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Abstract. We study the solutions of Hermitian positive definite Toeplitz
systems Az = b by the preconditioned conjugate gradient method for three
families of circulant preconditioners C'. The convergence rates of these it-
erative methods depend on the spectrum of C'A. For a Toeplitz matrix
A with entries which are Fourier coefficients of a positive function f in the
Wiener class, we establish the invertiblity of C', and that the spectrum of
the preconditioned matrix C~'A clusters around one. We prove that if f
is (I 4+ 1)-times differentiable, with [ > 0, then the error after 2¢ conjugate
gradient steps will decrease like ((¢ — 1)!)~2". We also show that if C' copies
the central diagonals of A, then C' minimizes ||C' — Al|; and ||C — A||w.
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1. Introduction.

In this paper we discuss the solutions to a class of Hermitian positive
definite Toeplitz systems Az = b by the preconditioned conjugate gradient
method. Direct methods that are based on the Levinson recursion formula
are in constant use; see for instance, Levinson [10] and Trench [12]. For an
n by n Toeplitz matrix A, these methods require O(n?) operations. Faster
algorithms that require O(nlog® n) operations have been developed, see Bit-
mead and Anderson [1] and Brent, Gustavson and Yun [2]. The stability
properties of these direct methods for symmetric positive definite matrices
are discussed in Bunch [3].

In [11], Strang proposed using preconditioned conjugate gradient method
with circulant preconditioners for solving symmetric positive definite Toe-
plitz systems. The number of operations per iteration is of order O(nlogn) as
circulant systems can be solved efficiently by the Fast Fourier Transform. R.
Chan and Strang [4] then considered using a circulant preconditioner S,, that
is obtained by copying the central diagonals of A,, and bringing them around
to complete the circulant. In that paper, we proved that if the underlying
generating function f, the Fourier coefficients of which give the entries of
A,, is a positive function in the Wiener class, then for n sufficiently large,
S, and S, ! are uniformly bounded in the [, norm and that the eigenvalues
of the preconditioned matrix S ' A, cluster around 1. We note that f is an
even function since the matrices A, are symmetric.

In this paper, we extend these results to Hermitian positive definite
Toeplitz systems. More precisely, we show in §2 that if the generating func-
tion f is a real-valued positive function in the Wiener class, then the spectrum
of S;1A, is clustered around 1. We remark that the proof given in R. Chan
and Strang [4] cannot be readily generalized to cover this case. In fact, for
Hermitian A,, the Hankel matrices Hy, /> used in the proof in [4] are not Her-
mitian, and the Circulant-Toeplitz eigenvalue problem cannot be split into
two similar Toeplitz-Hankel eigenvalue problems. In §3, we establish the su-
perlinear convergence rate of the conjugate gradient method when applied to
these preconditioned systems. In particular, we show that if f is ({4 1)-times
differentiable, with [ > 0, then the error after 2¢ conjugate gradient steps
will decrease like ((¢ — 1)!) 2.

In §4, we discuss other viable preconditioners for the same problem. We



show that the preconditioned systems for these preconditioners also have
clustered spectra around 1 for large n and that they all have the same
asymptotic convergence rate. In §5, we show that the preconditioner that
copies the central diagonals of A,, is optimal in the sense that it minimizes
[|Cr,— Anll1 = ||Cn — Ap|| over all Hermitian circulant matrices C,,. Finally,
numerical results are given in §6.

2. The Spectrum of the Preconditioned Matrix.

Let us first assume that the Hermitian Toeplitz matrices A, are finite
sections of a fixed singly infinite positive definite matrix A,,, see R. Chan
and Strang [4]. Thus the (7, j)-th entries of A,, and A are a;_;, with ay, = a_j,
for all k. We associate with A, the real-valued generating function

f(e) _ zoo: akefike,

defined on [0, 27). We will assume that f is a positive function and is in the
Wiener class, i.e. the sequence {ag}32_ . isin /y. It then easily follows that
the A, are Hermitian positive definite matrices for all n, see for instance,
Grenander and Szegé [8]. Moreover, if

0 < fmin < f < fmax < 00,

then the spectrum o(A,) of A, satisfies

U(An) g [fminafmax]- (1)

Let S, be the Hermitian circulant preconditioner that copies the central
diagonals of A,,. More precisely, the entries s;; = s;_; of S,, are given by

ar 0<k<m,
Sp =R Qp_p m<k<n, (2)
S 0<—k<n.

For simplicity, we are assuming here and in the following that n = 2m + 1.
The case where n = 2m can be treated similarly, and in that case, we define
Sm = (am + a—p)/2, see (17) below.



We will show that S, 'A, has a clustered spectrum. We first note that

Theorem 1. Suppose f is positive and is in the Wiener class. Then for
large n, the circulants S, and S; ' are uniformly bounded in the ly norm. In
fact, for large n, the spectrum o(S,) of S, satisfies

U(Sn) g [fminafmax]- (3)

The proof of this Theorem is similar to the proof of Theorem 1 of R. Chan
and Strang [4], and we therefore omit it.
Next we show that A, — S, has a clustered spectrum:

Theorem 2. Let f be a positive function in the Wiener class, then for
all € > 0, there exist M and N > 0 such that for all n > N, at most M
eigenvalues of S, — A, have absolute values exceeding €.

Proof: Clearly B, = S, — A, is a Hermitian Toeplitz matrix with entries
bij = bz‘—j given by

0 0<k<m,
b =4 Gk—n—ar m<k<n, (4)
b_s 0<—k<n.

Since f is in the Wiener class, for all given € > 0, there exists an N > 0,
such that Y777 o |ag| < e. Let U be the n by n matrix obtained from
B, by replacing the (n — N) by (n — N) leading principal submatrix of B,
by the zero matrix. Then rank(UT(LN)) < 2N. Let W\ = B, — U™, The
leading (n — N) by (n— N) block of WM is the leading (n—N) by (n—N)
principal submatrix of B,,, hence this block is a Toeplitz matrix, and it is
easy to see that the maximum absolute column sum of WTEN) is attained at
the first column (or the (n — N — 1)-th column). Thus

n—N—-1 n—N—-1 n—N—1
W= 3" = > Jaew—al < Y lal<e  (5)
k=m+1 k=m+1 k=N-+1
Since W) is Hermitian, we have ||WT(LN)||00 = ||WT(LN)||1. Thus

WMy < (W] [WV][)7 < e
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Hence the spectrum of WT(LN) lies in (—¢,€). By Cauchy Interlace Theorem,
see Wilkinson [13], we see that at most 2N eigenvalues of B, = S,, — A4,, have
absolute values exceeding e. O

Combining Theorems 1 and 2, and using the fact that
St Ap =1, + S, (A — Su),
we have

Corollary. Let f be a positive function in the Wiener class, then for all
€ > 0, there exist N and M > 0, such that for all n > M, at most N
eigenvalues of S7'A, — I, have absolute values larger than e.

Thus the spectrum of S, 'A, is clustered around one for large n.
3. Superlinear Convergence Rate.

It follows easily from the Corollary of the last section that the conjugate
gradient method, when applied to the preconditioned system S, 'A,, con-
verges superlinearly. More precisely, for all ¢ > 0, there exists a constant
C'(e) > 0 such that the error vector e, at the ¢-th iteration satisfies

[leg|| < Cle)efeol], (6)

where ||z|]? = x*S;%AS,ﬁx, see R. Chan and Strang [4] for a proof. Thus
the number of iterations to achieve a fixed accuracy remains bounded as
the matrix order n is increased. Since each iteration requires O(nlogn)
operations using the Fast Fourier Transform, see Strang [11], the work of
solving the equation A,z = b to a given accuracy § is c(f,d)nlogn, where
c(f,0) is a constant that depends on f and ¢ only.

We note that if extra smoothness conditions are imposed on f, we can
get a more precise bound on the convergence rate:



Theorem 3. Let f be a (I+1)-times differentiable function with its (I+1)-th
deriative of f in L*[0,27), 1 > 0. Then for large n,

[leag|| <

Cq
WHGUHa (7)
or some constant ¢ that depends on f and [ only.
f y

Proof: We remark that from the standard error analysis of the conjugate
gradient method, we have

leq]] < [minmax|Py(A)] ] fleol (8)

where the minimum is taken over polynomials of degree ¢ with constant term
1 and the maximum is taken over the spectrum of S, 'A,, or equivalently,

_1 _1
the spectrum of Sy, 24,5, 2, see for instance, Golub and van Loan [7]. In the
following, we will try to estimate that minimum.

We first note that the assumptions on f imply that

~

c .
|aj| < |j|l+1 V],

where ¢ = || f+D]|,1, see, for instance, Katznelson [9]. Hence

n—k—1 n—k—1

R 1 ™ dx ¢

As in Theorem 2, we write

B, =W® Uk v >1,
where U{" is the matrix obtained from B, by replacing its (n—k) by (n—k)
principal submatrix of B,, by a zero matrix. Using the arguments in Theorem
2, c¢f (5) and (9), we see that rank(Uqgk)) < 2k and ||W,£k)||2 < ¢/k, for all
k > 1. Now consider

1 1

Sn?BnSn? =S, WWS, > +5,2UMS,

-
N

— W 1 T,



By Theorem 1, we have, for large n, rank(ﬁrgk)) < 2k and
¢

W2 < 1S3 1W< 7,

Vk > 1, (10)

with é = ¢/ fuin-
Next we note that Wék) — Wékﬂ) can be written as the sum of two rank
one matrices of the form:

1
Wék) - WTEkJrl) — UWZ + Uku;; = i(w;w;* — wl;wlz*)’ Yk Z 0.

Here uy, is the (n—k)-th unit vector, vy = (b, 1, -,b1,00/2,0,---,0), with

_1
b; given by (4), and wif = uy, + v,. Hence by letting 25 = S, 2wit for k > 0,
we have

k—1
_1 _1 ~ ~ 1
Sn2BpSn> = W = Wk + 3 (2] 2" — 27 277),
7=0
= W+ -V, VE>1, (11)

k—1 . . . .
where VkjE = % i=0 zjiz]i* are positive semi-definite matrices of rank k. Let

us order the eigenvalues of W as
po <pp <o <pf <pg

By applying Cauchy Interlace Theorem to (11) and using the bound of
||WT(Lk)||2 in (10), we see that for all k& > 1, there are at most k eigenval-
ues of W, lying to the right of ¢/k', and there are at most k of them lying
to the left of —¢/k'. More precisely, we have

C

el < VO < .

VE > 1.

Using the identity

_1
2

_1 1 1 ~
Sn Ansn 2 = In + Sn 2BnSn 2= [n + WT(LO),

1 1
we see that if we order the eigenvalues of S, > A, Sy, ? as

Ay AT < <A <N,
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then A = 1+ pf for all k > 0 with

P VP Fag s

! kb — kY

Vk > 1. (12)

For A7, the bounds are obtained from (1) and (3):

fmin S )\a S )\8_ S fma ‘ (13)

Having obtained the bounds for )\f, we can now construct the polynomial
that will give us a bound for (8). Our idea is to choose P,, that annihilates
the ¢ extreme pairs of eigenvalues. Thus consider

T T

pr(r) = (1— E)(l — E)’ vk > 1.

Between those roots A, the maximum of |px(z)| is attained at the average

x = (A + Ay ), where by (12), we have

()‘];r B )‘];)2 2¢ 2 fmax 2 Efma.x ) 1

kTR < ()2 = . VE>1
N (kl) (2fmin) ( fmin ) -

max |pg(x)| =

el A ANEA, k2

Similarly, for k£ = 0, we have, by using (13),
(Ad —20)” _ (flax — fiin)”

< max min

4fr§1in

max |po(z)| = -
;pe[,\g,)\(‘)*'}| 0( )| 4)\3»)\0

Hence the polynomial Ps, = pop; - - -pg—1, which annihilates the ¢ extreme
pairs of eigenvalues, satisfies

((g =112’

for some constant ¢ that depends only on f and [. This holds for all )\f in
the inner interval between A, ; and )\;[1, where the remaining eigenvalues
are. Equation (7) now follows directly from (8) and (14). O

| Pog(2)] < (14)



4. Other Circulant Preconditioners.

The proof of Theorem 2 suggests that there are many other viable pre-
conditioners that can give us the same asymptotic convergence rate. One
example is given by the circulant matrix T,, proposed by T. Chan [6]. It is
obtained by averaging the corresponding diagonals of A, with the diagonals
of A, being extended to length n by a wrap-around. More precisely, the
entries ¢;; = t,_; of T}, are given by

1
t = ﬁ{kak—n T (TL - k)ak} 0<k<n,
bk 0<—k<mn,

where a,, is taken to be 0. He proved that such 7;, minimizes the Frobenius
norm ||7,, — A,||r over all possible circulant matrices 7,,. The entries b;; =
b,_; of T, — A, are given by

k
bk — ﬁ(ak—n - ak)) 0< k< n,
b_j 0< —k<n.
As in Theorem 2, we let WéN) to be the matrix obtained from 7, — A, by
replacing the last N rows and N columns of T,, — A,, by zero vectors. We see

that
n—N-—1

N n
k
WM <2 > |bef <2 la| +4 > laxl. (15)
k=0 k=0

k=N+1

Now let M > N be such that S o klax| < e. Then for all n > M, we

have ||[W"||, < 6¢. Hence the eigenvalues of T, — A, are clustered around
zero, except for at most 2V of them. We remark that by using results in R.
Chan [5], we can show that lim, . ||S, —T,||]2 = 0 and that the convergence
rate of S, ' A, and T, ' A, are the same for large n. In particular, both will
converge superlinearly.

As another example, let us consider the circulant matrix R, with entries
Tij = Ti—j given by

- Af—pn + Qg 0§k<n,
k F ok 0<—k<n,



where a, is again taken to be 0. The entries b;; = b;_; of R, — A, are given
by

b_{ak—n 0§k<n,

Tl by 0<—k<n.
It is easily seen that the conclusion of Theorem 2 holds for this precondi-
tioner too, cf (5) and (15). Similar to the case of T},, we can also show that
limy, 00 ||Sn — Ryll2 = 0 and that the convergence rate of S, 'A, and R, 1A,
are the same for large n, see R. Chan [5]. Numerical results in §6 indeed
show that the three preconditioners R, S, and 7T,, behave almost the same
for large n.

5. The Optimality of 5,,.

From the discussion in §§2 and 4, we know that it is interesting to obtain
the Hermitian circulant matrix C,, that minimizes the norm ||C,, — A,||; =
||Cr, — Anlloo- The minimum is attained by S,:

Theorem 4. The circulant matriz S, whose entries are given by (2) min-
imizes ||Cn, — Anlli = ||Cn — Anlleo over all possible Hermitian circulant
matrices C,,.

Proof: Let us construct the circulant matrix C,, that minimizes the absolute
column sums of C,, — A,,. Let the (7, j)-th entries of C,, be ¢;; = ¢;—;. Since
C, is Hermitian and circulant, we have ¢, = ¢,,_y for £ = 1,..., m, where
m = (n —1)/2. Hence C, is determined by {c,},. For j =0,...,n —1,
the j-th absolute column sum u; of C,, — A, is given by

n—1—j i

uj = Z |ak—ck|+2|ék—ék|. (16)
k=0 k=1

We note that u, 1 ; = u; for 0 < j < n. Hence it suffices to consider u; for
0 < j < m. The term involving ¢y in (16) is |ag — ¢o| which has its minimum
at cg = ag. For k =1,...,m, the terms involving ¢, in (16) are either of the
form

(@) ax — ekl + [ax — ex| = 2|ar — cxl,

or (b) |ar — ck| + |an_k — cack| = lar, — ci| + |Gn_r — cx|.
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In case (a), the minimum is at ¢, = ag. In case (b), the minimum occurs at
any ¢ lying on the line segment joining ay and a,_j. In particular, (a) and
(b) attain their minima at ¢, = ax. Thus C), so constructed is the same as
the S,, given by (2).

Now for any other Hermitian circulant matrix H,, the j-th absolute col-
umn sum v; of H,, — A, will satisfy u; <w;, for j =0,...,n — 1. Hence,

50 = Aully = mau; < mcv; = |[Hy = Al B

Remark: When n = 2m is even, ¢, is real since C), is both Hermitian and
circulant. The term involving ¢, in u; takes the form |a,, — ¢, | or |Gm — ¢
Since uj = uy,_1-j for j =0,---,n —1, we see that ¢, should be chosen such
that both terms are minimized, i.e,

e = %(am ). (17)

6. Numerical Results.

To test the convergence rates of the preconditioners, we have applied the
preconditioned conjugate gradient method to A,x = b with

1++/-1

ap >0
2 k=0,
a—_p k < 0.

A =

The underlying generating function f is given by

> sin( kH ) + cos (k)
=2 Z + k 1.1
k=0

Clearly f is in the Wiener class. The spectra of A,, R;'A,, S;'A, and
T, A, for n = 32 are represented in Figure 1. Table 1 shows the number
of iterations required to make |[|r,||a/||roll2 < 1077, where r, is the residual
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vector after ¢ iterations. The right hand side b is the vector of all ones and
the zero vector is our initial guess. We see that as n increases, the number of
iterations increases like O(logn) for the original matrix A,,, while it stays al-
most the same for the preconditioned matrices. Moreover, all preconditioned
systems converge at the same rate for large n.

| n | A, | RJA, | SMA | T4,

16 13 7 8 7
32 15 6 7 6
64 18 7 7 7
128 19 7 7 7
256 21 7 7 7

Table 1. Number of Iterations for Different Systems
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