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Abstract

In this paper, we first note that the proof of the quadratic convergence of the quasi-
Newton method as given in Friedland, Nocedal and Overton [1] is incorrect. Then we
give a correct proof of the convergence.
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1 Introduction

Let {A;}7_, be n real symmetric n x n matrices. For any vector ¢ = (c1, ¢z, - )l in

R", we define
n

Ale) =D cjA;. (1)

i=1
We denote the eigenvalues of A(c) by {Xi(c)}’_; with Ai(c) < .-+ < Ay(c), and their
corresponding normalized eigenvectors by {g;(c)}! ;. The inverse eigenvalue problem we

consider is: Given n real numbers {\'}”_,, which are ordered as A} < --- < X7, find a
vector ¢* € R™ such that A\;(c¢*) = A} for ¢ = 1,---,n. This problem can be posed as a
problem of solving the nonlinear system
fle) =0, (2)
where
fle) = (Aile) = AL, dnle) = A0)T (3)
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To simplify the discussion, we will assume that the given eigenvalues are distinct, i.e.
AT<A <o <. (4)

and that the Jacobian J(c*) of f(c) at the true solution ¢* is nonsingular. In Friedland,
Nocedal and Overton [1], the nonlinear system (2) is solved by different Newton-type
methods. The first one considered was the Newton method and the second one was
a quasi-Newton method based on the inverse power method. It was proved that both
methods converge quadratically.

In this paper, we first note that the proof of the quadratic convergence of the second
method given in [1] is incorrect and then we give a correct proof of the convergence.

2 The Algorithms

Since the inverse eigenvalue problem is equivalent to the problem of solving the nonlinear
system (2), one can use Newton-type methods to solve it. In this section, we recall two
methods discussed in [1].

We note that by using assumption (4) and results on matrix perturbation theory [3,
pp.66—68], one can show that the eigenvalues and eigenvectors of A(c) are differentiable
functions with respect to ¢ for ¢ sufficiently close to ¢*, see for instance [2, Theorem 2.3].

Lemma 1 Let A(c) € R™™ ™ be an analytic symmetric matriz-valued function defined on
R"™. For any given vector ¢* € R"™, if A(c*) has n distinct eigenvalues, then there exist a
scalar g > 0, n analytic scalar functions {\;(c)}7—, and n analytic vector-valued functions
{gi(c)}?_,, such that for all ¢ with ||c — c*|| < €, we have

A(c)gi(e) = Ai(c)gi(c), i=1,...,n (5)

and

qi(c)Tqi(c) =1, i=1,...,n. (6)

According to (6), we have
9gi(c)”
Jcj

Clearly, from the definition of A(c) in (1), we have 0A(c)/0c; = Aj, for j = 1,...,n.
Therefore, by (5) and (7), we have

0Xi(c) 70A(c)

Gl

Thus the Jacobian J(c) of the function f(c) defined in (3) is given by

of (0)]
0,J

= qi(c)" 4jqi(c), 1<i,j<n.

[J(S)]ij = [ 5 | = ()" Ajqi(c), 1<i,j<n. (8)



Using (1), (5) and (6), we have, for any given vector c,

[J(e)cli = ZQi(C)Tqui(c)cj = qi(c)" A(¢)qi(c)
7=1
— )\l(C)Ql(C)TQZ(C) — AZ(C)’ 1= 1? , N (9)
Thus,
J(c)e = (A(c), -, Anle))T. (10)

Recall that the Newton method for f(c) = 0 is defined by
FTL =k [T (), k=1,2,....
By (10) and (3), this becomes
J()VFT =LA, )T, k=12, (11)
Thus the Newton method for solving the inverse eigenvalue problem (2) is as follows:

Method I
Choose a starting vector ¢'. Then for k =1,2,..., do

(i) Form A(cF) by (1).

(i) Compute all the eigenvalues \;(c¥) and normalized eigenvectors g;(c¥) of A(cF).

(iv) Form J(c¥) by (8).

)

)

(iii) Stop if max;=1,. n|Xi(c¥) — AZ| is small enough. Otherwise, continue.
)

) k+1

(v

We note that in step (ii), the exact eigenvalues {\;(c¥)}*_, and eigenvectors {g;(c¥)}™_,
of A(c¥) are computed. For a general matrix, it will require approximately 5n® operations.
One way to minimize the cost is to approximate the eigenvalues and eigenvectors of A(c)
instead of computing them exactly. The following quasi-Newton method given in [1] is
based on using the inverse power method to find the approximate eigenvectors qf to qi(ck).
In the following, we will denote the diagonal matrix diag(A},...,A}) by A*.

Compute the next iterate ¢ by solving (11).

Method II
Choose a starting vector ¢'. Then form A(c') by (1) and compute its exact eigenvalues
A% and the normalized eigenvectors qil, 1<i<mn. Thenfor k=1,2,---, do

(i) Form Q = [g},...,qk], the matrix with the ith column given by ¢F.

(i) Stop if |QTA(c*)Q — A*||F is small enough. Otherwise, continue.



(iii) Form Jj (cf. (8)) where
[lig = (a) 4508,  1<ij<n (12)
(iv) Compute the next iterate ¢**! by solving (cf. (11))
Tpcf T = (1,05, .., 0T (13)
(v) Form A(c**1) by (1).

(vi) For each ¢ =1,...,n, solve v} in

ki
(AT = XD} =g

Here I is the identity matrix.

(vil) Normalize vf, i=1,...,n, to get the next approximate eigenvectors qf"'l:
k
¢t = Y
TR AT
[[v7

)

We note that the main cost per iteration of Method II is at step (vi) where n linear
systems are to be solved. However, we can first find the LU decomposition of A(cf*!) and
use it in the solution of all v¥, i = 1,...,n, see [1]. In doing so, the cost of step (vi) can be
reduced to approximately 3n3 operations. Since the eigenvalues and eigenvectors of A(c!)
are computed exactly, we see that the iterates ¢ generated by Methods I and II are the
same.

Here, we remark that the new iterates in both methods actually do not depend on
the signs of the eigenvectors or the approximate eigenvectors, because the Jacobians do
not change as the signs of the eigenvectors and approximate eigenvectors are changed,
see (8) and (12). As in [1], we will ignore the choice of sign of the eigenvectors and the
approximate eigenvectors in this paper too.

3 The Convergence Rate

The convergence rate of both Methods I and IT has been studied in [1]. For Method I, the
convergence rate is quadratic. It was also proved that the convergence rate of Method II
is quadratic.

Theorem 1 Suppose that the inverse eigenvalue problem (2) has a solution ¢* and that
the Jacobian matriz J(c*) is nonsingular. Then there exist scalars €,p > 0 such that if
¢! — ¢*|| < €, then the iterates c& of Method II converge quadratically to c*, i.e.

[ =l < pll® =7, k=1,2,....



In the paper, the theorem was proved as follows: Let Q = [¢F, -, ¢¥] and P = [q;(c*),
-+, qn(c*)]. Define X by

eX =QTP. (14)
Then it was claimed that X is a skew-symmetric matrix. Hence, by Corollary 3.1 in [1],
X < ol|@Q = PJ|, (15)

where o is a constant independent of k. Since P is a matrix of eigenvectors of A(c*) and
X is skew-symmetric, then
XA e™N = XA (M) = QTPA PTQ = QT A(c)Q. (16)
By expanding (16), we get
A+ XA —A*X = QTA(cHQ + O(| X |?). (17)
By comparing the diagonal entries of the matrices in (17), we see that
A= (@) A gl + o1 X))
From (12), we know that
[Tke')i = (¢))TA(c)af, i=1,...n, (18)
(cf. (9)). Hence
M= [ FO(IX)?), i=1,...n.
By substracting it from the iteration formula (13), we thus have
Te("H =) = O(IX ). (19)

Then by the nonsingularity assumption on J(c¢*) and (15), the quadratic convergence
follows.

We note that the above deduction is incorrect since X is assumed to be a skew-
symmetric matrix, which is not true. The reason is as follows. Since the matrix ) in
Method II is computed by the one step inverse power method, it is not guaranteed to be
orthogonal. Therefore Q7 P in general is not an orthogonal matrix. Hence X defined by
(14) may not exist. Even if it exists, it will not be a skew-symmetric matrix. Therefore,
Corollary 3.1 of [1] cannot be used to derive (15). Moreover, (eX)~! # (eX)? in general
and therefore (16) may be incorrect. Thus we cannot obtain the expansion (17) and (19).
In particular, we cannot use (19) and (15) to get the required quadratic convergence.

In the rest of the paper, we will give a proof of this quadratic convergence. We will
follow the line of proof given in [1] and use the mathematical induction to prove that if ¢!
is sufficiently close to ¢*, then the following two inequalities hold for k£ = 1,2,...:

“qzk - QZ(C*)H S 7||Ck - C*Ha 1= 1a23 Y (2 (20)

and
IFH —c*|| < pllc® — ¥ (21)

Here « and p are constants independent of k. It is clear that (21) implies Theorem 1.



4 The Mathematical Induction

As remarked in §2, the second iterates ¢ for Methods I and II are the same, since the
exact eigenvalues and eigenvectors are computed in the first iteration in both methods.
Therefore (20) and (21) hold for k = 1.

We assume that (20) and (21) are true for the case kK — 1. We now prove that they
are true for the case k. In [1, (3.57)], it has already been shown that under the induction
hypothesis, (20) holds for the case k. Therefore, we only consider (21) for the case k.

Let Q = [¢F, -+, ¢f] and P = [q1(c*), ---, qn(c*)]. Instead of (14), we define

I+V=Q"P. (22)
Then
QTA()Q=Q"PAN*PTQ=T+ V)N T +V)T = A"+ ANV + VA + VAV,

Comparing the diagonal entries of the matrices in the above equation, one gets

(@) A()gf =N+ 20 V] + D N[V, 1<i<n

INE
7=1
Using (18), we have
Ject = (ALN5, AT +w, (23)
where w = diag(A*VT + VA* + VA*VT), ie.
[wli =2X/[V]ii + Y NjIVE;, 1<i<n. (24)

i=1
By taking the difference of (23) with the iteration formula (13), we get
Ji(c* = = w. (25)

Thus we only need to estimate ||w]||. For this, we first note that by the definition of V'
in (22) and the fact that P is orthogonal, we have

I+V+VI+vVi =1 +V)I+V)" =Q"PPTQ=Q"Q.

Since {q}“}?zl are unit vectors, we see that the main diagonal entries of Q7'Q are 1. Hence
the main diagonal entries of V 4+ VT + V'V are zeros. Therefore, we get

1< ,
Vi = 5 Z[V]?,ja l<i<mn. (26)
j=1



Putting this back into (24), we then have

n

29 D A0 VI + DX IVIE)? p <4 max NP Y (Y IVE)?
=1 SS

i=1 j=1 i=1 j=1

(7
S
N

n n
*12 2 \2 * |2 4
< 412%»” (§. 1: §' 1:[V],-,j) g4lrg%lkil V-
=1 j=

However, since (20) holds for k, we have

Ve = IV'lr=1P"Q~Illr = IQ - Pllr

n 1/2
= (Z llg? — Qi(C*)“2> < yvnllet — ¢ (27)
i=1

Thus, we get
lwll < 2*n max [AF|llc* — |2
<i<n

Therefore by the nonsingular assumption on J* and (25), (21) for the case k follows. Hence
Theorem 1 is proved.

We conclude that the convergence rate of Method II in [1] is still quadratic, even
though the method is a quasi-Newton type method. Numerical experiments in [1] have
already confirmed this. For Method III in [1], the matrix @ is orthogonal because it is
the product of the previous iterate and the Cayley transform which is exactly orthogonal.
Therefore the proof in [1] is correct.
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