CIRCULANT PRECONDITIONERS
FOR SECOND-ORDER HYPERBOLIC EQUATIONS

Xiao-Qing Jin and Raymond H. Chan
Department of Mathematics
University of Hong Kong
Hong Kong
September 1991

Revised December 1991

Abstract. Linear systems arising from implicit time discretizations and finite difference
space discretizations of second-order hyperbolic equations in two-dimension are considered.
We propose and analyze the use of circulant preconditioners for the solution of linear
systems via preconditioned iterative methods such as the conjugate gradient method.
Our motivation is to exploit the fast inversion of circulant systems with Fast Fourier
Transform (FFT). For the second-order hyperbolic equations with initial and Dirichlet
boundary conditions, we prove that the condition number of the preconditioned system
is of O(a) or O(m), where « is the quotient between the time and space steps and m is
the number of interior gridpoints in each direction. The results are extended to parabolic
equations. Numerical experiments also indicate that the preconditioned systems exhibit

favorable clustering of eigenvalues that leads to a fast convergence rate.
Abbreviated Title. Circulant Preconditioners for Hyperbolic Equations

Key Words. Hyperbolic equation, circulant matrix, condition number, preconditioned

conjugate gradient method

AMS(MOS) Subject Classifications. 65F10, 65N22

Typeset by AMS-TEX



2 CIRCULANT PRECONDITIONERS FOR SECOND-ORDER HYPERBOLIC EQUATIONS

§1 Introduction.

In this paper, we are concerned with the numerical solution of initial and Dirichlet
boundary value problems of second-order hyperbolic equations by iterative methods. After
discretization by using an implicit time-marching method, such problems reduce to the
solution of linear systems of the form Az = b in each time step. We shall only consider

the case where A is symmetric and positive definite.

The problems that we want to discuss are the second-order hyperbolic equations of
the form

0%z 0 0z 0 b 0z

o7 = e, 0wy 0wy "ow,)

with given initial and Dirichlet boundary conditions. An application of such hyperbolic
equations is the vibration problem of light homogeneous membrane, see [15]. A number of
common methods for solving such kind of problems are explicit finite difference schemes,
see [14]. For explicit methods, however, the maximal time step kpmay is limited by the
CFL-criterion, which in some situations may be unrealistically strict. An example is when

the time-dependence of the problem is much weaker than the space-dependence and hence

large time step could be used.

An alternative is to use implicit schemes. Usually, the numerical solution of two-
dimensional second-order hyperbolic equation on a uniform grid, using an implicit time-
marching scheme, involves the solution of block tridiagonal systems of equations in each
time step. The important properties for the matrices of such systems are their sparsity
and bandwidth. If the grid has m interior gridpoints in each direction, then the block
tridiagonal matrix is m2-by-m? and contains only about 5m? nonzero entries. The band-
width of the matrix is (2m + 1). It is desirable to retain the sparsity in solving procedure,

and therefore interest has been shifted to iterative methods.

A popular iterative method for solving symmetric positive definite systems is the

preconditioned conjugate gradient method, see [1] and [10]. A successful type of precon-
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ditioners is the modified incomplete LU (MILU) factorizations, see for instance, [11]. We
note that though the conjugate gradient method is highly parallelizable, see [16], both
the computation and the application of the MILU preconditioner have limited degree of

parallelism because of the inherently sequential way in which the grid points are ordered.

The purpose of this paper is to propose another class of preconditioners, one that is
based on averaging the coefficients of A to form a circulant approximation to A. Recent
research on circulant preconditioners for Toeplitz systems shows that the preconditioned
systems often have clustering of eigenvalues which is favorable to the convergence rate, see
2], [3], [4], [5], [6] and [8]. Particularly, Holmgren and Otto [12] have used the circulant
preconditioners for implicit systems arising from first-order hyperbolic equations where the
coefficient matrix A is highly nonsymmetric and non-diagonally dominant. Hence many
classical preconditioning techniques are not effective and sometimes not well-defined. For
these problems, the circulant preconditioners are often the only ones that work. Circulant
preconditioners have also been used by R. Chan and T. Chan [7] for the solution of linear

systems arising from elliptic problems.

In this paper, we will extend the idea explored in [7] to construct our preconditioners
for the hyperbolic and parabolic cases. We note that both the computation (based on
averaging of the coefficients of A) and the inversion (using FFT’s) of our circulant pre-
conditioner are highly parallelizable, see [17]. Our main results in this paper is that for
the second-order hyperbolic or parabolic equations defined on unit square with initial and
Dirichlet boundary conditions, the condition number of the preconditioned system is of
O(a) or O(m), where « is the quotient between the time and space steps and m is the

number of interior gridpoints in each direction.

The outline of the paper is as follows. We define the circulant preconditioner in §2
and analyze a model problem in §3. The results are extended to variable coefficient case in
84 and to parabolic equations in §5. Numerical experiments are presented in §6 to verify

these theoretical results and to illustrate the effect of clustering of the spectrum and the
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effect of variation of coefficients.

§2 Circulant Approximation to Discretized System.

In this section, we derive the discretized system of second-order hyperbolic equation in

two-dimensional case. The preconditioner for solving this linear system is also constructed.

We consider the following second-order hyperbolic equation

0%z 0 0z 0 0z

gz _ 2y e 1
22 = 901 o) T 05, 0an,) T (1)

where 0 < z; < 1,0< 23 < 1,¢ >0 and a = a(z1,z2), b = b(x1,x2), g = g(t,x1,22) are
given functions with

0 < Cmin S a($17$2)7 b($17$2) S Cmax (2)

for some constants cpin and cmax. The initial conditions are given as follows:
z(03$17$2) = f0($175132) , and Zt(07$17$2) = f1(!131,$2) )

and the boundary conditions are given by
2(t,0,22) = 2o(t,x2) , 2(t,1,22) = 21(t,22) ,
z(t,x1,0) = za(t, z1) , 2(t,z1,1) = z3(t, z1) -
In this way, we obtain a mixed initial and boundary value problem.
Let

U=2z, W=G0aZ, , U=D0z,,

then we have the following first-order system

ou _ Ow ov

W - Bxl aivg + g
ow _ _ Ou

ov __ 1 Ou

E - ba:l;‘z .

The grid is uniform in the computational domain with (m 4 2) x (m + 2) gridpoints,

where m > 2. Let u; j,v; j, w; j denote the calculated approximate solutions of u,v,w at
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point (z1,,z2;) and a; j,b; j,g; ; denote the values of a,b,g at point (z1,,z2 ;) respec-

tively, where
{xl,i:ih, 1=0,---,m+1,
$2,j:jh7j:07"' 7m+]~7

and h is the space step. By using the trapezoidal rule with time step £ to do the time-
discretization of equations (4), and then followed by using central-differencing schemes to

approximate the spatial derivatives, we then have

+1 n+1 n n
(  n+l_n w!'' —w fw? g —w? g
ui,]‘ _ui,j o l+§>J 15,7 i+t35,7 1= 5.
k 2h
n+1 n+1 n n
v T T . _+l—’U. .1
hit+3 =3 I TS LITy 1( n+1 + n )
< 20 =2Yij T Y 5
n+41 n ( )
w —w. . n+41 n+1 n n
P _1 — A ya4 .
i3 imed 0 Mig LR Rt 1Y e e O S 0
k 1= 3,7 2h
n+1 n
v —v. . n+1 n+1 n n
;a1 _1 — A VAL
) LIy b . Ui Ui TUi Y1 0
. k ,)—3 2h :

Let a = % and substitute the last two equations in (5) to the first equation, we have

4
= n+l Lt ,ntl
(oot aipgy+ iy bijug +bi P)uiy™ — ey juily; — ey juity
dn—l—l
— ntl ntl g
bijgtigen ~big-3uii = 5
m+1 p: n+1 n+1 n+1 n+1 ..
where d;' 7" are known quantities. Observe that u;'g", u;/ 7", ug ™ and u, Wy - ford, 5 =

0,---,m+1 are given directly by the boundary conditions (3). This implies that we have

to solve for m? unknowns in each time step.

Let
untt = (urlljl_l’ ugjl’ o ’UT;:ll’ ugjla T vu?nfr}b)
and
d"tt = %(d?,-il_lv dgjlv T 7dnm+,_11v dg,-il_lv T vdnm+nlz) )

then we finally obtain the following linear system
Auth =gt (6)

Here the matrix A is an m2-by-m? block tridiagonal matrices where the diagonal blocks are

tridiagonal matrices and the off-diagonal blocks are diagonal matrices. Once we get u™*1,
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we could obtain z;f;-Ll, the approximation of z(t,41,21,i, %2 ;), by the following difference
scheme
n+1 _ n
ntl _ Fig T i
Uig = k ’

ie., zZ"JH = ku?;rl + 2;;. Hence, we only need to discuss the solution of the system (6) in

the remainder of this paper.
For any given m-by-m matrix B, the optimal circulant approximation 7', first pro-
posed in [8], is defined as the minimizer of ||B — C||p over all circulant matrices C. Here

| - || denotes the Frobenius norm. Let the elements of B be denoted by b; ; and the first

column of T’ be denoted by (to,t1,-- ,tm—1)T. We then have following formula,
1 .
tj:E Z bpg, j=0,---,m—1.

p—q=j (mod m)

Now consider applying this result to solve system (6). We introduce the following
circulant preconditioner which preserves the block structure of A. The preconditioner C'

is defined as follows:

C=IC*"+C"®1I. (7)

Here I is an identity matrix of order m and C*, C® are m-by-m circulant matrices with

their first columns defined by:

2 1 1
08:2ﬁ+a—§+—2(1+—2),
f =cCp1=—0a,
¢ =0,1=2,---,m—2;

- 20 1
c8:2b+¥+—2(1+§),
C?:C?n_]_:—i),
=0, i=2, ,m—2

where

1 m m-—1 1

_ T -1 k
a:WZZ“H%J’ b:mz b+t ﬂ:mT and o =g

=1 i=1 i=1 j=1
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The shift #(1 + %) can guarantee the reduction of the condition number for the precon-

ditioned system. We will illustrate this in §3.

The question we are facing now is how good this preconditioner is in the sense of
minimizing x(C~!A), where x(-) denotes the condition number. We will show that
1. For any «, when m is sufficiently large (m > «), k(C7*A) < O(«), while for the
original matrix, x(A) < O(a?).
2. For any m, when « is sufficiently large (o > m), K(C~*A) < O(m), while for the
original matrix, x(A) < O(m?).
We first prove the claims above for a model problem in case of a(z1,x2) = b(z1,22) =1

in §3 and then extend the results to general variable-coefficient case in §4.

§3 Analysis for Model Problem.

In the constant-coefficient case of a(z1,12) = b(xy,72) = 1, A is an m2-by-m? matrix

of the following form

A=A @I+1®A,, (8)

where Ay is an m-by-m matrix given by

2+ % -1 0
Ap=| I
. . —1
0 -1 2+ 3%
In this case, a = b= = mT_l In particular, the circulant preconditioner C' is given by
C=CI+1I®Cy, 9)
where Cj is an m-by-m matrix given by
2+% -1 —1
-1 S () ) )
Co=p + W(l + )1
0 -1

—1 -1 2+ %

«
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Hence Cy is a positive definite circulant matrix. For the eigenvalues of Ay and Cy, we

have the following Lemma.

Lemma 1. The eigenvalues of Ag and Cy are given as follows:

2 . o m(j+1)
Aildo) = 5 +dsin” 50— (10)
203 1 1 . 9]
)\j(CO):g—Fw(l-i-?)-i-ﬁl,BSHl E , (11)

forj=0,--- ,m—1.

Proof. For (10), one can refer to [14]. For (11), since Cj is a circulant matrix, we have
Co = FAF*, where

F = [_e2m'jk/m]

0<j<m—1,0<k<m—1,
Vv im

is the Fourier matrix, F'* is the complex conjugate transpose of F' and A is a diagonal ma-
trix containing the eigenvalues of Cy, see Davis [9]. By using this spectral decomposition,

one can easily obtain (11). 0

By (8) and (10), we know that the eigenvalues of A are given by

4 . o m(i+1) . om(j+1)
Nij(A) = — +4sin? ——— +4sin? 12
J(A) = o5 Hdsin® om0 +Hdsin® 5o (12)

for 0 <i,7 <m — 1. From (12), we know that when « is sufficiently large (a > m), then
the smallest eigenvalue of A decreases to zero like O(-;). Since A; ;(4) <9 for @ > 4 and

0 <i4,7 <m —1, as a consequence, we have
k(A) < O(m?) .

If m is sufficiently large (m > «), then the smallest eigenvalue of A decreases to zero like

O(=). As a consequence, we have
(0%

k(A) < 0(a?) .

For the condition number of Cy ' Ay, we have the following two Lemmas.
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Lemma 2. Let )\(Co_le) denote any eigenvalue of C'O_lAO. For any a, when m is suffi-

ciently large (m > «), we have

< MG Ap) < 0(a) -

DN =

As a consequence, we have

k(CytAp) < O(a) when m > a .

Proof. Let e; be the j-th unit m-vector. Since
A * * 1
C():B( 0—616m—6m61)+w(1+$)1,

we note that for all m-vectors x,

1 1
z*Cox =pz* Aoz + fz* (ere] + emer, ) — fz*(e1 +em)(er +em) z + W(l + ?)m*x
1 1
=20z Apx — Px*[Ay — (e1€] + emey,) — G (1+ E)I]:E

—Bx*(e1 +em)(er +en) .

We note that the matrix (e; + e,,)(e1 + e,,)* is positive semi-definite and the matrix

1 1
5(1+ )1

AO — (616){ + eme;‘n) — W o2

is also positive semi-definite when m > va? + 1. We then have for any «, when m is

sufficiently large,

" Cox < 20z Agx .

Thus

z" Aoz A(CT 1 Ap)

1
< — < min
T 28 7 Jzl#0 *Cor T

1
2

On the other hand, we note that for all m-vectors =z,

Br* Apx =x* Cox + 5:5*(61 +em)er +em) — E:Jc*(el —em)(er —en)'x
1 1.,
Tt T
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where the last two terms on the right hand side is always non-positive. Thus

Bz*Agx < z*Cox + g:ﬁ*ee*x ,

where e = e; + ¢, i.e.,

We note that for all nonzero m-vectors z,

T*ee*r —1/2 —1/2 1
z*Cox < G, / ee”Cy / |2 =€"Cy e

(14)
From the proof of Lemma 1, we know that Cy = FAF* where by (11), the entries of A

are given by

28 1 1 _
[Alj; = Ai(Co) = Pl + W(l + ?) + 43sin®0; |

where 0; = 7j/m, 0 < j <m — 1. Hence

m—1
4 29,
e*C’O_le —¢*FA 'F*e = — Z 55 - cosl J —
m =0 ¥+m(1+?)+4ﬁ81n 9j

m/2—1
Ama?

_ n 8 Z COSZQJ'
202 —2m+ o+ 1 m o B I (14 L)+ apsin?0,

2

< dmao +4/% cos? 0do (15)
—2m2 —-2m+a2+1 7w /)= ﬁ—i—sinQH'

For any «, when m is sufficiently large (m > «), we have by (15)

.1 4 % cos?0dl 4cos?h (3 do
(& CO e S 1 + — N RN S 1 + 1 )
™ Jo 0 + sin 0 Vs 0 502 + sin 9

4cos? f T
=1+

- : (16)
2y/ 52z (525 + 1)

where 0 < § < 5. By (14) and (16), we then have

r*ee*r
<e'Cle <1+ ca=0(a
$*C()IL' —= 0 —= ( )7

where ¢ is a constant. By (13) and (17), we have

*A
AMCytAp) < max T AT o O(a) .

= llzli0 z*Cox = L
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Lemma 3. For any m, when « is sufficiently large (o > m), we have
O(1) < X(Cq ' Ag) < O(m) .
As a consequence, we have

k(CytAg) < O(m) when a>>m .

Proof. We note that

z*Cox =20z Aoz — Bx*[Ap — (e1€] + emer,)|x

1
— Bx*(el + 6m)(61 + em)*IE + m—(]. + —

Since the matrices (e; + e,,)(e1 +e,)* and Ay — (e1e] + epe),) are positive semi-definite,
we have

z*Cox < 20z Agz + W(l + ?)x z . (18)

When « is sufficiently large (o >> m), we know that z*z < O(m?)z* Agz. Using this fact,

we see from (18) that (28 + O(1))~! < A\(Cy *Ay), i-e.,
O(1) < X(Cj ' A) -

On the other hand, for any m, when « is sufficiently large (o > m), we have by (14)

and (15)

By (13) and (19), we thus have

A(Cy 1 Ag) < O(m) . O

By using Lemmas 2 and 3, we then have
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Theorem 1. For the circulant preconditioned systems of the model problem, we have

(i) For any «, when m is sufficiently large (m > «), we have

< AC71A) < O(a) .

N —

(ii) For any m, when « is sufficiently large (o > m), we have
O(1) < ACT'A) < O(m) .
As a consequence, we have
k(C™1A) < O(a) , when m > a ;

and

k(C71A) < O(m) , when a > m .
Proof. For (i), we note that for any m-vector z, when m > va? + 1, by Lemma 2,
1 * * *
5% Coxr < 2" Apx < O(a)z*Cox .
Hence, for any m?2-vector x, one can easily prove that
1
5:5*(00 Nr<z* (4@ Nz <O(a)z" (Co @ I)x

and

1
5(1,‘*([ RCo)zr <z (I® Ap)z < O(a)z™ (I @ Cy)x .

Combining these two inequalities togather, we have (i). Similarly, we can prove (ii) by

using Lemma 3. 0

For conjugate gradient method, it is important that the spectrum of C~!A has highly
multiple eigenvalues or the eigenvalues are clustered in a small interval (a, b) which keeps a
clear gap between a and 0. For m = 4, 8 and 16, the following tables show the distributions

of the eigenvalues for increasing a. In these tables, the eigenvalues are ordered as

AL S A < S Aoy S A
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A C A
(0% )\1 )\m2—1 )\mz )\1 )\m2—1 Amz
10 0.80393 6.2761 7.2761 0.80923 1.8355 7.0293
100 0.76433 6.2365 7.2365 0.80529 1.8460 8.3609
1000 0.76394 6.2361 7.2361 0.80525 1.8462 8.3775
Table 1. Eigenvalues Distribution for m =4
A C A
(0% )\1 )\m2—1 )\mz )\1 )\m2—1 Amz
10 0.28123 7.4515 7.7988 0.64169 2.4046 9.1196
100 0.24373 7.4140 7.7613 0.63434 2.4791 16.896
1000 0.24123 7.4115 7.7588 0.63427 2.4798 17.040
Table 2. Eigenvalues Distribution for m = 8
A CtA
(0% )\1 )\m2—1 Amz )\1 Amz_l )\mz
10 0.10811 7.8709 7.9719 0.57667 3.55651 8.5180
100 0.07061 7.8334 7.9344 0.56344 4.0515 32.934
1000 0.068112 7.8309 7.9319 0.56329 4.0577 34.342

Table 3. Eigenvalues Distribution for m = 16

We observe that the eigenvalues of C 1A are all located in a relatively small interval
(¢, d) except one outlying eigenvalue which increases like O(m) for « large enough, just as
our Theorem 1 predicts. Here d is increased slowly with a and m increasing. Since the
spectrum of the preconditioned matrix C~'A is clustered, which is favorable to the conju-

gate gradient method, we can expect fast convergence. This fact is confirmed numerically

in §6.

84 Analysis for Variable Coefficient Problem.

In this section, we extend the results in the last section to variable coefficient case.
We consider the second-order hyperbolic equations of the form given by (1). Let A be
the m2-by-m? matrix given by (6). Define Ay = Cmax - A and Apin = cmin - A, where

Cmax, Cmin are given in (2) and A is given by (8). Without loss of generality, we assume

Cmin < 1 and ¢y > 1. Let C’, Chax and Cpin be the the circulant approximations of fi,
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Anax and A, respectively. Clearly, Crax = Cmax - C and Cin = Cmin - C, where C' is
given by (9). We then have the following Lemma. The proof of the Lemma can be found

in [7], we therefore omit it.

Lemma 4. All the matrices Amax — fl, A — Anin, Crax — C and C — Cin are positive

semi-definite.

By Lemma 4, for all nonzero vectors x, we have
0< 2" Apint < 27 Az < 2% Ao (20)
and
0 < 2"°Cpinz < 2°Cx < 2*Cax . (21)
Combining (20) with (21), we get
Cmin TXAz ¥ ApinT < ¥ Az TF A _ Cmax T" Az

0< =

Cmax z*Cx x*Cma.xx o $*é$ o :L‘*Cmina: Cmin IL‘*C[E

Recalling the results from Theorem 1, we then have our main results.

Theorem 2. Let A be the discretization matriz of (1) defined by (6) under the condition
(2) and C be the circulant preconditioner as defined in (7). We have

(i) For any «, when m is sufficiently large (m > «), we have

O(1) < A(C7'4) < O(a) .

(ii) For any m, when « is sufficiently large (o > m), we have
O(1) < AC7TA) <O(m) .

As a consequence, we have

K(C™tA) < O(a) when m > a;

and

k(C™tA) < O(m) , when a>>m .
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§5 Extension to Parabolic Equation.

In this section, we extend our results to parabolic equations. We consider the following

parabolic equation

0z 0 0z 0 0z

where

O<z1<1l, O0<z2<1l, t>0,

and

a=a(zi,z2), b=0b(z1,22), ¢g=g(t,z1,22)

are given functions with
0 < emin < a(z1,z2), b(r1,72) < Cmax
for some constants cpi, and cpax. The initial condition is given by
2(0,21,22) = go(21,22) ,
and the boundary conditions are given by

z(t,O,:ch) = Zo(t,(L‘g) ’ Z(ta 1,(1)2) = Zl(tax2) )

2(t,21,0) = 22(t,x1) ,  2(t,z1,1) = 23(t,21) .

By using the uniform grid and notations introduced in §2, for any function f(z1,z2)

defined on unit square, we define the following forward and backward differences as

N fij = fivrj — fig, “ifig=Ffij— fi—1j,

N fig=Ffiger—fig, fig=T[ij— fij-1-

Then by applying Crank—Nicholson scheme to (22), see [13], we have

n+1 n
JTJ - W[Az (az’—%,j Vi Z”H) + Aj(bi,j—% v’ Z”H)]
1 n j j . n n+%
- Q—hQ[Ai(a’i—%,j Vi Zzg) + Aj(bi,j—% v’ zzg)] =95 - (23)
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Thus, we have from (23)

“ n+1l n+l n+1
(3t aipg T 0oy T bijus +b )27 —aiy ;250 — 0oy 5200
dTL+1
o n+l 3 n+l _ %]
bijrsZijen ~bij-1%ii-1= 3
where o? = % and d?jl are known quantities. Finally, we obtain the following linear
system

Azn+1 — dn+1

with a block tridiagonal matrix A. Thus, we can define a preconditioner C' as we did in
§2. By using the same trick as we introduced in §3 and §4, we can obtain the same results

as in Theorem 2.

§6 Numerical Results.

In this section, we compare the performance of our method to the MILU precondi-

tioner, see [11]. In these tests, we mainly compare the number of iterations. The equation

we used is
0%z 0 0z 0 € 0z
W = 8—5131 [(1 + Gemlﬁz) 8—m1] + 8—5132 [(1 + 5 COS(ﬂ'(J?l + 5132))) 8—172] + g(t,!El,]?z), (24)

defined on the unit square. The € here is a parameter. When ¢ = 0, (24) is the model
problem discussed in §3. We discretize the equations by using the schemes we introduced
in §2. The right hand side and the initial guess are chosen to be random vectors and are
the same for different methods. Computations are done with double precision on a VAX
6420 and the iterations are stopped when % < 1077, Here 7y, is the residual vector at
the k-th iteration. The circulant preconditioner we used is defined by (7).

Since the circulant preconditioners are based on averaging of these coefficients over
the grid points, their performance will deteriorate as the variations in the coefficficients

increase. We therefore first symmetrically scale A by its diagonal before applying the

circulant preconditioners. In our tests, we apply diagonal scaling to all methods.
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We note that the application of the circulant preconditioners require O(m?logm)
flops, which is slightly more expensive than the O(m?) flops required by the MILU pre-
conditioners. The FFTs, however, can be computed in O(logm) parallel steps with O(m?)
processors, see [17], whereas the MILU preconditioners require at least O(m) steps regard-
less of how many processors could be used.

The following tables show the number of iterations required for convergence for dif-
ferent choices of € and «. In the tables, I, C and M represent the systems with no
preconditioning, circulant preconditioner and MILU preconditioner respectively. We see
that for small values of € (e.g. € <0.01) and large values of o (e.g. @ > 100), the number
of iteration of the our preconditioners is less than that of MILU. We also note that the
MILU method is less sensitive to the changes in € but more sensitive to the changes in
«. In contrast, the circulant preconditioner is less sensitive to the changes in a when « is
large. In all cases, the number of iterations grows slower than as predicted by Theorems

1 and 2.

€ 0.0 0.01 0.1 1.0
m I cC | M 1 cC | M 1 cC | M I cC | M

8 24 |12 | 10 24 |14 | 10 28 | 14 | 10 29 | 15 | 10
16 44 |1 16 | 13 47 | 18 | 13 o0 | 18 | 13 93 | 20 | 13
32 72 |19 | 15 72 | 22 | 15 78 | 22 | 15 89 | 25 | 16
64 94 | 26 | 15 94 | 30 | 15 || 103 | 30 | 15 || 120 | 33 | 17
128 | 107 | 37 | 15 | 107 | 43 | 15 | 113 | 44 | 15 | 139 | 47 | 17

Table 4.  Number of iterations for different systems with o = 10
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€ 0.0 0.01 0.1 1.0
m I cC | M 1 cC | M 1 cC | M I cC | M

8 24 |12 | 11 25 |13 | 11 29 | 14 | 10 29 | 156 | 10
16 47 |1 16 | 15 53 | 18 | 15 o4 | 18 | 15 o7 | 20 | 14
32 8 | 19 | 21 | 102 | 22 | 21 | 103 | 23 | 21 || 109 | 26 | 20

64 171 | 25 | 30 || 198 | 29 | 30 || 201 | 30 | 30 || 213 | 33 | 29
128 | 326 | 32 | 40 | 351 | 38 | 40 | 356 | 40 | 40 || 416 | 45 | 40

Table 5.  Number of iterations for different systems with o = 100

€ 0.0 0.01 0.1 1.0
m I cC | M 1 cC | M 1 cC | M I cC | M

8 24 |12 | 11 25 | 13| 11 29 | 14 | 10 29 | 15 ] 10
16 47 116 | 15 93 | 18 | 15 54 | 18 | 15 57 | 20 | 14

32 8 |19 | 21 || 103 | 22 | 21 || 103 | 23 | 21 | 110 | 26 | 20
64 173 | 25 | 31 | 201 | 29 | 31 || 202 | 30 | 31 || 215 | 34 | 30
128 | 336 | 32 | 45 | 367 | 38 | 45 | 403 | 40 | 45 || 430 | 46 | 43

Table 6.  Number of iterations for different systems with o = 1000
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