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Abstract. The preconditioned conjugate gradient method is employed to
solve Toeplitz systems T,,x = b where the generating functions of the n-by-n
Toeplitz matrices T, are continuous nonnegative periodic functions defined
in [—m,7]. The preconditioners C,, are band Toeplitz matrices with band-
widths independent of n. We prove that the spectra of C, T, are uniformly
bounded by constants independent of n. In particular, we show that the
solutions of 7T,,x = b can be obtained in O(nlogn) operations.
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1. Introduction.

In this paper we discuss the solutions to a class of Hermitian Toeplitz
systems T,z = b by the preconditioned conjugate gradient method. Direct
methods that are based on the Levinson recursion formula are in constant use;
see for instance, Levinson [11] and Trench [13]. For an n-by-n Toeplitz matrix
T, these methods require O(n?) operations. Faster algorithms that require
O(nlog® n) operations have been developed, see Bitmead and Anderson [2],
Brent, Gustavson and Yun [3] and Ammar and Gragg [1]. The stability
properties of these direct methods for symmetric positive definite matrices
are discussed in Bunch [4].

In [12], Strang proposed using the preconditioned conjugate gradient
method with circulant preconditioners for solving symmetric positive defi-
nite Toeplitz systems. The number of operations per iteration is of order
O(nlogn) as circulant systems can be solved efficiently by the Fast Fourier
Transform. Chan and Strang [5] then considered using a circulant precondi-
tioner S, that is obtained by copying the central diagonals of T}, and bringing
them around to complete the circulant. In that paper, we proved that if the
underlying generating function f, the Fourier coefficients of which give the
diagonals of T},, is an even and positive function in the Wiener class, then
for n sufficiently large, S, and S, ! are uniformly bounded in the l; norm
and that the eigenvalues of the preconditioned matrix S 'T,, cluster around
one. In particular, we showed that the conjugate gradient method converges
superlinearly.

These results are generalized to the case of Hermitian positive definite
Toeplitz systems in Chan [7]. We showed that the foregoing conclusions are
still valid if the generating function f is a real-valued positive function in the
Wiener class. We also gave an estimate of the convergence rate of the method
in terms of the degree of smoothness of the function f. Moreover, we proved
that S, is “optimal” in the sense that it minimizes the [y norm ||S, — T,|]:
over the space of all circulant matrices. We remark that the optimal circulant
preconditioner B,, that minimizes the Frobenius norm is given in Chan [8].
The spectral analysis of BT, is studied in Chan [6], where we showed
that lim,, o || B, ' Ty — S, ' Thll2 = 0. Hence the two optimal preconditioners
behave more or less the same for large n. Thus in the following, we will use
Sy for the comparison with our band preconditioners.



In this paper, we will consider nonnegative continuous periodic generating
functions defined on [—7, 7]. A typical example is given by the 1-dimensional
discrete Laplacian:

tridiag[—1, 2, —1]. (1)

Its generating function is 2 — 2 cos @, which has a zero at # = 0. We note that
the eigenvalues of T,, are given by

N(T) = 4sin2(2n”iz), j=1,2,---,m, 2)
hence T,, is nonsingular for all n. However, the circulant preconditioner S, is
inapplicable here because it is singular. Instead of finding other possible non-
singular circulant preconditioners, we resort to using band Toeplitz matrices
as preconditioners. We will show that if the global minimum of f is attained
at finitely many points, and f is sufficiently smooth around these points, then
there exists a band Toeplitz preconditioner C',, with band-width independent
of n, such that the condition number x(C;,'T},) is uniformly bounded.

The outline of the rest of the paper is as follows. In §2, we introduce
our preconditioners and some of their properties. In §3, we consider the case
where the generating function f has a unique global minimum. The case
where the minimun is attained at finitely many points is given in §4. In §5, we
evaluate the computational cost and storage requirement in solving T,z = b
by the preconditioned conjugate gradient method using our band Toeplitz
matrix as preconditioner. In §6, we consider the possibility of extending
these results to cases where either f is zero in an interval or the minimum of
f is less than zero. Numerical results are given in §7.

Before we begin our discussion, let us recall some of the properties of
Toeplitz forms. Let f be a real-valued periodic function in L;[—m, 7] with

m =essinf f and M =esssup f.

Thus M > f(f#) > m almost everywhere. We denote by T,[f] the n-by-n
Toeplitz matrix with entries ¢; ; = t;_;, where for all integers k,

I ,
b= o / ] f(0)e*0dp.

The function f is called the generating function of 7,[f]. Since f is real-
valued, t_ = t;, and T),[f] is Hermitian. We will order its eigenvalues in
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ascending order, i.e.,
)\5”) < )\g") <. < )\7(1n)_

We will drop the superscript (n) if the order of the matrix is clear from the
context. Notice that for any n-vector u = (uy, ug, - -+, uy,)*,

n

U*Tn[f]u = Z ﬂ]( f] G, kUk = Z u]tk jUE

k=1 k=1
= / Z ujuge i ef( )do
_W]k 1
1 iy
= LS we R, )
=

It follows immediately that for all n > 0,
m< A<M, i=1,2--,n (4)

In particular, if M = m, then T,,[f] = mI, for all n. In the following, we will
therefore assume that M > m. We note that we then have a stronger result
than (4).

Lemma 1. If m < M, then for all n > 0,
m< A" <M, i=1,---n. (5)
In particular, if m > 0, then T,[f] are positive definite for all n.

Proof: By contradiction, let us assume that A&”) = m with corresponding
eigenvector u. Then by (3), we have

' | zn:uje_ij0|2(f(9) —m)df = u*T,[flu — mu*u = 0.
4o

Since the integrand is nonnegative almost everywhere and the integral is zero,
the integrand must be zero almost everywhere. Therefore,

n
| Z uje 1% =0
j=1



on the set {0|f(#) > m} which has positive measure. However this implies
that the complex polynomial Z?:1 u;z’ = 0 has more than n roots on the

unit circle, which is clearly impossible. Thus A§”) > m. Similarly, we can
show that A7 < M. O

In the following, we will mainly consider continuous periodic functions in
[—m,m]. Suppose that 6y is a zero of f(0) — m. We say that 6 is of order
v if v is the smallest positive integer such that f**1(#) is continuous in a
neighborhood of #y and f*)(#,) # 0. By Taylor’s theorem,

f(v) (6o)

V!

f(0) =m+ (0 —0)” + O((0 — 0p)" ™),

for all # in that neighborhood. We note that f*)(f;) > 0 and v must be
even. We let | = v/2.

2. Properties of the Preconditioners.

For all [ > 1, we define
a(0) = (2 —2cosh) = (2 sin(g))%,
which has a unique zero of order 2/ at § = 0. Let
Anll] = Tolau(0)]-

We note that A,[1] is the discrete Laplacian given by (1) with eigenvalues
given by (2). A,[l] will be used as our preconditioners in subsequent sections.
It is therefore necessary that the diagonals of A, [l] can be found easily. We
remark that

1 1

2—2cosf=——(1—2)=—(=+2—2), (6)
2 2

where z = €. Hence by the binomial theorem,

l

(2 —2cosf) = Z ag)zk, (7)

k=—I



where

O _ O _ (2
“ ‘“—f"(‘”](lﬂ)’

are the binomial coefficients of (—1)!(1 — 2)?'. Hence the diagonals of A, ][]
can be obtained easily from the Pascal triangle. From (7), it is clear that
A,[l] is a symmetric band Toeplitz matrix of band-width (2] + 1). We first
investigate the spectrum of A,[l].

Theorem 1. Foralll > 1,

) = 3 < mlelt) < £, ®)
and o
o< nap < (ZE) )

for alln > 0. In particular, A,[l] are nonsingular for all n and

oM [ n+1 \* o
AAall]) 2 El!))Z <(2[——:1)7r) = 0",

Proof: The right hand inequality of (8) and the left hand inequality in (9)
follow directly from (5). To prove the left hand inequality in (8), we simply

choose u = (1,0,---,0)*. Then a(()l) = u*A,[lJu < A,. To obtain an upper
bound for A\, we write

Apll] = (A1) + Hy 1),

We note that both A,[l] and (A,[1])" are discrete approximation of the 1-
dimensional operator (—1)""1d*=2) /d§?~2 with center differencing scheme.
The only difference in them is the handling of the boundary conditions. Thus
the (I +1)-th up to the (n —[)-th rows of A4,[l] and (A,[1])! are the same. In
fact, for any [ < j < n — [, the j-th entry of A,[lJu for any vector u is given
by

n [
21
Gty = Sl =Y 00 () )
k=1 k=—1
l

l
21
= 2 ( I+ k ) Bruj =3 a'Btuj,

k=—1 k=—1



where B is the shift operator: B¥u; = uy,;. By (6) and (7), we see that
(Aulllu); = (=B +2 - By,

which is equal to the j-th entry of (A,[1])'u. Thus the j-th rows of A,|[l]
and (A,[1])! are the same for all [ < j < n — [. By symmetry, we see that
the (I + 1)-th up to the (n — [)-th columns of A,[l] and (A,[1])! are the
same too. Hence H,l[l] is nonzero only in the first [-by-/ and the last [-by-I
principal blocks. In particular, H,[l] is a matrix of rank at most 2/. Hence
An_21(H,[l]) = 0. By Cauchy interlace theorem, see Wilkinson [14], we have

M (Anll]) < Aorir (An[1])') + Maan (Ha[l]) = Az ((Aa[1])1).
Using the formula for A;(A4,[1]) in (2), we get

M) < O (1)) = s (BT < (M) .

2n + 2 n+1

3. Generating Functions with a Unique Global Minimum.

In this section, we will consider generating functions f which are continu-
ous nonnegative periodic functions in [—m, 7| with a unique global minimum
point at fy. We first note that we can assume without loss of generality that
90 - 0

Lemma 2. Let f(#) = f(0 +6,). Then for all n >0,

T.[f] = D;Tulf]1Dy,

where | |
D, = diag(l, 67290, . efz(nfl)eo).

In particular, the spectra of T,[f] and T,[f] are the same.

Proof: Let T}, = D:T,[f]D,. Then T, is a Toeplitz matrix with entries
[T = €9%T,[f];re P

1

- —i(j=k)(0=00) £ ()10
o] € f(0)
1

= 55 ) O+ s,



Thus T, = T,[f]. O

We note that f now has the minimum at 6, = 0. With regard to the
linear system T,z = b, we can solve T,% = b with b = D;b instead. Then
x will be given by D,z. Thus in the following, we assume that f has the
minimum at #; = 0. We then have our main theorem.

Theorem 2. Suppose that f(0) — m has a unique zero at = 0 with order
equals to 2l. Define for all n > 0,

Cp = Apll] +miI, = T,[(2 — 2cos )" +m).

Then &(C'T,[f]) is uniformly bounded for all n > 0.

Proof: Define
f(0)
(2—2cosO) +m’

F(9) =
Then clearly F' is continuous and positive for all # # 0. Since
1 if m >0,

lim F(0) = ¢ f#D(0)

0—0

if m=20,

is positive, F' is a continuous positive function in [—m,7]. Hence there exist
constants by, by > 0, such that by < F(0) < by for all § in [—m, 7]. Using (3),
we then have

w [ flu
w*Chu
for any n-vector u. Therefore x(C'T,[f]) < by/b1, which is independent of

n. O

by < < by (10)

Thus the preconditioner C,, is spectrally equivalent to T),[f]. We note
that this theorem also gives an estimate of the condition number of T,[f].

Corollary. Suppose that f(0) — m has a unique zero at § = 0 with order
equals to 2. Then for all n > 0, we have

M(Ta[f]) < bsm + byn ™2, (11)



and

b
r(Tulf]) > T ;Wl 2, (1)

where {b;}%_5 are constants independent of n.

Proof: By (9) and (10), we have

M(TLLf]) < by - M(Ch) < by (m+ <M>2l> .

n+1

Since

M) = (Gl =5 [ 7@,

which is a constant independent of n, we get the bound in (12). O

We remark that if m = 0, our preconditioner has improved the condi-
tion number from x(T,[f]) = O(n?*) to x(C,*T,[f]) = O(1). In the case
when m > 0, the condition number may still be improved, see, for instance,
the numerical results in §7. However, we emphasize that the spectrum of
C'T,[f] in general will not be clustered around 1 although they are uni-
formly bounded.

4. Generating Functions with Multiple Minimum Points.

Let f be a continuous, nonnegative periodic function defined in [—m, 7]
with global minimum m attained at {6;}%_,. Let the order of #; be 2I; and
we order them such that {; <--- <. Let [ = Zle ;. We define

k

a(0) = [ ]2 — 2 cos(0 — 6,)]".

=1

The matrix T}, [a(f) +m| = T, [a()] +mI, will be used as our preconditioner
for T,[f]. To compute the diagonals a; of T},[a(f)], we note that



k
= ( H(ewi — 22 4 e W)l (13)

!
_ J
= E a;z’,

=1

where z = ¢, Thus the diagonals a; can be obtained by expanding the

product in (13). Notice that T,[a(f)] is a Toeplitz matrix of band-width
equals to (2] 4+ 1). By repeating the arguments in Theorem 2, we have

Theorem 3. There exist constants ci,co > 0, such that

NI

— < fc|— .
_a(9)+m_627 \V/ 6[ 7T,7T]

In particular, if we let C,, = T,[a(0)] + ml,, then x(C,'T,[f]) < cafci for
alln > 0. O

Thus the preconditioner C,, is also spectrally equivalent to 7,,[f]. Next
we try to estimate the condition number of the original matrix 7),[f].

Corollary. We have, for all n > 0,
)\I(Tn[f]) S m + an_zlk,

and
k(T,[f]) > cam + csn?k

where {c;}3_5 are constants independent of n.

Proof: To compute an upper bound for the smallest eigenvalue, we let, for
all j=1,---,k,

-, Vo€ -7



Then f] has a unique zero at #; with order equals to 2[;. By (11), we have,
M(Tulff]) < ban™,

Since

0< f(8) —m= f;()- ﬁp —2cos(f — 6;)]5 < f;(0) - 4,
i#]
for all § € [—m, 7], we have
M(Tulf]) = m = M(Tf —m]) < 4AN(TLLf]) < 4'ban 25,
forall j =1,---, k. Thus
M(TA[f]) < m o+ 4logn ™2,

Using the fact that A, (7,[f]) > (Tn[f])1,1, which is a constant independent
of n, we get the required bound for the condition number. O

Thus for m = 0, the condition number of the original system is of order
O(n?*), where we recall that [, is the largest order of all the zeros of f.

However, the condition number of the preconditioned system is still of order
O(1).

5. Computational Cost and Storage Requirement.

We now consider the cost of solving T,,[f]z = b by using the precondi-
tioned conjugate gradient method with the band Toeplitz matrix C), as pre-
conditioner. For a discussion on preconditioned conjugate gradient method
and band matrix solvers, see Golub and van Loan [9].

It is known that the cost per iteration in the preconditioned conjugate
gradient method is about 5n operations plus the cost of computing 7,y and
C, 'd for some vectors y and d. By operation, we mean one complex multi-
plication together with one addition. The matrix-vector multiplication 7,y
can be done by the Fast Fourier Transform by first embedding 7;, into a
2n-by-2n circulant matrix, see Strang [12]. The cost is about 2n log(2n) + 2n
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operations. The vector C''d can be found by using any band matrix solver.
The cost of factorizing C), is about %ZZn operations, and then each solve re-
quires an extra (2/ 4+ 1)n operations. Hence the cost per iteration is about
n(2log(2n) + 21 + 8) operations, which is of order O(nlogn), as [ is indepen-
dent of n.

The number of iterations required for convergence will depend on the
condition number of the preconditioned system. It is well-known that the
number of iterations required to attain a given tolerance € is bounded by

%\/K(C’n_lTn) log(%) +1, (14)

which in our case is uniformly bounded. Hence the overall work required to
attain the given tolerance is given by

1 1 1
n(2log(2n) + 21 +8) - {5\//£(C’,;1Tn) log(z) + 1} + §l2n = O(nlogn).

As for the storage, we need five m-vectors in the conjugate gradient
method. The diagonals of 7;, will require another n-vector, and finally, we
need an n-by-(I+ 1) matrix to hold the factors of the preconditoner C,,. Thus
the overall storage requirement is about (7 + {)n.

6. More General Generating Functions.

We now investigate the possibility of extending our method to more gen-
eral generating functions. We first consider generating function f which is
zero in a sub-interval of [—m, 7). Without loss of generality, let us assume
that f is zero in (—7,7), 7 > 0.

Theorem 4. If f(§) = 0 in (—7,7), 7 > 0, then for all integers I, there
exist a constant b, which depends on f and [ only, such that for all n > 0,

M(T,[f]) < bn™2.

In particular,
K(Talf]) > en”,

for some constant c independent of n.
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Proof: For all [ > 1, we let

fio) = M (9)

T

where M = ess sup f. Clearly, f, has a zero of order 2] at § = 0. Since
f1(0) > f(0) for all  in [—m, x|, by (11),

M(Tf]) < M(TR[f) <™. O

Thus the smallest eigenvalue of T),[f] goes to zero faster than any fixed
power of n~ !, and its condition number goes to infinity faster than any fixed
power of n. Hence our band matrix A,[l], with the smallest eigenvalue going
to zero at the rate of n=2!, will not be a good preconditioner in this case.

Next we consider the case where m < 0. We then have

lim A\ (7,[f]) =m <0, (15)
n—oo
see Grenander and Szegd [10]. Hence for n sufficiently large, the Toeplitz
matrix T;,[f] is non-definite and may even be singular. The conjugate gradi-
ent method may be divergent in this case. We remark that this is also the
case where the direct method may be unstable, see Bunch [4].

7. Numerical Results and Concluding Remarks.

Let us begin by investigating the spectra of the preconditioned systems.
We first consider f(#) = #*, which has a zero of fourth order at # = 0 and
M =~ 97.4. Let C,, = A,[2]. The spectra of T,,[f] and C;'T,,[f] for n = 32 are
given in Figure 1. We remark that the circulant matrix S3» has a negative
eigenvalue, hence is non-definite, and cannot be used as a preconditioner.
The condition number of Ts[f] is found to be about 2.24 * 10° whereas the
condition number of C5,'Ts;[f] is about 5.56. We note that in this case, we
can actually compute an upper bound for x(C'T,[f]). In fact, since

(2 —2cosf)! = 16 sin4(g) <o
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for all 6 € [—m, 7], A\ (C,'T,[f]) > 1 for all n > 0. Using the fact that

which holds for all 6 € [—, 7], we have \,(C, 'T,[f]) < 7*/16 for all n > 0.

Thus for all n > 0,
4

1 m
< — ~6.09.

Now we apply our method to solve the linear system T,[#*]z = b. The
right hand side b is chosen to be the vector of all ones and the zero vector is
our initial guess. Computations are done in 8-byte arithmetic. Table 1 shows
the numbers of iterations required to make ||r,||2/||70]l2 < 1077, where 7, is
the residual vector after ¢ iterations. We see that for the original system
T,[0%], the number of iterations grows like O(n?), as expected from (14),
while for the preconditioned system, it approaches a constant.

(n | T [C'T]
6] 9 | 3
32 | 27 | 15
61 | 98 | 20
193 377 | 2
256 || 1692 | 27
512 | 7457 | 29

Table 1. Number of Iterations for f(0) = 6*.

Next we consider the function f(f) = 6* + 1 > 1. The condition number
of T,,[f] is bounded above by M a 98.4. By (15) and the fact that

see Grenander and Szegd [10], we see that x(T,[f]) is actually approaching
M as n tends to infinity. However, we can easily show that with the band
preconditioner C,, = A,[2] + I,,, the condition number of the preconditioned
matrix is still bounded above by 7*/16 ~ 6.09. Thus preconditioning in
this case will also improve the condition number. We remark that since
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f(0) = 0* + 1 is a positive function in the Wiener class, we may use the
circulant preconditioner S,, as an alternative. In Figure 2, we compare the
resulting spectra of the preconditioned systems for n = 32. We see that the
circulant preconditioned system has a highly clustered spectrum, while the
band Toeplitz preconditioned system gives a smaller condition number. The
numbers of iterations required for solving the linear system 7,,[0* + 1]z = b
with these preconditioners are given in Table 2. We see that the circulant
preconditioner performs much better than the band preconditioner.

Ln | T [GT ]S T

16 8 8 6
32 19 12 5
64 35 15 3
128 54 17 3
256 || 66 17 3
012 70 17 3

Table 2. Number of Tterations for f(6) = 6* + 1.

We finally consider an example where f is zero in a sub-interval of [—m, 7.

We let
0 0] < /2,
TO=920_1 19> r/2.
m

We found that )\1(T4) = 1.9 % 10_3, )\I(Tg) = 2.2 % ]_0_6 and )\1(T16) ==
2.3 % 1072, Thus the matrices T,[f] are very ill-conditioned.

We close our paper by remarking that the results we obtained here are
for generating functions f that are continuous periodic and nonnegative in
[, m]. Moreover the results are true for all n, they are not asymptotic
results. In contrast, the results for the circulant preconditioners are proved
under the assumptions that f is in the Wiener class and that n is sufficiently
large, see for instance, Chan [7]. However, we emphasize that the circulant
preconditioners work pretty well even for small n in practice, as was demon-
strated by the second example above. Our band preconditioners will be a
good complementary alternative in cases where the circulant preconditioners
become singular or non-definite.
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