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Abstract

Preconditioned conjugate gradient method is used to solve n-by-n
Hermitian Toeplitz systems A,z = b. The preconditioner S, is the
Strang’s circulant preconditioner which is defined to be the circulant
matrix that copies the central diagonals of A,. The convergence rate
of the method depends on the spectrum of S, 'A,. Using Jackson’s
theorem in approximation theory, we prove that if A, has a positive
generating function f whose /th derivative f ), ¢ >0, is Lipschitz of
order 0 < o < 1, then the method converges superlinearly. We show

moreover that the error after 2¢q conjugate gradient steps decreases
like [17_, (log? k/k2(+0)),
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1 Introduction.

An n-by-n matrix A, = [a;;] is said to be Toeplitz if a; ; = a;_;, i.e. A, is
constant along its diagonals. Toeplitz systems of the form A,z = b occur in
a variety of applications, especially in signal processing and control theory.
Existing direct methods for dealing with them include the Levison-Trench-
Zohar O(n?) algorithms [19], and a variety of O(nlog®n) algorithms such as
the one by Ammar and Gragg [1]. The stability properties of these direct
methods for symmetric positive definite matrices are discussed in Bunch [2].
In this paper, we consider an iterative method, the preconditioned conjugate
gradient method, for solving Toeplitz systems.

An n-by-n Toeplitz matrix B, is said to be circulant if its diagonals b;
satisfy b, ; = b_; for 0 < j < n — 1. We remark that circulant matrices
can always be diagonalized by unitary matrices. In fact, we have B, =
FyA,F,, where A, is diagonal and F, is the Fourier matrix with entries
given by [F,];r = ﬁeqz”k, see Davis [11]. Strang [17] first suggested the
use of preconditioned conjugate gradient method with circulant matrix B,
as preconditioner for solving positive definite Toeplitz system. Instead of
solving A,z = b, we solve the preconditioned system B, 'A,x = B, 'b by the
conjugate gradient method with B, being a circulant matrix.

The number of operations per iteration in the preconditioned conjugate
gradient method depends mainly on the work of computing the matrix-vector
multiplication B, 'A,y, see for instance Golub and van Loan [13]. For any
vector y, since B, 'y = F*A 'F,y, the product B,y can be found effi-
ciently by the Fast Fourier Transform in O(nlogn) operations. Likewise, the
product A,y can also be computed by the Fast Fourier Transform by first
embedding A, into a 2n-by-2n circulant matrix. The multiplication thus
requires O(2nlog(2n)) operations. It follows that the total operations per
iteration is of order O(nlogn). In order to compete with direct methods,
the circulant matrix B, should be chosen such that the conjugate gradient
method converges sufficiently fast when applied to the preconditioned system
B 'A,x = B;'b. Tt is well-known that the method converges fast if B, 'A,
has a clustered spectrum, i.e. B;'A, is of the form I,, + U,, + W, where I,, is
the identity matrix, U, is a matrix of low rank and W,, is a matrix of small
f5 norm.

Strang in [17] proposed a possible choice of circulant preconditioner S,,.
It is obtained by copying the central diagonals of A, and reflecting them




around to complete the circulant. Chan and Strang [3] then proved that if
the diagonals a; of the Toeplitz matrix A, are Fourier coefficients of a positive
function in the Wiener class, i.e. >, |a;| < oo, then the eigenvalues of the
preconditioned system S, ' A, will be clustered around one for large n. It fol-
lows that the preconditioned conjugate gradient method, when applied to the
preconditioned system, converges superlinearly for large n. More precisely,
for all € > 0, there exists a constant ¢(e¢) > 0 such that the error vector e, of
the preconditioned conjugate gradient method at the gth iteration satisfies

[legll < cle)e]leol| (1)

when n is sufficiently large. Here ||z|]* = w*Sn'? A5, ?x. Hence the
number of iterations required for convergence is independent of the size of
the matrix A, when n is large. In particular, the system A,z = b can be
solved in O(nlogn) operations.

Over the past few years, several other preconditioners have also been
proposed, see for instance, T. Chan [9], Chan [5], Tyrtyshinkov [20], Ku and
Kuo [16] and Huckle [15]. In Chan [4, 5] and Chan, Jin and Yeung [6], we have
shown respectively that the preconditioners proposed in [9], [5] and [20] also
work for the Wiener class functions, i.e. (1) holdsif ), |a;| < oo. Huckle, on
the other hand, has proved in [15] that his preconditioner works for the class
of functions with 37 j]a;[* < co. We remark that it is the Besov space Bé/Z.
For T. Chan’s preconditioner, Chan and Yeung [7] recently have extended
the superlinear convergence results to the class of 27-periodic continuous
functions. Omne of the aims of this paper is to obtain similar results for
Strang’s preconditioner. We will prove that Strang’s preconditioner works for
a slightly smaller class of functions (see (30)) than T. Chan’s preconditioner
does.

In the conjugate gradient method, an estimate of the number of iterations
required for convergence can be obtained by studying the precise rate at
which ||e,|| goes to zero in (1). Trefethen [18] first proved that if f is a positive
rational function of type (u,v), then the preconditioned system S 'A, has
at most 1 + 2max{u, v} distinct eigenvalues. Hence the conjugate gradient
method, when applied to the preconditioned system, converges in at most
1+ 2max{p, v} steps. He also proved that if f is positive and analytic in a
neighbourhood of |z| = 1 and if S,, is used as preconditioner, then there exist



constants ¢ > 0 and 0 < r < 1 such that
2
|legl| < er® |leo|

for n sufficiently large. His proof uses the theory of Carathéodory-Fejér
approximation to approximate the singular values of a Hankel matrix which
is obtained from S;'A, by an orthogonal transformation.

In Chan [5], we considered functions f that are less smooth, and using
tools in linear algebra, we proved the following result.

Theorem 1 Let f be a positive v-times differentiable function with its vth
deriative in L0, 27], where v > 1. If S, is used as preconditioner for A,,

then for large n,
4

WH%H’ (2)

[lezgl| <
for some constant ¢ that depends on f and v only.

Another aim of this paper is to improve the above result and to extend
it to the class of Lipschitz functions of order » > 0. Our main tool is
Jackson’s theorem in polynomial approximation. We will show that for a
positive function f whose (th derivative f©, ¢ > 0, is Lipschitz with order
0 < a <1, the error vector ey, is bounded by

& (clogk 2
lewl) < TT (5705 ) ol 3
k=2

where ¢ is a constant that depends only on f. For v = ¢+ a > 1, (3) can be
rewritten as

c? 1 o log’k
||62q||§W||60||'{q2V2H k2 }

k=2

Since

1 15 log’k
2u—2H 2 <1

q k=2

for all ¢, we see that (3) is a better bound than (2).



This paper is organized as follows. In §2, some results in approximation
theory are introduced and the spectra of A, and S,, are analysed. In §3, we
find the distribution of the eigenvalues of A, — S,, and show that they are
clustered around zero. In §4, we analyse the spectrum of S;'A,, and use the
results to derive the bound (3) for ||eg,||. Some concluding remarks are given
in §5.

2 The Spectra of A, and S,,.

To begin with, let Co, be the Banach space of all 2r-periodic continuous real-
valued functions defined on the real line R and equipped with the supremum
norm || - ||s. Let

1 2w

a(f) == [ [(O)e™do, k=0,+1,+2,--,

:27'('0

be the Fourier coefficients of f for f in Cy,. We remark that for all integers
k, a_r = ay as f is real-valued. Let A, (f) be the n-by-n Hermitian Toeplitz
matrix with the (j,[)th entry given by a;_;(f). The function f is called the
generating function of the matrices A, (f). The following Lemma, proved in
Grenander and Szegd [14], gives the relation between f and the spectrum
o(An(f)) of An(f). For simplicity, we let fiin and fiax be the minimum and
maximum values of f. Thus

fmin < f(0) < frmax, VO € R,
Lemma 1 Let f € Cor. Then the spectrum o(An(f)) of A.(f) satisfies
o(An(f)) € [fumins fmax], V1 > 1. (4)
In particular, we have

AR (N2 < [[flloo; Y0 > 1. (5)

If, moreover, f is a positive function, i.e., fmin > 0, then A,(f) is positive
definite for all n.



Given A, (f), Strang’s preconditioner S, (f) is defined to be the circulant
matrix that copies the central diagonals of A,(f) and reflects them around
to complete the circulant. More precisely, the kth entry in the first column

of S,(f) is given by

Suli o= { ) D sES T ()

Here and in the following, we assume for simplicity that n = 2m 4+ 1. If
n = 2m, we define [S,,(f)]mo = 0.

We prove below that the eigenvalues of S, (f) are given by the mth partial
sum S, (f) of f at equally-spaced points in [0,27]. We recall that the jth
partial sum of f is defined as

j .
si(£)0) = Y ar(f)e™,  VoeR.

k=—j

Lemma 2 The eigenvalues \j(S,(f)) of Sn(f) are given by

m

A(Su(F) = D ak(f)e%“’f/”zsm(fx?), 0<j<n-1. (7)

k=—m

In particular,
1Sn ()2 < Nlsm(Nlos VR 2 1. (8)

Proof: Since S,(f) is circulant, its eigenvalues are given in terms of the
entries in the first column:

(S (£) =) [Su()lkoe®™ kM 0<j<n—1,

see Davis [11] for instance. Using (6), this becomes

n—1
ak(f)€27rijk/n + Z a]g_n(f)QQMjk/n

k=m+1

NE

Ai(Sa(f)) =

bl
o
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ar(EH N = s (M=), 0<j<n-1. O
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Our next aim is to give similar bounds on the spectrum of S,(f) as in
(4) and (5). We first recall some definitions and theorems in approximation
theory. For all £ > 0, let

k
Pr=A{f€Cou | fO) =D pje?’, pj=pj 0<j<k}
p—

be the space of all kth degree real-valued trigonometric polynomials. The
best polynomial approximation of f is measured by

Bi(f) = inf [If = pell

Since Py is finite dimensional, it is clear that the infimum can always be
attained by some polynomials in Py.
For 0 < a <1, let

Lo={f€Coy | sup 0) = J(6.)] < o0}
oz, |01 —0of*

be the space of all Lipschitz functions of order a. For all v > 0, we write
v = { + « where / is a non-negative integer and 0 < o < 1. Then we define

Cl ={f€Cy | fY e L}

The following two Lemmas relate ||si(f) — f||co With Ex(f) for functions
in Cy_. Their proofs can be found in Cheney [10] and Feinerman and Newman
[12].

Lemma 3 (Dini-Lipschitz Theorem) For all f € Ca,, we have
Ise(f) = flloo < (4 +log k) Ei(f), Vk=>1. (9)
Lemma 4 (Jackson’s Theorem) For all f € Cy_, v > 0, we have

¢ VE > 1, (10)

Ey(f) < 1) >

where ¢ 1s a constant that depends only on f and v.



As a corollary to the two Lemmas above, we give a bound on the spectrum
of S, (f) for positive functions f € C¥_, v > 0.

Theorem 2 Let f be a positive function in Cy_ with v > 0. Then for large
n, the spectrum o(S,(f)) of Sn(f) satisfies

7(S0(1)) €[5 Fins 2] (1)
In particular, S, (f) is positive definite and
2
1S3l < 7— (12)

Proof: By (7), the eigenvalues of S, (f) are given by
2mj 2mj 2mj

M) = sl = ()~ HCE) 4 (2
Thus if Anax(Sn(f)) is the largest eigenvalue of S, (f), then by (9) and (10),

we have

)\max(sn(f)) ||Sm(f) _f||oo+fmax
(4 +logm)Ep(f) + fmax
4 +logm
Cm + fmaxs
where ¢ depends only on f. Since fipax > fmin > 0 and
4 +logm
im ——— =
m—00 (m + 1)”
for v > 0, it follows that for n = 2m + 1 sufficiently large,
Amax(sn(f)) S 2fma.x-

Similarly, the smallest eigenvalue Apin(S,(f)) of S,.(f) is bounded below by
)\mln(Sn(f)) Z fmin - ||Sm(f) - f||oo

IA A

IN

> fmin - (4+10gm)Em(f)
4 +logm

> s —

- fmll’l C(m+1)u

Since funin > 0, we have, for n sufficiently large,

)\mln(sn(f)) Z %fmin- O



3 The Spectrum of A,(f) — S,(f).

In this section we show that for Strang’s preconditioner defined by (6), the
spectrum of A, (f) — S,(f) will be clustered around zero provided that f €
Cy., v > 0. We begin with the following Lemma.

Lemma 5 Let p, € Py for some k < m. Then An(pr) — Sn(pr) can be
written as

An(pr) = Su(pr) = Ulpr) — V(ps), (13)

where U(py) and V (pg) are positive semi-definite matrices of rank at most k.

Proof: Since py is a degree k real trigonometric polynomial and S, (py,) copies
the central diagonals of A, (py), it is clear that the (2m-+1)-by-(2m+1) matrix
A, (pr) — Sn(pr) is Hermitian and of the form

0 0 B
Aplpr) = Splpk) =1 0 0 0 |, (14)
0 0

where B is an m-by-m Toeplitz matrix with at most £ nonzero diagonals at
the upper right hand corner. Let PAQ* be the singular value decomposition
of B, see Golub and van Loan [13]. Thus P and @ are m-by-m unitary
matrices and A is a nonnegative diagonal matrix with at most & positive
diagonal entries. It is straightforward to check that

1[P 0 P'I
E[g?—OQJ’

is an n-by-n unitary matrix and

1P*OQ* 0 0 B P 0 P A0 0
50\/50 0 0 0 0 v2 0 |=]l00 0
P* 0 —QF B* 0 0 Q 0 —Q 0 0 —A

Hence except for a single zero eigenvalue, all eigenvalues of A, (px) — Sn(pk)
occur in pairs £\, where each A is a singular value of B. O

Thus if f € Py, then A,(f) — S»(f) has at most 2k nonzero eigenvalues.
For functions f € Cy;, we have the following Lemma.

9



Lemma 6 Let f € Cy,. Then for alln > 1, we have

An(f) = Su(f) = Up(f) = Vi(f) + Wi(f), 1<k <m,

where U(f) and Vi (f) are positive semi-definite matrices of rank at most k
and

[We(Hll2 < (4 +logm)En(f) + 2E(f), 1<k <m. (15)

Proof: For all 1 < k < m, let p, € P be the best approximation of f in
Pk, ie.
1f = Prlloc = Ex(f)- (16)

Clearly
An(f) - Sn(f) = An(pk) - Sn(pk) + An(f - pk) - Sn(f - pk)' (17)
By (13), the first two terms in the right hand side of (17) can be written as

An(pk) - Sn(pk) = U, — Vi,

where U, and V are positive semi-definite matrices of rank at most k. It
remains to find a bound in ¢, norm for the last two terms in (17). By (5),
we have

1AW (f = pi)ll2 < (IS = prlloo = Ei(f)- (18)
By (8), the triangle inequality, (9) and (16), we have

1S (f = p)llz < Msm(f = pi)lloo = lIsm(f) — Prllo
< Alsm(f) = flloo + 11f = Pl
< (d+logm)E,(f) + Ex(f). (19)

Putting (18) and (19) into (17), we get (15). O

Using Cauchy’s interlace theorem, see Wilkinson [21], we see that except
for the 2k outlying eigenvalues, all the eigenvalues of A, (f) — S,(f) are in
the neighborhood of zero with radius equal to (4 + logm)E,,(f) + 2Ex(f).
Our next task is to estimate the radius.

Lemma 7 Let v > 0. Then for m sufficiently large, we have

logm<logk,
mY T kv

2 < k<m. (20)

10



Proof: Consider the function

|
g(x) = ng, x> 2.
:L.V
Its derivative is given by
1—vlogx
o) —
9 (IL‘) - v+l

Thus ¢'(z) < 0 if and only if 2 > e!/¥. Hence when 2 > e'/%, g(z) is a
decreasing function for all z > 2. In particular, (20) holds for all m.

If €'/ > 2, then g(z) is an increasing function for 2 < x < e'/* and a

decreasing function for z > e'/”, i.e.
log2 logx
82 0BT gy <l
v = g =T=
and
logm<logx, eV <x<m,
mY T a¥ -

Since g(x) — 0 as © — 0o, we see that for all m sufficiently large,

logm < 10g2.
my —  2v

Hence (20) follows. O

As an immediate corollary to the above Lemma, we have the following
result.

Lemma 8 Let f € C§_ with v > 0. Then there exists a constant ¢ which
depends only on f and v such that

log(k + 1)

(14 logm) B (f) + 2B,(1) S e 0 1<k <m,

for all m sufficiently large.
Proof: Since 2 < 3log(k + 1) for all £ > 1, we have, for large m,

(4 +logm)Ep(f) + 2E,(f) < 2log(m + 1) B (f) + 3log(k + 1) Ex(f),

11



for 1 <k <m. Thus for f in C¥

27

(4 + logm)En(f) + 2Ek(f)

by (10) and (20), we have for large m,

c c
< 2log(m+1)m+310g(k+1)(k+1)y,
< 50@) 1<k<m. O

(k+1)~

Combining Lemmas 6 and 8, we have our main theorem of this section.
Theorem 3 Let f € C5_ with v > 0. Then for n large,

An(f) = Su(f) = Ue(f) = Va(/) + Wi(f),  1<k<m,  (21)

where Ug(f) and Vi(f) are positive semi-definite matrices of rank at most k

and
clog(k + 1)

(k+1)» ~

Here ¢ is a constant that depends only on f and v.

[IWk(H)ll2 < L<k<m. (22)

As an immediate corollary, we can prove that the spectrum of A, (f) —
Sn(f) is clustered around zero.

Theorem 4 Let f € C5_ with v > 0. Then for all € > 0, there exists a
K > 0 such that for all n > 1, at most 2K eigenvalues of An(f) — Sy(f)
have absolute values exceeding e.

Proof: Let M > 0 be chosen such that (21) and (22) hold for all m > M.
For all € > 0, let K > M be chosen such that

clog(K +1)
(K+1)» —

where ¢ is given in (22). Then for 1 < m < K, since the (m + 1)st row of
A, (f)—=Sn(f) is zero (cf. (14)), An(f)—Sn(f) has at most n—1 = 2m < 2K
nonzero eigenvalues. For m > K, we apply Cauchy’s interlace theorem to
(21) with £ = K, then we see that at most 2K eigenvalues of A, (f) — S,.(f)
have absolute values exceeding e. O

12



4 The Spectrum of S '(f)A,(f).

We begin by showing that the spectrum of S, '(f)A,(f) is clustered around
one.

Theorem 5 Let f € C§_withv > 0. If f is positive, then for all e > 0, there
exists a K > 0, such that for all n sufficiently large, at most 2K eigenvalues
of S, H(f)An(f) — I, have absolute values larger than e.

Proof: Since f is positive, by Theorem 2, there exists an N > 0 such that
for all n > N, S, (f) is positive definite and S '(f) is bounded uniformly in
the /5 norm. Since

Sy (A Au(f) = In = S () (Aa(f) = Salf)),

and by Theorem 4, A,(f) — S,(f) has clustered spectrum around zero, it
follows that S, 1(f)A.(f) — I, has clustered spectrum around zero for all
n>N. 0O

Using Theorem 5, one can conclude easily, see Chan and Strang [3] for
instance, that the conjugate gradient method converges superlinearly when
applied to the preconditioned system S, '(f)A,(f), i.e. (1) holds for alle > 0
provided that n is sufficiently large. In the following, we derive an estimate
of the rate at which the norm ||e,|| of the error vector at the gth iteration
converges to zero.

Theorem 6 Let f € C5_ with v > 0. If f is positive, then for large n,

clogk
Iequ|<H o lleoll,  T<g<m, (23)

for some constant ¢ that depends on f and v only.

Proof: We remark that from the standard error analysis of the conjugate
gradient method, we have

leql] < [minmax Py (A)] ] fleol, (24)

13



where the minimum is taken over polynomials of degree ¢ with constant
term 1 and the maximum is taken over the spectrum of S, '(f)A,(f), or
equivalently, the spectrum of S;l/z(f)An(f)Sgl/z(f), see for instance, Golub
and van Loan [13]. In the following, we will try to estimate that minimum.
For simplicity, we write A, (f) and S,(f) as A, and S, respectively.

Let B, = SQI/Z(AH - Sn)551/2. Then by (21), we have for large n,

A

Bn — Sn_l/?UkS;I/2 . 5—1/2‘/]95”—1/2 + SEI/QWI@STL_I/Q

n

= Uk—ffk—FWk, 1<k<m. (25)

Clearly Uk and Vk are still positive semi-definite matrices of rank at most k.
By (12) and (22)

M <k<m (26)

Wills < 1S ]2 Wil l2 < :
[Well2 < {155 [[2][Wel]2 < 1) <

with ¢ = 2¢/ fuin- X
Let us order the eigenvalues of B,, as

po <pp < <0< <y < g

By applying Cauchy’s interlace theorem to (25) and using the bound of
|[Wel|2 in (26), we see that for 1 < k < m, there are at most k eigenval-
ues of B, lying to the right of ¢log(k 4 1)/(k +1)” and there are at most k
of them lying to the left of —¢log(k +1)/(k + 1)”. More precisely, we have

¢log(k + 1)

< W < — -
|lu’k|— || ]f||2— (k+]_)y )

1<k<m.
Using the identity X
STZI/ZAnSTZIQ = In + Bna
we see that if we order the eigenvalues of 57;1/214“5;1/2 as
A SAT <o <0< <A<
then )\ZC =1+ u,f for all £ > 0 with

¢log(k +1) -
- —2>——— 2 <)\ <A<
(it =% S =ET

¢log(k + 1)

14



For AT, the bounds are obtained from (4) and (11). In fact, we have

fmin S )\I; S )\]j S 2fma.x

2fma.x fmin ’

Yk > 0. (28)

Having obtained the bounds for )\f, we can now construct the polynomial
that will give us a bound for (24). Our idea is to choose Py, that annihilates
the ¢ extreme pairs of eigenvalues. Thus consider

T T
() =(1—-F)1--=), 1<k<m.
Ak Ak
Between those roots \i-, the maximum of |p,(z)| is attained at the average
x = +(\f + A;), where by (27) and (28), we have

A = AL
max T = —
zelh, AT e()] ANEAL

<2élog(k + 1)>2 (fmax)2

N (k + 1)1/ fmin

26 2 2
_ < Cfmax) Qe ht ) ch<m,
fmin (k + 1)2V

Similarly, for k£ = 0, we have, by using (28),
(4fr2nax _ fr%lin)2
4fr§1in .

Hence the polynomial Ps; = pop1 -+ pg—1, which annihilates the ¢ extreme
pairs of eigenvalues, satisfies

(g —N)?
max xXr =
€Ay AT Po()] 4)‘3—)‘5

<

q

max | Pog(x)]| < H ST 1<qg<m. (29)

1'6[)\(1_,1, q—1 k=2

Here ¢ is some constant that depends only on f and v. Since the remaining
n — 2q eigenvalues {\; }x>q are in the interval [\, A/ ], (23) now follows
directly from (24) and (29). O

15



5 Concluding Remarks.

We first remark that for Strang’s preconditioner, we can use the technique
presented here to prove the superlinear convergence of the method for a larger
class of functions, namely the class of functions f that satisfy

TI%LH;O logm ’ Em(f) =0, (30)
cf (15). However, for this class of functions, we can only obtain the bound
(1) for ||e,||- This is to be compared with T. Chan’s preconditioner where (1)
holds even for f € Cy;. We also remark that our results cannot be generalized
readily to the class of positive functions in Co,. This is because for f € Cy,,
sm(f) may not converge to f uniformly in R. Hence we cannot conclude
as in (11) that Amin(Sn(f)) > %fmin. Finally we remark that although the
results we proved here are asymptotic results that hold when n is large, in
practice, the method converges superlinearly for n that are small as well, see
the numerical results in Chan [5] for instance.

Acknowledgements. We are grateful to the referees for their valuable com-
ments.
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