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Abstract� The preconditioned conjugate gradient method is employed to
solve Toeplitz systems Tnx � b where the generating functions of the n�by�n
Toeplitz matrices Tn are continuous nonnegative periodic functions de�ned
in ���� ��� The preconditioners Cn are band Toeplitz matrices with band�
widths independent of n� We prove that the spectra of C��n Tn are uniformly
bounded by constants independent of n� In particular� we show that the
solutions of Tnx � b can be obtained in O	n logn
 operations�
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�� Introduction�

In this paper we discuss the solutions to a class of Hermitian Toeplitz
systems Tnx � b by the preconditioned conjugate gradient method� Direct
methods that are based on the Levinson recursion formula are in constant use�
see for instance� Levinson �

� and Trench �
��� For an n�by�n Toeplitz matrix
Tn� these methods require O	n�
 operations� Faster algorithms that require
O	n log� n
 operations have been developed� see Bitmead and Anderson ����
Brent� Gustavson and Yun ��� and Ammar and Gragg �
�� The stability
properties of these direct methods for symmetric positive de�nite matrices
are discussed in Bunch ����

In �
��� Strang proposed using the preconditioned conjugate gradient
method with circulant preconditioners for solving symmetric positive de��
nite Toeplitz systems� The number of operations per iteration is of order
O	n logn
 as circulant systems can be solved e�ciently by the Fast Fourier
Transform� Chan and Strang ��� then considered using a circulant precondi�
tioner Sn that is obtained by copying the central diagonals of Tn and bringing
them around to complete the circulant� In that paper� we proved that if the
underlying generating function f � the Fourier coe�cients of which give the
diagonals of Tn� is an even and positive function in the Wiener class� then
for n su�ciently large� Sn and S��n are uniformly bounded in the l� norm
and that the eigenvalues of the preconditioned matrix S��n Tn cluster around
one� In particular� we showed that the conjugate gradient method converges
superlinearly�

These results are generalized to the case of Hermitian positive de�nite
Toeplitz systems in Chan ���� We showed that the foregoing conclusions are
still valid if the generating function f is a real�valued positive function in the
Wiener class� We also gave an estimate of the convergence rate of the method
in terms of the degree of smoothness of the function f � Moreover� we proved
that Sn is �optimal� in the sense that it minimizes the l� norm jjSn � Tnjj�
over the space of all circulant matrices� We remark that the optimal circulant
preconditioner Bn that minimizes the Frobenius norm is given in Chan ����
The spectral analysis of B��n Tn is studied in Chan ���� where we showed
that limn�� jjB��n Tn�S��n Tnjj� � �� Hence the two optimal preconditioners
behave more or less the same for large n� Thus in the following� we will use
Sn for the comparison with our band preconditioners�

�



In this paper� we will consider nonnegative continuous periodic generating
functions de�ned on ���� ��� A typical example is given by the 
�dimensional
discrete Laplacian�

tridiag��
� ���
�� 	



Its generating function is ��� cos �� which has a zero at � � �� We note that
the eigenvalues of Tn are given by

�j	Tn
 � � sin�	
�j

�n� �

� j � 
� �� � � � � n� 	�


hence Tn is nonsingular for all n� However� the circulant preconditioner Sn is
inapplicable here because it is singular� Instead of �nding other possible non�
singular circulant preconditioners� we resort to using band Toeplitz matrices
as preconditioners� We will show that if the global minimum of f is attained
at �nitely many points� and f is su�ciently smooth around these points� then
there exists a band Toeplitz preconditioner Cn� with band�width independent
of n� such that the condition number �	C��n Tn
 is uniformly bounded�

The outline of the rest of the paper is as follows� In x�� we introduce
our preconditioners and some of their properties� In x�� we consider the case
where the generating function f has a unique global minimum� The case
where the minimun is attained at �nitely many points is given in x�� In x�� we
evaluate the computational cost and storage requirement in solving Tnx � b
by the preconditioned conjugate gradient method using our band Toeplitz
matrix as preconditioner� In x�� we consider the possibility of extending
these results to cases where either f is zero in an interval or the minimum of
f is less than zero� Numerical results are given in x��

Before we begin our discussion� let us recall some of the properties of
Toeplitz forms� Let f be a real�valued periodic function in L����� �� with

m � ess inf f and M � ess sup f�

Thus M � f	�
 � m almost everywhere� We denote by Tn�f � the n�by�n
Toeplitz matrix with entries ti�j � tj�i� where for all integers k�

tk �



��

Z �

��

f	�
e�ik�d��

The function f is called the generating function of Tn�f �� Since f is real�
valued� t�k � �tk� and Tn�f � is Hermitian� We will order its eigenvalues in

�



ascending order� i�e��
�
�n�
� � �

�n�
� � � � � � ��n�n �

We will drop the superscript 	n
 if the order of the matrix is clear from the
context� Notice that for any n�vector u � 	u�� u�� � � � � un


��

u�Tn�f �u �
nX

j�k��

�uj	Tn�f �
j�kuk �
nX

j�k��

�ujtk�juk

�



��

Z �

��

nX
j�k��

�ujuke
�i�k�j��f	�
d�

�



��

Z �

��

j
nX

j��

uje
�ij�j�f	�
d�� 	�


It follows immediately that for all n � ��

m � �
�n�
i �M� i � 
� �� � � � � n� 	�


In particular� if M � m� then Tn�f � � mIn for all n� In the following� we will
therefore assume that M � m� We note that we then have a stronger result
than 	�
�

Lemma �� If m 	 M � then for all n � ��

m 	 �
�n�
i 	 M� i � 
� � � � � n� 	�


In particular� if m � �� then Tn�f � are positive de�nite for all n�

Proof� By contradiction� let us assume that �
�n�
� � m with corresponding

eigenvector u� Then by 	�
� we have




��

Z �

��

j
nX

j��

uje
�ij�j�	f	�
�m
d� � u�Tn�f �u�mu�u � ��

Since the integrand is nonnegative almost everywhere and the integral is zero�
the integrand must be zero almost everywhere� Therefore�

j
nX

j��

uje
�ij�j � �

�



on the set f�jf	�
 � mg which has positive measure� However this implies
that the complex polynomial

Pn

j�� ujz
j � � has more than n roots on the

unit circle� which is clearly impossible� Thus �
�n�
� � m� Similarly� we can

show that �
�n�
n 	 M� �

In the following� we will mainly consider continuous periodic functions in
���� ��� Suppose that �� is a zero of f	�
 � m� We say that �� is of order

 if 
 is the smallest positive integer such that f �����	�
 is continuous in a
neighborhood of �� and f ���	��
 �� �� By Taylor�s theorem�

f	�
 � m �
f ���	��



�
	� � ��


� �O		� � ��

���
�

for all � in that neighborhood� We note that f ���	��
 � � and 
 must be
even� We let l � 
���

�� Properties of the Preconditioners�

For all l � 
� we de�ne

al	�
 � 	�� � cos �
l � 	� sin	
�

�


�l�

which has a unique zero of order �l at � � �� Let

An�l� � Tn�al	�
��

We note that An�
� is the discrete Laplacian given by 	

 with eigenvalues
given by 	�
� An�l� will be used as our preconditioners in subsequent sections�
It is therefore necessary that the diagonals of An�l� can be found easily� We
remark that

�� � cos � � �



z
	
� z
� � �	




z
� �� z
� 	�


where z � ei�� Hence by the binomial theorem�

	�� � cos �
l �
lX

k��l

a
�l�
k zk� 	�


�



where

a
�l�
j � a

�l�
�j � 	�

j

�
�l

l � j

�
�

are the binomial coe�cients of 	�

l	
 � z
�l� Hence the diagonals of An�l�
can be obtained easily from the Pascal triangle� From 	�
� it is clear that
An�l� is a symmetric band Toeplitz matrix of band�width 	�l � 

� We �rst
investigate the spectrum of An�l��

Theorem �� For all l � 
�

a
�l�
� �

	�l
�

	l�
�
� �n	An�l�
 	 �l� 	�


and

� 	 ��	An�l�
 �

�
	�l � 

�

n� 


��l

� 	�


for all n � �� In particular� An�l� are nonsingular for all n and

�	An�l�
 �
	�l
�

	l�
�

�
n� 


	�l � 

�

��l

� O	n�l
�

Proof� The right hand inequality of 	�
 and the left hand inequality in 	�

follow directly from 	�
� To prove the left hand inequality in 	�
� we simply

choose u � 	
� �� � � � � �
�� Then a�l�� � u�An�l�u � �n� To obtain an upper
bound for ��� we write

An�l� � 	An�
�

l �Hn�l��

We note that both An�l� and 	An�
�

l are discrete approximation of the 
�

dimensional operator 	�

l��d��l����d��l�� with center di�erencing scheme�
The only di�erence in them is the handling of the boundary conditions� Thus
the 	l�

�th up to the 	n� l
�th rows of An�l� and 	An�
�


l are the same� In
fact� for any l 	 j � n� l� the j�th entry of An�l�u for any vector u is given
by

	An�l�u
j �
nX

k��

a
�l�
k�juk �

lX
k��l

	�

k
�

�l
l � k

�
uk�j

�
lX

k��l

	�

k
�

�l
l � k

�
Bkuj �

lX
k��l

a
�l�
k Bkuj�

�



where B is the shift operator� Bkuj � uk�j� By 	�
 and 	�
� we see that

	An�l�u
j � 	�B � �� B��
luj�

which is equal to the j�th entry of 	An�
�

lu� Thus the j�th rows of An�l�

and 	An�
�

l are the same for all l 	 j � n � l� By symmetry� we see that

the 	l � 

�th up to the 	n � l
�th columns of An�l� and 	An�
�

l are the

same too� Hence Hn�l� is nonzero only in the �rst l�by�l and the last l�by�l
principal blocks� In particular� Hn�l� is a matrix of rank at most �l� Hence
�n��l	Hn�l�
 � �� By Cauchy interlace theorem� see Wilkinson �
��� we have

��	An�l�
 � ��l��		An�
�

l
 � �n��l	Hn�l�
 � ��l��		An�
�


l
�

Using the formula for �j	An�
�
 in 	�
� we get

��	An�l�
 � 	��l��	An�
�


l � �l sin�l

�
	�l � 

�

�n� �

�
�

�
	�l � 

�

n� 


��l

� �

	� Generating Functions with a Unique Global Minimum�

In this section� we will consider generating functions f which are continu�
ous nonnegative periodic functions in ���� �� with a unique global minimum
point at ��� We �rst note that we can assume without loss of generality that
�� � ��

Lemma �� Let �f	�
 � f	� � ��
� Then for all n � ��

Tn� �f � � D�nTn�f �Dn�

where
Dn � diag	
� e�i��� � � � � e�i�n�����
�

In particular� the spectra of Tn� �f � and Tn�f � are the same�

Proof� Let �Tn � D�nTn�f �Dn� Then �Tn is a Toeplitz matrix with entries

� �Tn�j�k � eij��Tn�f �j�ke
�ik��

�



��

Z �

��

e�i�j�k�������f	�
d�

�



��

Z �

��

e�i�j�k��f	� � ��
d��

�



Thus �Tn � Tn� �f �� �

We note that �f now has the minimum at �� � �� With regard to the
linear system Tnx � b� we can solve �Tn�x � �b with �b � D�nb instead� Then
x will be given by Dn�x� Thus in the following� we assume that f has the
minimum at �� � �� We then have our main theorem�

Theorem �� Suppose that f	�
�m has a unique zero at � � � with order
equals to �l� De�ne for all n � ��

Cn � An�l� �mIn � Tn�	�� � cos �
l �m��

Then �	C��n Tn�f �
 is uniformly bounded for all n � ��

Proof� De�ne

F 	�
 �
f	�


	�� � cos �
l �m
�

Then clearly F is continuous and positive for all � �� �� Since

lim
���

F 	�
 �

��
�


 if m � ��
f ��l�	�


	�l
�
if m � ��

is positive� F is a continuous positive function in ���� ��� Hence there exist
constants b�� b� � �� such that b� � F 	�
 � b� for all � in ���� ��� Using 	�
�
we then have

b� �
u�Tn�f �u

u�Cnu
� b� 	
�


for any n�vector u� Therefore �	C��n Tn�f �
 � b��b�� which is independent of
n� �

Thus the preconditioner Cn is spectrally equivalent to Tn�f �� We note
that this theorem also gives an estimate of the condition number of Tn�f ��

Corollary� Suppose that f	�
 � m has a unique zero at � � � with order
equals to �l� Then for all n � �� we have

��	Tn�f �
 � b�m � b	n
��l� 	




�



and

�	Tn�f �
 �
b


b� �mn�l
n�l� 	
�


where fbig
�
i�� are constants independent of n�

Proof� By 	�
 and 	
�
� we have

��	Tn�f �
 � b� � ��	Cn
 � b�

�
m�

�
	�l � 

�

n� 


��l
�
�

Since

�n	Tn�f �
 � 	Tn�f �
��� �



��

Z �

��

f	�
d��

which is a constant independent of n� we get the bound in 	
�
� �

We remark that if m � �� our preconditioner has improved the condi�
tion number from �	Tn�f �
 � O	n�l
 to �	C��n Tn�f �
 � O	

� In the case
when m � �� the condition number may still be improved� see� for instance�
the numerical results in x�� However� we emphasize that the spectrum of
C��n Tn�f � in general will not be clustered around 
 although they are uni�
formly bounded�


� Generating Functions with Multiple Minimum Points�

Let f be a continuous� nonnegative periodic function de�ned in ���� ��
with global minimum m attained at f�ig

k
i��� Let the order of �i be �li and

we order them such that l� � � � � � lk� Let l �
Pk

i�� li� We de�ne

a	�
 �
kY

i��

��� � cos	� � �i
�
li �

The matrix Tn�a	�
�m� � Tn�a	�
��mIn will be used as our preconditioner
for Tn�f �� To compute the diagonals aj of Tn�a	�
�� we note that

a	�
 �
kY

j��

�	
� ei����j�
	
� e�i����j�
�lj

�



�
kY

j��

�	
� ze�i�j 
	
� z��ei�j 
�lj

�
	�

l

zl

kY
j��

	ei�j � �z � z�e�i�j 
lj 	
�


�
lX

j��l

ajz
j�

where z � ei�� Thus the diagonals aj can be obtained by expanding the
product in 	
�
� Notice that Tn�a	�
� is a Toeplitz matrix of band�width
equals to 	�l � 

� By repeating the arguments in Theorem �� we have

Theorem 	� There exist constants c�� c� � �� such that

c� �
f	�


a	�
 �m
� c�� � � � ���� ���

In particular� if we let Cn � Tn�a	�
� �mIn� then �	C��n Tn�f �
 � c��c� for
all n � �� �

Thus the preconditioner Cn is also spectrally equivalent to Tn�f �� Next
we try to estimate the condition number of the original matrix Tn�f ��

Corollary� We have� for all n � ��

��	Tn�f �
 � m � c�n
��lk �

and
�	Tn�f �
 � c	m � c
n

�lk �

where fcig


i�� are constants independent of n�

Proof� To compute an upper bound for the smallest eigenvalue� we let� for
all j � 
� � � � � k�

�fj	�
 �
f	�
�mQk

i��

i��j
��� � cos	� � �i
�li

� � � � ���� ���


�



Then �fj has a unique zero at �j with order equals to �lj� By 	


� we have�

��	Tn� �fj�
 � b	n
��lj �

Since

� � f	�
�m � �fj	�
 �
kY

i��

i��j

��� � cos	� � �i
�
li � �fj	�
 � �

l�

for all � � ���� ��� we have

��	Tn�f �
�m � ��	Tn�f �m�
 � �l��	Tn� �fj�
 � �lb	n
��lj �

for all j � 
� � � � � k� Thus

��	Tn�f �
 � m� �lb	n
��lk �

Using the fact that �n	Tn�f �
 � 	Tn�f �
���� which is a constant independent
of n� we get the required bound for the condition number� �

Thus for m � �� the condition number of the original system is of order
O	n�lk
� where we recall that lk is the largest order of all the zeros of f �
However� the condition number of the preconditioned system is still of order
O	

�

�� Computational Cost and Storage Requirement�

We now consider the cost of solving Tn�f �x � b by using the precondi�
tioned conjugate gradient method with the band Toeplitz matrix Cn as pre�
conditioner� For a discussion on preconditioned conjugate gradient method
and band matrix solvers� see Golub and van Loan ����

It is known that the cost per iteration in the preconditioned conjugate
gradient method is about �n operations plus the cost of computing Tny and
C��n d for some vectors y and d� By operation� we mean one complex multi�
plication together with one addition� The matrix�vector multiplication Tny
can be done by the Fast Fourier Transform by �rst embedding Tn into a
�n�by��n circulant matrix� see Strang �
��� The cost is about �n log	�n
��n







operations� The vector C��n d can be found by using any band matrix solver�
The cost of factorizing Cn is about �

�
l�n operations� and then each solve re�

quires an extra 	�l � 

n operations� Hence the cost per iteration is about
n	� log	�n
� �l��
 operations� which is of order O	n logn
� as l is indepen�
dent of n�

The number of iterations required for convergence will depend on the
condition number of the preconditioned system� It is well�known that the
number of iterations required to attain a given tolerance � is bounded by




�

p
�	C��n Tn
 log	




�

 � 
� 	
�


which in our case is uniformly bounded� Hence the overall work required to
attain the given tolerance is given by

n	� log	�n
 � �l � �
 � f



�

p
�	C��n Tn
 log	




�

 � 
g�




�
l�n � O	n logn
�

As for the storage� we need �ve n�vectors in the conjugate gradient
method� The diagonals of Tn will require another n�vector� and �nally� we
need an n�by�	l�

 matrix to hold the factors of the preconditoner Cn� Thus
the overall storage requirement is about 	� � l
n�

�� More General Generating Functions�

We now investigate the possibility of extending our method to more gen�
eral generating functions� We �rst consider generating function f which is
zero in a sub�interval of ���� ��� Without loss of generality� let us assume
that f is zero in 	�
� 

� 
 � ��

Theorem 
� If f	�
 � � in 	�
� 

� 
 � �� then for all integers l� there
exist a constant b� which depends on f and l only� such that for all n � ��

��	Tn�f �
 � bn��l�

In particular�
�	Tn�f �
 � cn�l�

for some constant c independent of n�


�



Proof� For all l � 
� we let

fl	�
 � M

�
�




��l

�

where M � ess sup f � Clearly� fl has a zero of order �l at � � �� Since
fl	�
 � f	�
 for all � in ���� ��� by 	


�

��	Tn�f �
 � ��	Tn�fl�
 � bn��l� �

Thus the smallest eigenvalue of Tn�f � goes to zero faster than any �xed
power of n��� and its condition number goes to in�nity faster than any �xed
power of n� Hence our band matrix An�l�� with the smallest eigenvalue going
to zero at the rate of n��l� will not be a good preconditioner in this case�

Next we consider the case where m 	 �� We then have

lim
n��

��	Tn�f �
 � m 	 �� 	
�


see Grenander and Szeg o �
��� Hence for n su�ciently large� the Toeplitz
matrix Tn�f � is non�de�nite and may even be singular� The conjugate gradi�
ent method may be divergent in this case� We remark that this is also the
case where the direct method may be unstable� see Bunch ����


� Numerical Results and Concluding Remarks�

Let us begin by investigating the spectra of the preconditioned systems�
We �rst consider f	�
 � �	� which has a zero of fourth order at � � � and
M 	 ����� Let Cn � An���� The spectra of Tn�f � and C

��
n Tn�f � for n � �� are

given in Figure 
� We remark that the circulant matrix S�� has a negative
eigenvalue� hence is non�de�nite� and cannot be used as a preconditioner�
The condition number of T���f � is found to be about ���� 
 
�
 whereas the
condition number of C���� T���f � is about ����� We note that in this case� we
can actually compute an upper bound for �	C��n Tn�f �
� In fact� since

	�� � cos �
	 � 
� sin		
�

�

 � �	


�



for all � � ���� ��� ��	C
��
n Tn�f �
 � 
 for all n � �� Using the fact that

sin�	
�

�

 �

��

��
�

which holds for all � � ���� ��� we have �n	C
��
n Tn�f �
 � �	�
� for all n � ��

Thus for all n � ��

�	C��n Tn�f �
 �
�	


�
	 ���� �

Now we apply our method to solve the linear system Tn��
	�x � b� The

right hand side b is chosen to be the vector of all ones and the zero vector is
our initial guess� Computations are done in ��byte arithmetic� Table 
 shows
the numbers of iterations required to make jjrqjj��jjr�jj� 	 
���� where rq is
the residual vector after q iterations� We see that for the original system
Tn��

	�� the number of iterations grows like O	n�
� as expected from 	
�
�
while for the preconditioned system� it approaches a constant�

n Tn C��n Tn


� � �
�� �� 
�
�� �� ��

�� ��� ��
��� 
��� ��
�
� ���� ��

Table 
� Number of Iterations for f	�
 � �	�

Next we consider the function f	�
 � �	 � 
 � 
� The condition number
of Tn�f � is bounded above by M 	 ����� By 	
�
 and the fact that

lim
n��

�n	Tn�f �
 � M�

see Grenander and Szeg o �
��� we see that �	Tn�f �
 is actually approaching
M as n tends to in�nity� However� we can easily show that with the band
preconditioner Cn � An��� � In� the condition number of the preconditioned
matrix is still bounded above by �	�
� 	 ����� Thus preconditioning in
this case will also improve the condition number� We remark that since


�



f	�
 � �	 � 
 is a positive function in the Wiener class� we may use the
circulant preconditioner Sn as an alternative� In Figure �� we compare the
resulting spectra of the preconditioned systems for n � ��� We see that the
circulant preconditioned system has a highly clustered spectrum� while the
band Toeplitz preconditioned system gives a smaller condition number� The
numbers of iterations required for solving the linear system Tn��

	 � 
�x � b
with these preconditioners are given in Table �� We see that the circulant
preconditioner performs much better than the band preconditioner�

n Tn C��n Tn S��n Tn


� � � �
�� 
� 
� �
�� �� 
� �

�� �� 
� �
��� �� 
� �
�
� �� 
� �

Table �� Number of Iterations for f	�
 � �	 � 
�

We �nally consider an example where f is zero in a sub�interval of ���� ���
We let

f	�
 �

	
� j�j 	 ����
�

�
j�j � 
 j�j � ����

We found that ��	T	
 � 
�� 
 
���� ��	T

 � ��� 
 
��� and ��	T��
 �
��� 
 
����� Thus the matrices Tn�f � are very ill�conditioned�

We close our paper by remarking that the results we obtained here are
for generating functions f that are continuous periodic and nonnegative in
���� ��� Moreover the results are true for all n� they are not asymptotic
results� In contrast� the results for the circulant preconditioners are proved
under the assumptions that f is in the Wiener class and that n is su�ciently
large� see for instance� Chan ���� However� we emphasize that the circulant
preconditioners work pretty well even for small n in practice� as was demon�
strated by the second example above� Our band preconditioners will be a
good complementary alternative in cases where the circulant preconditioners
become singular or non�de�nite�


�
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