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In this paper� we propose a method to generalize Strang
s circulant preconditioner for arbitrary
n�by�n matrices An� The

�
n
�

�
th column of our circulant preconditioner Sn is equal to the

�
n
�

�
th

column of the given matrix An� Thus if An is a square Toeplitz matrix� then Sn is just the Strang
circulant preconditioner� When Sn is not Hermitian� our circulant preconditioner can be de�ned
as �S�nSn�

���� This construction is similar to the forward�backward projection method used in
constructing preconditioners for tomographic inversion problems in medical imaging� We show
that if the matrix An has decaying coe
cients away from the main diagonal� then �S�nSn�

���

is a good preconditioner for An� Comparisons of our preconditioner with other circulant�based
preconditioners are carried out for some ��D Toeplitz least squares problems� min kb � Axk��
Preliminary numerical results show that our preconditioner performs quite well� in comparison to
other circulant preconditioners� Promising test results are also reported for a ��D deconvolution
problem arising in ground�based atmospheric imaging�
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�� Introduction

An n�by�n matrix An is called a Toeplitz matrix if its entries are constant along
each diagonal� i�e�

An � �aj�k���j�k�n�� � �aj�k ���j�k�n���

In 	
��� Strang ���� addressed the question of whether iterative methods can com�
pete with direct methods for solving symmetric positive de
nite Toeplitz systems
of linear equations� The answer has turned out to be an unquali
ed yes� Strang pro�
posed the use of circulant matrices to precondition Toeplitz matrices in conjugate
gradient iterations� Strang�s circulant preconditioner Sn is de
ned to be the matrix
that copies the central diagonals of An and re�ects them around to complete the
circulant� More precisely� the entries in the 
rst column of Sn are given by

�Sn�k�� �

�
ak� � � k �

�
n
�

�
�

an�k�
�
n
�

�
� k � n�

�	�	�

�Here
�
n
�

�
denotes the largest integer m � n

� ��
The reason why this approach is competitive with direct methods is clear� The

use of circulant matrices as preconditioners for Toeplitz problems allows to use
the fast Fourier transforms �FFTs� throughout the computations� and these FFT�
based iterations are not only numerically e�cient� but also highly parallelizable� The
convergence rate of the method has been analyzed by Chan and Strang ���� They
proved that if the diagonals of the Toeplitz matrix are Fourier coe�cients fajg

�
j���

of a positive function in Wiener class �i�e� fajg
�
j��� is absolutely summable�� then

the spectrum of the circulant preconditioned system S��n An is clustered around 	
and the preconditioned conjugate gradient method converges superlinearly� More
precisely� for any given � � �� there exists a constant C��� � � such that the error
vector eq at the qth iteration satis
es

jjjeq jjj � C����qjjje�jjj� �	���

where
jjjxjjj � x�S����n AnS

����
n x� �	���

see Chan and Strang ���� It follows that the preconditioned iterations converge very
fast�
Besides Strang�s initial circulant preconditioner� several other successful circulant

preconditioners have been proposed and analyzed� see� e�g� T� Chan �
�� Huckle �	���
Ku and Kuo �	��� and Tyrtyshnikov ����� In these papers� it has been shown that un�
der the same assumptions on the Toeplitz matrices� these circulant preconditioned
systems also converge superlinearly� Among these preconditioners� we remark that
the T� Chan�s circulant preconditioner is de
ned for general square matrices� not
necessarily of Toeplitz form� Given any general n�by�n matrix An� it is de
ned to
be the minimizer of kQn �AkF over all n�by�n circulant matrices Qn� �Here k � kF
denotes the Frobenius norm�� Most circulant preconditioners including Strang�s�
are not de
ned for arbitrary matrices� Therefore� T� Chan�s preconditioner is par�
ticularly useful in solving non�Toeplitz systems arising from the numerical solution
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of elliptic partial di�erential equations ��� and Toeplitz least squares problems aris�
ing from signal and image processing �����	���	�� Convergence results for T� Chan�s
preconditioner have also been established for these problems�
In this paper� we propose a method to generalize the construction of Strang�s

circulant preconditioner to arbitrary n�by�n matrices An and to employ this new
circulant approximation in deconvolution applications in signal and image process�
ing� The idea of constructing such a preconditioner is simple� Given An� the

�
n
�

�
th

column of our circulant preconditioner Sn is equal to the
�
n
�

�
th column of An� Thus

if An is a square Toeplitz matrix� then Sn is just the Strang circulant precondi�
tioner� When Sn is not Hermitian� our circulant preconditioner can be de
ned as
�S�nSn�

���� For matrices of low displacement rank� there exists another generaliza�
tion of Strang�s preconditioner� see Freund and Huckle �	���
It turns out that the idea of constructing an approximation by selecting the

central column of a given matrix has been considered in tomographic inversion
problems in image processing and has been referred to as the forward�backward
projection method �		�� The approximation matrix is used as a preconditioner to
speed up the convergence of the steepest descent method� One of the purposes of
this paper is to analyze the convergence properties of this approximating matrix
when used as a preconditioner in the preconditioned conjugate gradient method�
We show that if the matrix An has decaying coe�cients away from the main di�
agonal� then the circulant approximating matrix is a good preconditioner for An

and hence we expect fast convergence when applying the preconditioned conjugate
gradient method to solve these problems� Numerical tests are given to illustrate
fast convergence�
The outline of the paper is as follows� In x�� we de
ne our generalized Strang pre�

conditioner and discuss it in relation to the forward�backward projection method
�		�� We also mention some of the standard results on circulant preconditioned
Toeplitz systems� In x�� we study some applications of our generalized Strang cir�
culant preconditioner to Toeplitz least squares problems and deconvolution prob�
lems� and analyze the convergence rate of the preconditioned systems for these
applications� In x�� some numerical results are reported� including comparisons
with the block�based and displacement�based preconditioning schemes suggested in
������ Test results are also reported for a ��D Toeplitz least squares deconvolution
problem arising from ground�based atmospheric imaging� which is also considered
in �	
���� using an inverse Toeplitz preconditioner�

�� Generalized Strang Preconditioner

In the convergence analysis of circulant preconditioned conjugate iterations for
Toeplitz systems� one often considers Toeplitz matrices An that are generated by a

xed function� More precisely� we assume that there is a function f given by

f��� �

�X
k���

ake
�ik� � �� � ��� ���

such that the n�by�n Toeplitz matrices An under consideration have their diagonals
given by fajg

n��
j��n��� The eigenvalues in the spectrum of An are closely related to
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the functional values of its generating function f � as indicated in the following
theorem�

Lemma ���� �Grenander and Szeg�o ����	 Let f��� � L���� ��� be real�valued
and the generating function of the sequence of square Toeplitz matrices An� Then
the spectra of An are uniformly bounded in the interval �finf � fsup� where finf and
fsup are the essential in�mum and supremum of f��� respectively�

Given a Toeplitz matrix An with diagonals fajg
n��
j��n��� its Strang circulant pre�

conditioner Sn is de
ned as in �	�	�� We note that the spectrum of Sn is also closely
related to f � In fact� we have

	k�Sn� �
X

jjj�bn��c

aje
��ijk�n� � � k � n� 	� �����

see for instance Chan and Yeung ���� For a general non�Toeplitz matrix An � �aj�k��
we de
ne its generalized Strang circulant preconditioner Sn as

�Sn�k�bn
�
c � ak�bn

�
c� � � k � n� 	�

i�e�� the bn� cth column of Sn is given by the bn� cth column of An� Note that if An is
Toeplitz� then this de
nition coincides with that in �	�	�� In general Sn constructed
from this scheme will not be Hermitian even if An is Hermitian� In this case� we
de
ne the generalized Strang preconditioner as �S�nSn�

����
We remark that our idea of constructing the generalized Strang circulant precon�

ditioner is the same as the forward�backward projection method discussed in �		�
for image reconstruction� That method tries to estimate the point spread function
involving a given� but not necessarily Toeplitz� matrix An by forward projecting
and backprojecting a one�pixel point source located at the center of the 
eld�of�
view� In matrix terms� the approximate point spread function is just equal to the�
n
�

�
th column of An� The circulant matrix thus obtained was used in �		� as a

preconditioner in the steepest descent method to speed up the convergence rate� In
this paper� we analyze and apply this circulant matrix as a preconditioner for the
conjugate gradient method�


� Applications and Convergence Analysis

In this section� we study the convergence of our preconditioner for general decon�
volution problems and Toeplitz least squares problems� For such problems� one seeks
the solution of a least squares problem

min
x

kb�Axk�� �����

in which A is either a rectangular column circulant matrix or a rectangular Toeplitz
matrix� These Toeplitz least squares problems occur in a variety of applications es�
pecially in signal processing �	���	� and image processing for the ��D block Toeplitz
case ���	��	��	
��
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���� Deconvolution Problems

We start with the 	�dimensional deconvolution problem� Consider the convolution
of a 	�dimensional discrete signal x of length n with a convolution vector h of the
form

h � �h�m��� h�m��� � � � � h�� � � � � hm��� hm���
T �

The resulting vector b is of length �m� n� �� and the convolution operation can
be expressed in matrix notation as b � Hm�nx� where Hm�n is a column circulant
matrix of the form

Hm�n �

�
BBBBBBBBBBBBBBBBBBBBB�

h�m�� �
h�m�� h�m��

���
� � �

� � �

h�
� � � h�m��

���
� � �

���

hm��
� � �

hm��
� � � h�

hm��
� � �

� � �
���

� hm��

�
CCCCCCCCCCCCCCCCCCCCCA

� �����

In applications such as signal restoration� the observed signal b and the discrete
point spread function h �essentially any column of Hm�n� are known� or can be
estimated� The aim is to compute x� This is known as discrete deconvolution� Con�
tinuous deconvolution can be modeled as an integral equation of the 
rst kind �an
ill�posed inverse problem �	���� It is well�known that deconvolution algorithms can
be extremely sensitive to noise �	��	��� Since any realistic signal processing problem
involves noise� there is a need to incorporate some form of regularization to stabilize
the computations� The Tikhonov regularization is probably the best known method
for regularizing ill�posed problems �	��� In matrix terms� Tikhonov regularization
often amounts to solving the least squares problem

min

����
�

b
�

	
�

�
Hm�n


In

	
x

����
�

� �����

where 
 is the regularization parameter that depends on the noise level and In is
the identity matrix� The solution x of ����� can be obtained by solving the normal
equations

�
�In �H�
m�nHm�n�x � H�

m�nb� �����

We employ the preconditioned conjugate gradient method with generalized Strang
circulant preconditioner de
ned in x� to solve the normal equations ������ and study
the convergence rate of the method� Since Hm�n is a column circulant matrix�
the normal equations matrix 
�In � H�

m�nHm�n is a Toeplitz matrix� Hence its
generalized Strang preconditioner Sn is the same as the Strang preconditioner�
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To consider convergence of our general scheme� we assume that the sequence
fhjg

�
j��� is absolutely summable� i�e�

�X
j���

jhj j �M ��� ���
�

Associate with the sequence fhjg
�
j��� the function g de
ned by

g��� �

�X
j���

hje
�ij�� �� � ��� ����

Note that g is a function in the Wiener class � Hence gg is also a function in the
Wiener class and is given by

gg��� � jg���j� �

�X
j���

tje
�ij��

where

tj �

�X
k���

hkhk�j � j � �� 	� �� � � � � ���	��

Here tj � t�j � Let us denote the n�by�n Toeplitz matrix generated by gg by Tn
�i�e� Tn has diagonals ftjg

n��
j��n���� and the corresponding Strang preconditioner

of 
�In � Tn by Wn� Since the generating function of 
�In � Tn is 
� � jg���j�

which is positive and in the Wiener class� we can state a clustering results for the
preconditioner Wn�

Lemma 
��� �Chan ��� Corollary ��	 For any given � � �� there exist positive
integers N� and N�� such that for all n � N�� one can write 
�In � Tn �Wn �
Rn � Ln� with jjRnjj� � � and rank Ln � N�� Moreover� the smallest eigenvalue
of Wn is uniformly bounded away from zero� In particular� the spectrum of the
preconditioned matrix W��

n �
�In � Tn� is clustered around ��

Now we are going to establish the same result for Sn� when it is used to precon�
dition 
�In � H�

m�nHm�n� We note by direct veri
cation that the diagonals dj of
H�
m�nHm�n are given by

dj �

m���jX
k��m��

hkhk�j � � � j � n� 	 ���		�

with d�j � dj � Thus a generating function of H�
m�nHm�n is given by

�Dm � g��Dm � g��

where Dm � g is the convolution of g with the Dirichlet kernel� i�e�

�Dm � g���� �

Z ��

�

g���Dm�� � ��d� �

m��X
k��m��

hke
�ik�� ���	��
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with

Dm��� �
sin�m� �

� ��

sin� ����
�

Note that if hm � � for jmj � 
� i�e� Hm�n has a 
xed band�width 
� then by
���	��� Dm � g � g for all m � 
� Hence for all m � 
� H�

m�nHm�n � Tn and
Sn � Wn� We are now going to show that when the sequence fhjg

�
j��� does

not have a 
xed band�width� but is absolutely summable� then H�
m�nHm�n and its

generalized Strang preconditioner Sn are close to Tn and Wn� respectively� in the
��norm�

Lemma 
��� Let the sequence fhjg
�
j��� be absolutely summable� Then for m � n�

lim
n��

jjH�
m�nHm�n � Tnjj� � ��

Proof Note that by Lemma ��	�� for m � n�

jjH�
m�nHm�n � Tnjj� � jj�Dm � g��Dm � g�� ggjj�

� jj�Dm � g���Dm � g�� g� � �Dm � g � g�gjj�

� jj�Dm � g���Dn � g�� g� � �Dn � g � g�gjj��

Since g is in the Wiener class� Dn � g converges to g uniformly� Hence the last term
in the above equality will tend to � as n tends to in
nity�

Lemma 
�
� Let the sequence fhjg
�
j��� be absolutely summable� Then for m � n�

lim
n��

jjWn � Snjj� � ��

Proof Since Sn and Wn are both Strang circulant preconditioners� their eigenval�
ues are given by

	k�Sn� �
X

jjj�bn��c

dje
��ijk�n and 	k�Wn� �

X
jjj�bn��c

tje
��ijk�n� � � k � n�	�

see ������ Therefore

jjSn �Wnjj� � max
k








X

jjj�bn��c

�dj � tj�e
��ijk�n







 �
X

jjj�bn��c

jdj � tj j�

However� by ���	�� and ���		�� we have

jjSn �Wnjj� �
X

jjj�bn��c

� X
k��m

jhkhk�j j�
X
k�m

jhkhk�j j

�

�
X
jkj�m

jhkj
�X

j���

jhj j

� M
X
jkj�n

jhkj

where the last inequality follows from ���
�� As fhkg
�
k��� is absolutely summable�

the last summation tends to � as n tends to in
nity�
Combining Lemmas ��	� to ����� we have the following theorem�
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Theorem 
��� Let the sequence fhjg
�
j��� be absolutely summable� Then for any

given � � �� there exist positive integers N� and N�� such that for all m � n � N��
at most N� eigenvalues of the matrix S��n �
�In � H�

m�nHm�n� � In have absolute
values larger than ��

Proof We note that


�In �H�
m�nHm�n � Sn � f�
�In � Tn��Wng� fH�

m�nHm�n � Tng� fWn � Sng�

By Lemmas ��	� to ����� we see that 
�In�H
�
m�nHm�n�Sn can be written as the sum

of a low rank matrix and a matrix of small norm for n su�ciently large� Moreover�
since the smallest eigenvalue of Wn is also uniformly bounded away from zero and
limn�� jjSn �Wnjj� � �� the smallest eigenvalue of Sn is also uniformly bounded
away from zero for su�ciently large n� Thus we see that S��n �
�In�H

�
m�nHm�n��In

can also be written as the sum of a low rank matrix and a matrix of small norm
for n su�ciently large�
It follows from Theorem ��	� that the conjugate gradient method� when applied

to the preconditioned system S��n �
�In �H�
m�nHm�n�� converges superlinearly �see

Chan and Strang �����
In practical applications such as signal restoration� the most signi
cant informa�

tion of regarding the discrete point spread function is often con
ned to values in
the convolution vector h near h� �	��� Moreover� the magnitudes of the hjkj decrease
signi
cantly as k increases� Figure 	 shows a particular example of a 	�dimensional
discrete point spread function in signal restoration with a Gaussian form �	��� When
the rate of decrease of hjkj is known� we can get a more precise bound on the con�
vergence rate of our method than �	��� in terms of the rate of decay of the numbers
hjkj�

Theorem 
��� If

jhjkjj �
C

jkj���
� k � ��		�	�� � � � � ���	��

for some constants � � � and C� then for su�ciently large n� then the error vector
eq at the qth iteration in exact arithmetic satis�es

jjjeq jjj �
�Cq

��q � 	�����
jjje�jjj�

where �C is a constant depending on fhkg
�
j��� and � only and jjj � jjj is de�ned in

	���
�

Proof By ���	��� the function g associated with fhjg
�
j��� is a ���	��times di�er�

entiable function� It implies that gg is also a �� � 	��times di�erentiable function�
It follows that the rate of decrease of wjjj in ���	�� is given by

jwjjjj �
�C

jjj���
� j � ��		�	�� � � � �

The remaining part of the proof is similar to that in Theorem � of Chan ��� and
therefore is omitted�
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Figure �� Example of a discrete ��D Gaussian blur point spread function h

Next we consider ��dimensional deconvolution problems� In this case� one is still
concerned with solving a least squares problem as in ������ Here� the matrix A is a
block column circulant matrix with column circulant blocks� More precisely�

A �

�
BBBBBBBBBBBBBBBBBBBBBB�

A��m��� �

A��m��� A��m���

���
� � �

� � �

A��� � � � A��m���

���
� � �

���

A�m��� � � �

A�m��� � � � A���

A�m��� � � �

� � �
���

� A�m���

�
CCCCCCCCCCCCCCCCCCCCCCA

���	��

with each subblock A�j� being a �m�n� ��by�n matrix of the form given by ������
We note that A�A will be a n�block�by n�block block Toeplitz matrix with n�by�n
Toeplitz blocks� The ��dimensional deconvolution problem has n� unknowns since
A has n� columns�
The generalized Strang circulant preconditioner S for A�A is related to the level�

� Strang circulant preconditioner proposed by T� Chan and Olkin �	��� For block
Toeplitz matrices with Toeplitz blocks that are generated by a 
xed generating
function� the convergence rate of the method has been discussed in ��� Theorem
��� Here however� in contrast to the 	�D case� the block Toeplitz matrices with
Toeplitz blocks A�A do not have a 
xed generating function � their diagonals vary
with n� However� if we assume that the diagonals of A are absolutely summable�
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i�e�� jjAjj� � M � �� then the same arguments used in 	�D case can also give us
the same convergence result �cf� ��� Theorem ����

Theorem 
�
� Consider the ��D deconvolution problem with n� unknowns� For
A given in 	����
� suppose jjAjj� � M � �� Then for any given � � �� there
exists a positive integer N � such that for all n � N � at most O�n� eigenvalues of
S���
�I �A�A�� I have absolute values larger than ��

We note that the ground�based atmospheric imaging problem considered in x�
satis
es the conditions of Theorem �����

���� Toeplitz Least Squares Problems

For simplicity� we 
rst consider pre�windowed Toeplitz least squares problems �	���
The general Toeplitz least squares problems will be discussed later� For pre�windowed
Toeplitz least squares problems� the Toeplitz matrices Am�n are given by

Am�n �

�
BBBBBBBBBBBB�

a� � � � � �

a� a�
� � �

���
���

� � � �
am�n � � � � � � a�

���
� � �

���
���

� � �
� � �

���
am�� � � � � � � am�n

�
CCCCCCCCCCCCA

with m � n and full column rank n� The solution of these least squares problem
kb�Am�nxk� can be found by solving the normal equations

A�m�nAm�nx � Am�nb�

Since Am�n is not column circulant� the normal equations matrix A�m�nAm�n is

non�Toeplitz� We employ the generalized Strang preconditioner �S�nSn�
��� for the

normal equations matrix and solve the preconditioned systems

�S�nSn�
����A�m�nAm�nx � �S�nSn�

����Am�nb�

Here Sn is a circulant matrix with its bn� cth column given by A�m�nAm�nebn
�
c�

Since Am�n is lower�triangular� we can write

A�m�nAm�n � B�m�nBm�n � U�nUn� ���	��

where Un is the n�by�n upper triangular Toeplitz matrix with its 
rst row given by

��� am��� am��� � � � � am�n���

and Bm�n is the �m� n��by�n column circulant matrix obtained by stacking Am�n

on top of Un� By ���	��� we see that Sn is the di�erence of two circulant matrices�

Sn � S���
n � S���

n ���	��

	
������	 	���� PAGE PROOFS gstrang



Generalization of Strang
s Preconditioner with Applications to Toeplitz Least Squares Problems 		

where the bn� cth columns of S
���
n and S

���
n are given by

B�m�nBm�nebn
�
c and U�nUnebn

�
c

respectively� We note that S
���
n is Hermitian and S

���
n is in general not�

Since Bm�n is column circulant� we can use the results in x��	 to study the ap�

proximation properties of S
���
n � For this� we associate the �j� k�th entries aj�k of

Am�n with the function

f��� �

�X
k��

ake
�ik�

de
ned on ��� ���� We will assume that f is a function in the Wiener class �i�e� the
sequence fakg

�
k�� is absolutely summable� and has no zero on ��� ���� Then using

arguments similar to that used in Lemmas ����� ���� and Theorem ��	�� we have the
following Lemma�

Lemma 
��� Let f be in the Wiener class� Then for any given � � �� there ex�
ist positive integers N� and N�� such that for all m � n � N�� one can write

B�m�nBm�n � S
���
n � Rn � Ln� with jjRnjj� � � and rank Ln � N�� If moreover f

has no zeros on ��� ���� then the spectra of S
���
n and of its inverse are uniformly

bounded for all large n�

Thus for large n� B�m�nBm�n � S
���
n is the sum of a small norm matrix and a low

rank matrix� Next we show that Un is a sum of a low rank matrix and small norm
matrix and S

���
n is also small norm matrix for large n�

Lemma 
��� Let f be in the Wiener class� Then for any given � � �� there exists
integer N� � �� such that for n � N��

U�nUn � Rn � Ln�

with jjRnjj� � � and rank Ln � �N�� Moreover� we have

lim
n��

kS���
n k� � ��

Proof Since fakg
�
k�� is absolutely summable� we have

�X
j��

jaj j �M ���

and also for any given � � �� there exists a positive integer N� such that

�X
k�N�

jakj �
�

M
�

For n � N�� we partition Un as �Ln � �Rn� where the 
rst �n �N�� columns of �Ln
are zero vectors and the last N� columns of �Ln are given by the last N� columns
of Un� Clearly �Ln is matrix of rank N� and

k �Rnk� �
m��X

j�m�n���N�

jaj j �
m��X

j�N���

jaj j �
�

M
�
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Thus
U�nUn � ��Ln � �Rn�

���Ln � �Rn� � Ln �Rn�

where
rank Ln � rank ��L�n

�Rn � �R�n
�Ln � �L�n

�Ln� � �N�

and
kRnk� � k �R�n

�Rnk� �
�

M
�

Similarly� for n � �N�� we get

kS���
n k�� � kS���

n k�kS
���
n k�

� kU�nUnen� k
�
�

� kUnk
�
�kUnen� k

�
�

� M

�
� m��X
k�m�bn

�
c��

jakj

�
A

�

� ���

Using the above two lemmas� we can show that �S�nSn�
��� is close to S

���
n �

Lemma 
�
� Let f be a function in the Wiener class with no zeros on ��� ����
Then

lim
n��

k�S�nSn�
��� � S���

n k� � ��

In particular� the spectra of �S�nSn�
��� and of its inverse are uniformly bounded�

Proof We 
rst note that Sn� S
���
n � S

���
n and �S�nSn�

��� are all circulant matrices
and hence can be diagonalized by the same Fourier matrix� For simplicity� let us

denote their eigenvalues by 	k � 	
���
k � 	

���
k and �	k respectively� By ���	��� 	k can be

expressed as

	k � 	
���
k � 	

���
k � � � k � n� 	�

Hence
�	�k � �	

���
k �� � 	�k	k � �	

���
k �� � j	

���
k j� � �	

���
k Re�	

���
k �

where Re��� denotes the real part of a complex number� By Lemmas ���� and �����

we know that as n tends to in
nity� 	
���
k are uniformly bounded while j	

���
k j will

tend to zero uniformly� In particular� we have

lim
n��

max
��k�n��

j�	�k � �	
���
k ��j � lim

n��
max

��k�n��




j	���k j� � �	
���
k Re�	

���
k �



 � ��

Since 	
���
k are uniformly bounded� this implies that �	k are also uniformly bounded

and hence
lim
n��

max
��k�n��

j�	k � 	
���
k j � ��

Combining the last three lemmas� we can easily prove that the preconditioned
matrices have clustered spectra�
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Theorem 
��� Let f be a function in the Wiener class and has no zeros on ��� ����
Then for any given � � �� there exist positive integers N� and N� such that for all
n � N�� at most N� eigenvalues of �S

�
nSn�

����A�m�nAm�n have absolute values larger
than ��

Proof We note that

�S�nSn�
��� �A�m�nAm�n � f�S�nSn�

��� � S���
n g� fS���

n �B�m�nBm�ng� U�nUn�

Combining the results in Lemmas ����� ���� and ����� we thus see that �S�nSn�
��� �

A�m�nAm�n can be written in a sum of a small norm matrix and a low rank matrix�

The result now follows by noting that �S�nSn�
���� is uniformly invertible and

�S�nSn�
����A�m�nAm�n � In � �S�nSn�

����fA�m�nAm�n � �S�nSn�
���g�

From Theorem ���� we have the desired clustering result� It can also be shown�
in a manner similar to the derivation in x� of ���� that if the condition number of
Am�n is of O�n	�� � � �� then the conjugate gradient method converges in at most
O�� logn � 	� steps� Since each iteration requires O�m logn� operations using the
FFT� it follows that the total complexity of the algorithm is only O��m log� n �
m logn�� When � � �� i�e�� ��Am�n� � O�	�� the number of iterations required for
convergence is of O�	�� Hence the complexity of the algorithm reduces toO�m log n��
for su�ciently large n� In contrast� the method converges just linearly for the non�
preconditioned case� as is illustrated by numerical examples in the next section�
Finally we consider the general Toeplitz least squares problems� In this case� the

rectangular Toeplitz matrices Am�n are given by

Am�n �

�
BBBBBBBBBBBB�

a� a�� � � � a�n��

a� a�
� � �

���
���

� � � a��
am�n � � � � � � a�

���
� � �

���
���

� � �
� � �

���
am�� � � � � � � am�n

�
CCCCCCCCCCCCA
�

We remark that in the pre�windowed case the entries �Am�n�j�k for j � k are assumed
to be zero� Similar to ���	��� we have

A�m�nAm�n � B�m�nBm�n � U�nUn � V �n Vn�

where Vn is the n�by�n lower triangular Toeplitz matrix with its 
rst column given
by

��� a�n��� a�n��� � � � � a���
T �

and Bm�n is the �m� �n��by�n column circulant matrix given by

Bm�n �

�
� Vn

Am�n

Un

�
A �
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Thus instead of ���	��� we have

Sn � S���
n � S���

n � S���
n

where the bn� cth columns of S
���
n � S

���
n and S

���
n are given by

B�m�nBm�nebn
�
c� U�nUnebn

�
c and V �n Vnebn

�
c

respectively� In order to prove convergence� we assume similar to the pre�windowed
case that the function

f��� �

�X
k���

ake
�ik�

de
ned on ��� ��� is in the Wiener class and has no zero on ��� ���� Then by using
similar arguments as in Lemma ����� we can prove that for su�ciently large n� V �n Vn

is a sum of a low rank matrix and a small norm matrix� and that kS
���
n k� is small�

Therefore� the conclusion of Lemma ���� still holds and hence the preconditioned
matrices �S�nSn�

����A�m�nAm�n will still have clustered spectra around 	� Accord�
ingly� the preconditioned conjugate gradient method with the generalized Strang
preconditioner will also be an e�cient algorithm for solving Toeplitz least squares
equations�

�� Numerical Results

In this section the e�ectiveness of our preconditioner is illustrated by some nu�
merical examples� For each of the 	�D examples we use the vector of all ones as
the right hand side and the zero vector as the initial guess� The stopping crite�
ria is jju�j�jj��jju

���jj� � 	��	� where u�j� is the normal equations residual after j
iterations� We conclude with a ��D problem arising in ground�base astronomical
imaging� All computations were performed using Matlab� In the 
rst two test ex�
amples� we consider column circulant matrices Hm�n as in ����� with entries given
by fhkg

�
k��� that satisfy the conditions of Theorem ��	�� We note that in Example

�� the bandwidth of the column circulant matrices is set to ���

Example �� hk � 	��k � 	�
� k � ��		�	�� � � � �
Example �� hk � 	��k � 	�
� k � ��		�	�� � � �	 �	�

In Table 	� we present the number of iterations needed for convergence when
using the preconditioned conjugate gradient method with no preconditioner� our
generalized Strang preconditioner� the displacement preconditioner as de
ned in
���� and the preconditioner based on partitioning rectangular Toeplitz matrices as
de
ned in ���� We denote these by  no!�  gens!�  disp! and  part! respectively�
Next� in Examples ���� we consider matrices Am�n that are not column circulant

but Toeplitz� Hence the normal equations matrices are not Toeplitz� and therefore
the original Strang preconditioner is not de
ned� Here we will use the generalized
Strang preconditioner and compare it with the other circulant preconditioners� We
denote the entries of the 
rst columns and the 
rst rows of the matrices Am�n by
c��� and r��� respectively� We remark that the matrices in Examples � and � are pre�
windowed Toeplitz matrices while the matrices in Example � are general Toeplitz
matrices� The convergence results are listed in Tables � and ��
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Table �� Numbers of iterations for Examples � and � when m � n

Example � � � � � � ���
n no gens disp part no gens disp part
�� � 	 	 	 �
 � 	 �
�� �� 
 	 	 �� � 	 	
�	 �� 
 	 	 �� � 	 	
��� �
 
 	 	 
� 	 	 	
�	� �� 	 	 	 	� 	 	 	

Example � � � � � � ���
n no gens disp part no gens disp part
�	 �� 	 	 	 �� � � �
��� �
 	 	 	 
� � � �
�	� �� 	 	 	 	� � � �

Table �� Numbers of iterations for Examples �� 
 and 	 when m � n�

Example � Example � Example �

n no gens disp part no gens disp part no gens disp part
�� �	 � � � �� � � � �
 � �
 �
�� �� � � � �� � � � �� � �
 �

�	 �
 � � � �� � � � 	� � �� �
��� �� � � � �	 � � � �� � � �
�	� �� � � � �
 � � � �
� � � �

Example 
�
c�k� � e����k

�

� k � 	� � � � �m
r�	� � c�	��
r�k� � �� k � �� � � � � n�

Example ��
c�k� � 	�k���� k � 	� � � � �m
r�	� � c�	��
r�k� � �� k � �� � � � � n�

Example ��
c�k� � e����k

�

� k � 	� � � � �m

r�k� � e����k
�

� k � 	� � � � � n�

From Tables 	� � and �� we observe that the number of iterations needed for con�
vergence for the preconditioned systems is essentially independent of the sizes of the
matrices� These numerical results illustrate that the generalized Strang circulant

Table �� Numbers of iterations for Examples �� 
 and 	 when m � �n�

Example � Example � Example �

n no gens disp part no gens disp part no gens disp part
�� � 
 � 	 �� � � � �
 �� �� ��
�� �	 
 � 	 �� � � � 
� � �� ��
�	 �� 
 	 	 �� � � � �	 � �
 �

��� �
 
 	 	 �	 � � � ��� � �� �
�	� �� 
 	 
 �
 � � � ��� � �
 �
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preconditioner can signi
cantly reduce the number of iterations needed for conver�
gence� The performance of all three circulant preconditioners is similar for these
	�D problems� We stress� however� that the generalized Strang circulant precondi�
tioner can be de
ned for more general matrices such as the non�Toeplitz normal
equation matrices arising from Toeplitz least square problems�
Finally we consider a ��dimensional deconvolution problem arising in ground�

based atmospheric imaging� We use the preconditioned conjugate gradient algo�
rithm with the generalized Strang circulant preconditioner to remove the blurring
in an image resulting from the e�ects of atmospheric turbulence� The problem con�
sists of a ����by���� image of an ocean reconnaissance satellite observed by a sim�
ulated ground�based imaging system together with a ����by���� image of a guide
star observed under similar circumstances �see Figure ��� The data are provided by
the Phillips Air Force Laboratory at Kirkland AFB� NM �	�� The imaging system
detects the atmospheric distortions using a natural guide star image� A wavefront
sensor measures the optical distortions which can then be digitized into a blurred
image of the guide star pixel� To form the discrete point spread function h� the rows
of the blurred pixel image are stacked into a column vector� Then the point spread
function matrix A is given in block form as in ���	�� with h as its 
rst column�
Moreover A satis
es the conditions of Theorem ����� since the guide star for the
atmospheric imaging problem yields a Gaussian point spread function �����
In Figures � and �� we present restorations without and with using the general�

ized Strang preconditioner described in x�� The regularization parameter 
 in both
cases is chosen to be ���	� From the 
gures� we observe that when no precondi�
tioner is used� an acceptable restoration is achieved after �� iterations� Essentially�
the same restoration is achieved in � iterations when preconditioning is used� We
remark that the cost per iteration using Strang�s preconditioner is less than that
using the preconditioner proposed in ����� This is because we use circulant based
preconditioning� whereas an inverse Toeplitz based preconditioner is used in �����
which doubles the dimension of the problem being solved� In particular roughly
���	
 	�
 �oating point operations per iteration are used for our circulant based
deconvolution� while roughly ��
�
	�
 per iteration are necessary using the method
in ����� The count for no preconditioning is ����
 	�
�
For comparison� we also used T� Chan�s circulant preconditioner �
� to test the

restoration of the above atmospheric image� We report that about the same restora�
tion is achieved in � iterations when T� Chan�s circulant preconditioner is used� This
is twice the number of iterations required using our generalized Strang precondi�
tioner� and both schemes require the same number of operations per iteration�
Figure � shows the ��norm of the normal equations residuals of these precondi�
tioned conjugate gradient methods� We observe that the decrease of residuals when
Strang�s preconditioning is used is faster than that when T� Chan�s preconditioning
is used�
In summary� these preliminary experiments suggest that the preconditioned con�

jugate gradient algorithm with the generalized Strang circulant preconditioner may
be an e�cient and e�ective method for deconvolution problems�
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Figure �� Observed Image �left� and guide star image �right��
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�a� �b�

�c�

Figure �� Restored images with no preconditioning� �a� � iterations� �b� �	 iterations
and �c� �
 iterations respectively�
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�a� �b�

�c�

Figure 
� Restored images using the generalized Strang preconditioner� �a� � iteration�
�b� � iterations and �c� using T� Chan�s preconditioner� � iterations�
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Figure 	� Normal equations residuals for using Strang�s� T� Chan�s and without using
preconditioners�
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