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Abstract. We investigate the numerical solutions for the inverse heat prob-
lems in RN . Using discrete time and spatial sampling of the domain and
sinc expansion for approximating the initial data, the problems are reduced
to solving linear systems with block Toeplitz coefficient matrices. The gener-
ating functions for these systems are positive and in the Wiener class. Fast
Toeplitz solvers based on the preconditioned conjugate gradient methods are
implemented to solve the resulting systems.
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1 Introduction.

For simplicity, we begin with the inverse heat problem in R1. The heat
equation in R is the following parabolic equation:

∂tu(x, t) = ∂2
xu(x, t), ∀x ∈ R, t > 0 ,

with initial values given by

u(x, 0) = f(x), ∀x ∈ R.
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It is well-known that if f ∈ L2(R), then

u(x, t) =
1√
4πt

∫ ∞

−∞
exp

(
−(x− y)2

4t

)
f(y)dy, (1)

see for instance, John [14].
The inverse heat problem inR is the problem of recovering the initial data

f(y) for all y ∈ R when for some t > 0, u(x, t) is given for all x ∈ R. Using
the idea suggested in Gilliam, Martin and Lund [11], we restrict ourselves to
the following class of functions.

Definition. A function f is said to be in the class B(Sd), where

Sd = {z ∈ C : |Im(z)| < d},

if it satisfies the following three conditions:

1. f is holomorphic in Sd,

2. there exists γ ∈ (0, 1) such that for t sufficiently large,∫ d

−d
|f(t+ iy)|dy = O(tγ),

3.

N(f) ≡
∫ ∞

−∞
{|f(t+ id)|+ |f(t− id)|}dt < ∞.

For f ∈ B(Sd), the following theorem by Stenger [17] shows that they
can be approximate extremely good by the sinc expansion, where the sinc
fucntion is defined as

sinc(x) ≡ sin(πx)

πx
.

Theorem 1. If f ∈ B(Sd), then the error

ϵ(y) ≡ f(y)−
∞∑

k=−∞
f(kh) sinc

(
y − kh

h

)
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satisfies

∥ϵ∥∞ ≡ sup
y∈R

|ϵ(y)| ≤ N(f)

2πd sinh
(
πd
h

) = O

(
exp

(
−πd

h

))
.

Moreover, if there exist κ, α > 0 such that

|f(x)| ≤ κ exp(−α|x|),

for all x ∈ R, and if we put

h =

√
πd

αn

then

ϵn(y) ≡ f(y)−
n∑

k=−n

f(kh) sinc

(
y − kh

h

)
(2)

satisfies
∥ϵn(y)∥∞ = O

(
exp

(
−
√
παdn

))
.

2 The Discrete Toeplitz Systems.

For f ∈ B(Sd), we approximate f(y) in (1) by

f(y) ≈
∞∑

k=−∞
f(kh) sinc

(
y − kh

h

)
.

Then (1) becomes

u(x, t) ≈ 1√
4πt

∞∑
k=−∞

f(kh)
∫ ∞

−∞
exp

(
−(x− y)2

4t

)
sinc

(
y − kh

h

)
dy.

By letting x = xj = jh and t0 =

(
h

2π

)
, and after some simplification, see

Gilliam et. al. [11], we finally have

u(xj, t0) ≈ 1

2π

∞∑
k=−∞

f(kh)
∫ π

−π
exp

(
− τ 2

4π2

)
ei(k−j)τdτ

≡
∞∑

k=−∞
f(kh)βk−j,
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where

βℓ =
1

2π

∫ π

−π
exp

(
− τ 2

4π2

)
eiℓτdτ. (3)

We remark that βℓ are Fourier coefficients of the function

g(τ) ≡ exp

(
− τ 2

4π2

)
. (4)

For fixed n > 0, we then have the discrete system:

u(xj, t0) =
n∑

k=−n

f(kh)βk−j,

or in matrix form:
B2n+1f⃗ = u⃗. (5)

Here B2n+1 is the (2n+ 1)-by-(2n+ 1) symmetric Toeplitz matrix

B2n+1 =


β0 β1 · · · β2n

β−1 β0 · · · β2n−1
...

...
. . .

...
β−2n β−2n+1 · · · β0

 .

The vectors f⃗ and u⃗ are given by

f⃗ = (f(−nh), f(−nh+ h), · · · , f(nh− h), f(nh))t

and
u⃗ = (u(x−n, t0), · · · , u(x0, t0), · · · , u(xn, t0))

t .

Given u⃗, we can invert (5) to determine f⃗ and use it to approximate f(y)
for all y ∈ R. More precisely, we have

f(y) =
n∑

k=−n

f(kh) sinc

(
y − kh

h

)
+ ϵn(y),

for all y ∈ R, where ϵn(y) is given in (2).
The inverse heat problem has now been converted into a problem of solv-

ing the Toeplitz system (5). In the following, we will consider fast solvers for
such system.
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3 Fast Solvers for Toeplitz Systems.

Let An be a Hermitian Toeplitz matrix of order n:

An =



a0 a1 · am · an−2 an−1

ā1 a0 a1 · am · an−2

· ā1 a0 · · · ·
ām · · · · · am
· · · · · · ·

ān−2 · ām · · a0 a1
ān−1 ān−2 · ām · ā1 a0


, (6)

and we are interested in solving the system

Anf⃗ = u⃗.

The first direct Toeplitz solver for such systems was invented by Levinson
[16] in 1949. His algorithm requires O(n2) operations. Variants of his algo-
rithm, for examples, Trench [20] and Zohar [22], are still widely used today.
Around 1980, faster direct solvers were developed by Brent, Gustavson and
Yun [4], Bitmead and Anderson [3] and Ammar and Gragg [1]. These faster
solvers require only O(n log2 n) operations. We note that all these direct
solvers are not stable unless An is positive definite, see Bunch [5]. However,
in the following, we will show that Bn in (5) above is always positive definite.
Hence all these direct solvers are applicable.

Strang [18] in 1985 first proposed using iterative method such as the
conjugate gradient method for solving Toeplitz systems. He noted that the
Toeplitz matrix and vector multiplication of the form Any can be computed
in O(n log n) operations by first embedding An into a 2n-by-2n circulant
matrix and then compute the circulant matrix and vector multiplication by
the Fast Fourier Transform. The cost per iteration of the conjugate gradient
method is thus of O(n log n). It remains to estimate the convergence rate of
the method.

It is well-known that the convergence rate of the conjugate gradient
method depends on the whole spectrum of An, see for instance Golub and
van Loan [12], Axelsson and Barker [2]. In general, the more clustered the
eigenvalues are, the faster will be the convergence. In order to study the
spectrum of An, we first introduce the following definition.
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Definition. Let

g(τ) =
∞∑

k=−∞
ake

−ikτ , ∀τ ∈ [−π, π).

It is said to be a function in the Wiener class if its Fourier coefficients ak
are absolutely summable, i.e.

∞∑
k=−∞

|ak| ≤ ∞.

It is called the generating function of a Toeplitz matrix An if its Fourier
coefficients ak are the diagonals of An.

For the discrete inverse heat problem (5), its generating function is given
by g(τ) in (4). Clearly g(τ) ∈ C∞[−π, π] and is a function in the Wiener
class. Moreover,

e−0.25 ≤ g(τ) ≤ 1

for all τ ∈ [π, π). It is then easy to show that the spectrum of σ(Bn) of Bn

satisfies
σ(Bn) ⊆ [e−0.25, 1],

see for instance, Grenander and Szegö [13]. In particular, Bn are all positive
definite for all n. Using standard error analysis of the conjugate gradient
method, see Golub and van Loan [12], we can get

Theorem 2. The convergence rate of the conjugate gradient method is linear,
i.e. there exists 0 ≤ γ < 1 such that

lim
q→∞

||eq+1||
||eq||

= γ.

Here eq is the error vector at the q iteration.

It follows easily that for a given tolerance, the number of iterations re-
quired for convergence is a fixed constant independent of the size n of the
matrix Bn. Recall that the number of operations per iteration is ofO(n log n),
therefore, the total number of operations in solving the Toeplitz system is also
of O(n log n). Thus the inverse heat problem (5) can be solved in O(n log n)
operations.
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4 Superlinear Convergence Rate.

One can even reduce the number of iterations required for convergence by
using the preconditioned conjugate gradient method with some suitably cho-
sen preconditioners. Strang in [18] proposed using circulant matrix Cn as
preconditioners for solving Toeplitz systems. The main idea behind is that
C−1

n y can be computed in O(n log n) operations by Fast Fourier Transform.
Therefore the cost per iteration remains at O(n log n). However, the conver-
gence rate of the preconditioned conjugate gradient method will then depend
on the specturm of C−1

n An.
For Toeplitz matrix An given in (6), Strang defined his preconditioner as:

Sn =



a0 a1 · am · ā2 ā1
ā1 a0 a1 · am · ā2
· ā1 a0 · · · ·
ām · · · · · am
· · · · · · ·
a2 · ām · · a0 a1
a1 a2 · ām · ā1 a0


,

i.e. Sn copies only the central diagonals of An. Here for simplicity we assume
that n = 2m. The convergence rate of the preconditioned conjugate gradient
method with preconditioner Sn was analysed by R. Chan and Strang [6].

Theorem 3. Let g be the generating function of the matrices An. If g is a
positive function in the Wiener class, then the spectrum of S−1

n An clustered
around one. More precisely, we have for all ϵ > 0, there exist N,M > 0,
such that for all n > N , at most M eigenvalues of

S−1
n An − In = S−1

n (An − Sn)

have absolute value larger than ϵ.

Using standard error analysis of the conjugate gradient method, it is also
proved in R. Chan and Strang [6] that

Corollary. Let the generating function g be a positive function in the Wiener
class. Then the convergence rate of the preconditioned conjugate gradient
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method with the Strang’s preconditioner is superlinear, i.e.

lim
q→∞

||eq+1||
||eq||

= 0, (7)

where eq is the error vector at the q iteration.

Comparing this Corollary with Theorem 2, we see that the preconditioned
method converges faster than the non-preconditioned one.

It is interesting to note that if extra smoothness conditions are imposed
on g, we can get a more precise bound on the convergence rate given in
(7). Theorems 4 and 5 below are given in Trefethen [19] and R. Chan [8]
respectively.

Theorem 4. Suppose g(z) =
∑

ajz
j is analytic in a neighborhood of |z| = 1,

then there exist c and 0 ≤ r < 1 such that

||eq+1||
||eq||

≤ crq
2

.

Theorem 5. Let g be a (l + 1)-times differentiable function and

g(l+1) ∈ L1[0, 2π),

where l > 0. Then there exists c such that for large n,

||e2q+2||
||e2q||

≤ c

q2l
.

We note that the Strang’s preconditioner is not the only circulant matrix
enjoying these properties. Other circulant preconditioners have been pro-
posed, see T. Chan [10], R. Chan [8], Trytyshinkov [21] and Ku and Kuo
[15]. The superlinear convergence rate of these preconditioned systems are
proven in R. Chan [7], R. Chan [8], R. Chan, Jin and Yeung [9] and Ku and
Kuo [15] respectively. We summarize these results in the following theoerm.

Theorem 6. Let An be a Hermitian Toeplitz matrix with generating func-
tion being a positive function in the Wiener Class. Let Cn be the circulant
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preconditioner proposed by either T. Chan [10], R. Chan [8], Trytyshinkov
[21] or Ku and Kuo [15]. Then for n sufficiently large, the eigenvalues of the
preconditioned matrix C−1

n An are clustered around one. Hence the precon-
ditioned conjugate gradient method converges superlinearly. Moreover, these
preconditioned systems converge at the same rate as the Strang’s preconi-
tioned system.

In §6, we will apply the preconditioned conjugate gradient method to the
inverse heat problem with different choices of preconditioners.

5 Inverse Heat Problems in RN .

For simplicity, we consider the inverse heat problem in R2. The case in RN

for general N can be treated similarly. In R2, one can easily check that the
discrete Toeplitz system to solve is of the following form:

(Bn ⊗Bn)f⃗ = u⃗, (8)

where ⊗ is the tensor product and Bn is the discrete Toeplitz matrix in R1.
In this case we can precondition it with Cn ⊗ Cn, where Cn is one of the
circulant preconditioners discussed above. We will see in the next section
that this will be a good preconditioner.

6 Numerical Results.

In this section, we apply the Toeplitz solvers mentioned in previous sections
to the inverse heat problems (5) and (8). We begin with the one-dimensional

problems. We solve the Toeplitz system Bnf⃗ = u⃗ for different n. The right
hand side vector u⃗ is chosen to be the vector of all ones and the initial guess
for the solution f⃗ is the zero vector. Convergence is said to occur when

∥rq∥2
∥r0∥2

≤ 10−7,

where rq is the residual at the q-th iteration. The experiments were carried
out on the VAX 6420 in University of Hong Kong.
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The following tables show the number of iterations for different choices
of preconditioners. Here Rn, Sn and Tn denote the circulant preconditioners
proposed by R. Chan [8], T. Chan [10] and Strang [18] respectively and Bn

denotes no preconditioning.

n Bn R−1
n Bn S−1

n Bn T−1
n Bn

256 5 3 3 3
512 5 3 3 3
1024 5 3 3 3
2048 5 3 3 3
4096 5 3 3 3

Table 1. One-Dimensional Inverse Heat Problem.

The next table shows that time required to solve the inverse heat problem
of a given size n. The direct solver we used here was proposed by Trench [20]
and is the one currently available in the IMSL package.

n Bn T−1
n Bn Trench

512 0.260 0.250 1.119
1024 0.490 0.470 3.561
2048 1.170 1.150 14.289
4096 2.361 2.109 58.320

Table 2. Time in Seconds for Different Solvers.

Next we consider the two-dimensional discrete inverse heat problem (8).
The tolerance, the right hand side vector and the initial guess are the same
as in one-dimensional case.

n N = n2 BN R−1
N BN S−1

N BN T−1
N BN

32 1024 6 4 4 4
64 4096 6 4 4 4
128 16384 6 4 4 4
256 65536 6 4 4 4

Table 3. Two-Dimensional Inverse Heat Problem.

10



n N = n2 BN T−1
N BN Trench

32 1024 1.031 0.699 0.648
64 4096 3.010 2.529 2.320
128 16384 13.52 11.95 14.20
256 65536 67.56 47.92 107.15

Table 4. Time in Seconds for Different Solvers.
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