickly updating the
generalized LDL factorization is very useful for updating the inertia evaluation with
multiple shifts in the bisection method. The cost is about O(n) for finding one eigen-
value. A useful application is the eigenvalue solution of symmetric Toeplitz problems.

On the other hand, to find all the eigenvalues, it may be possible to further
improve the efficiency by combining HSS techniques with the divide-and-conquer
method. Just like the way the fast multipole method is used to accelerate the divide-
and-conquer method for certain symmetric matrices with off-diagonal ranks at most
1 [8], HSS methods can be used for higher off-diagonal ranks. The systematic and
convenient HSS operations can lead to enhanced flexibility. The overall cost for all
the eigenvalues may be potentially reduced to less than O(n2).
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with the revision.
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