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2 R. Chan, M. Ng and R. Plemmons

1. Introduction

An n-by-n matrix A, is called a Toeplitz matrix if its entries are constant along
each diagonal, i.e.

Ap =lajrlo<jk<n—1 = [aj-klo<jk<n—1-

In 1986, Strang [22] addressed the question of whether iterative methods can com-
pete with direct methods for solving symmetric positive definite Toeplitz systems
of linear equations. The answer has turned out to be an unqualified yes. Strang pro-
posed the use of circulant matrices to precondition Toeplitz matrices in conjugate
gradient iterations. Strang’s circulant preconditioner S, is defined to be the matrix
that copies the central diagonals of A,, and reflects them around to complete the
circulant. More precisely, the entries in the first column of S;, are given by

_ Qp, 0 S k S LQJ )
[Sn]k,o - { Un ks L%J <k <2n‘ (1.1)

(Here | %] denotes the largest integer m < £.)

The reason why this approach is competitive with direct methods is clear. The
use of circulant matrices as preconditioners for Toeplitz problems allows to use
the fast Fourier transforms (FFTs) throughout the computations, and these FFT—
based iterations are not only numerically efficient, but also highly parallelizable. The
convergence rate of the method has been analyzed by Chan and Strang [3]. They
proved that if the diagonals of the Toeplitz matrix are Fourier coefficients {a;}32
of a positive function in Wiener class (i.e. {a;}52_ is absolutely summable), then
the spectrum of the circulant preconditioned system S, *A, is clustered around 1
and the preconditioned conjugate gradient method converges superlinearly. More
precisely, for any given € > 0, there exists a constant C'(¢) > 0 such that the error
vector e, at the gth iteration satisfies

llleqlI < Cle)elleolll; (1.2)

where
llz]|| = &*S, ' /* 4,8, a, (1.3)

see Chan and Strang [3]. It follows that the preconditioned iterations converge very
fast.

Besides Strang’s initial circulant preconditioner, several other successful circulant
preconditioners have been proposed and analyzed, see, e.g. T. Chan [9], Huckle [16],
Ku and Kuo [18], and Tyrtyshnikov [23]. In these papers, it has been shown that un-
der the same assumptions on the Toeplitz matrices, these circulant preconditioned
systems also converge superlinearly. Among these preconditioners, we remark that
the T. Chan’s circulant preconditioner is defined for general square matrices, not
necessarily of Toeplitz form. Given any general n-by-n matrix A,, it is defined to
be the minimizer of ||@Q, — A||F over all n-by-n circulant matrices @,,. (Here || - | ¢
denotes the Frobenius norm.) Most circulant preconditioners including Strang’s,
are not defined for arbitrary matrices. Therefore, T. Chan’s preconditioner is par-
ticularly useful in solving non-Toeplitz systems arising from the numerical solution
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of elliptic partial differential equations [5] and Toeplitz least squares problems aris-
ing from signal and image processing [6,7,10,21]. Convergence results for T. Chan’s
preconditioner have also been established for these problems.

In this paper, we propose a method to generalize the construction of Strang’s
circulant preconditioner to arbitrary n-by-n matrices A4, and to employ this new
circulant approximation in deconvolution applications in signal and image process-
ing. The idea of constructing such a preconditioner is simple. Given A,,, the L%Jth
column of our circulant preconditioner S, is equal to the L%J th column of A,,. Thus
if A,, is a square Toeplitz matrix, then S, is just the Strang circulant precondi-
tioner. When S,, is not Hermitian, our circulant preconditioner can be defined as
(S¥S,)'/2. For matrices of low displacement rank, there exists another generaliza-
tion of Strang’s preconditioner, see Freund and Huckle [12].

It turns out that the idea of constructing an approximation by selecting the
central column of a given matrix has been considered in tomographic inversion
problems in image processing and has been referred to as the forward—backward
projection method [11]. The approximation matrix is used as a preconditioner to
speed up the convergence of the steepest descent method. One of the purposes of
this paper is to analyze the convergence properties of this approximating matrix
when used as a preconditioner in the preconditioned conjugate gradient method.
We show that if the matrix A, has decaying coefficients away from the main di-
agonal, then the circulant approximating matrix is a good preconditioner for A,
and hence we expect fast convergence when applying the preconditioned conjugate
gradient method to solve these problems. Numerical tests are given to illustrate
fast convergence.

The outline of the paper is as follows. In §2, we define our generalized Strang pre-
conditioner and discuss it in relation to the forward-backward projection method
[11]. We also mention some of the standard results on circulant preconditioned
Toeplitz systems. In §3, we study some applications of our generalized Strang cir-
culant preconditioner to Toeplitz least squares problems and deconvolution prob-
lems, and analyze the convergence rate of the preconditioned systems for these
applications. In §4, some numerical results are reported, including comparisons
with the block-based and displacement-based preconditioning schemes suggested in
[6,8]. Test results are also reported for a 2-D Toeplitz least squares deconvolution
problem arising from ground-based atmospheric imaging, which is also considered
in [19,20] using an inverse Toeplitz preconditioner.

2. Generalized Strang Preconditioner

In the convergence analysis of circulant preconditioned conjugate iterations for
Toeplitz systems, one often considers Toeplitz matrices A4,, that are generated by a
fixed function. More precisely, we assume that there is a function f given by

f(6) = i are”* v € [0,2n]

k=—o00

such that the n-by-n Toeplitz matrices A,, under consideration have their diagonals
given by {a; };‘;in +1- The eigenvalues in the spectrum of A4, are closely related to
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4 R. Chan, M. Ng and R. Plemmons

the functional values of its generating function f, as indicated in the following
theorem.

Lemma 2.1. (Grenander and Szego [14]) Let f(0) € L»[0,2x] be real-valued
and the generating function of the sequence of square Toeplitz matrices A,. Then
the spectra of Ay are uniformly bounded in the interval [fine, foup] where fine and
fsup are the essential infimum and supremum of f(8) respectively.

Given a Toeplitz matrix A, with diagonals {a; }?;in 11, its Strang circulant pre-
conditioner S, is defined as in (1.1). We note that the spectrum of S, is also closely
related to f. In fact, we have

Me(Sn) = Y ;™M 0<k<n—1, (2.4)
31 /2]

see for instance Chan and Yeung [4]. For a general non-Toeplitz matrix A, = [a; k],
we define its generalized Strang circulant preconditioner S,, as

[Sn]k,L%J = a’k,L%J: 0 < k <n-— 17

i.e., the [ §|th column of S, is given by the | §]th column of A,. Note that if 4, is
Toeplitz, then this definition coincides with that in (1.1). In general S, constructed
from this scheme will not be Hermitian even if A, is Hermitian. In this case, we
define the generalized Strang preconditioner as (S3S,,)"/2.

We remark that our idea of constructing the generalized Strang circulant precon-
ditioner is the same as the forward-backward projection method discussed in [11]
for image reconstruction. That method tries to estimate the point spread function
involving a given, but not necessarily Toeplitz, matrix A, by forward projecting
and backprojecting a one-pixel point source located at the center of the field-of-
view. In matrix terms, the approximate point spread function is just equal to the
L%Jth column of A,,. The circulant matrix thus obtained was used in [11] as a
preconditioner in the steepest descent method to speed up the convergence rate. In
this paper, we analyze and apply this circulant matrix as a preconditioner for the
conjugate gradient method.

3. Applications and Convergence Analysis

In this section, we study the convergence of our preconditioner for general decon-
volution problems and Toeplitz least squares problems. For such problems, one seeks
the solution of a least squares problem

min ||b — Ax||2, (3.5)

in which A is either a rectangular column circulant matrix or a rectangular Toeplitz
matrix. These Toeplitz least squares problems occur in a variety of applications es-
pecially in signal processing [13,21] and image processing for the 2-D block Toeplitz
case [6,10,17,19].
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3.1. Deconvolution Problems

We start with the 1-dimensional deconvolution problem. Consider the convolution
of a 1-dimensional discrete signal z of length n with a convolution vector h of the
form

h = [h*m+17 h7m+27 Ty hO; T hm727 hmfl]T

The resulting vector b is of length 2m + n — 2, and the convolution operation can
be expressed in matrix notation as b = H,, ,z, where H,, , is a column circulant
matrix of the form

[ 0
h7m+2 hferl

hO B h—m+1

Hm,n = (36)
hm—2
1 ho
hm—l
0 hm—l

In applications such as signal restoration, the observed signal b and the discrete
point spread function h (essentially any column of H,,,) are known, or can be
estimated. The aim is to compute z. This is known as discrete deconvolution. Con-
tinuous deconvolution can be modeled as an integral equation of the first kind (an
ill-posed inverse problem [15]). It is well-known that deconvolution algorithms can
be extremely sensitive to noise [15,17]. Since any realistic signal processing problem
involves noise, there is a need to incorporate some form of regularization to stabilize
the computations. The Tikhonov regularization is probably the best known method
for regularizing ill-posed problems [15]. In matrix terms, Tikhonov regularization
often amounts to solving the least squares problem

b\ _( Hon ),
0 wly,
where p is the regularization parameter that depends on the noise level and I, is

the identity matrix. The solution z of (3.7) can be obtained by solving the normal
equations

min

: (3.7)

(WL, + Hyy yHyn)r = Hy, b (3.8)

We employ the preconditioned conjugate gradient method with generalized Strang
circulant preconditioner defined in §2 to solve the normal equations (3.8), and study
the convergence rate of the method. Since H,,, is a column circulant matrix,
the normal equations matrix p?I, + H}, ,,Hy ., is a Toeplitz matrix. Hence its
generalized Strang preconditioner S,, is the same as the Strang preconditioner.
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6 R. Chan, M. Ng and R. Plemmons

To consider convergence of our general scheme, we assume that the sequence
oo . ;
{hj}32 _ is absolutely summable, i.e.

> hyl £ M < o (3.9)

j==00

Associate with the sequence {h;} the function ¢ defined by

o0
j=—o0

g(0)= Y hje . Vo€ [0,2n].

j=—o0

Note that g is a function in the Wiener class . Hence gg is also a function in the
Wiener class and is given by

o0
gg(®) =1g@)1°> = Y tie™’,
j=—00
where
e _
ti= > hhiyy, §=0,1,2,.... (3.10)
k=—00

Here t; = ¢t_;. Let us denote the n-by-n Toeplitz matrix generated by gg by T),
(i.e. T, has diagonals {tj};-t:_in +1), and the corresponding Strang preconditioner
of y%I,, + T, by W,. Since the generating function of p?I, + T, is u® + |g(6)|?
which is positive and in the Wiener class, we can state a clustering results for the
preconditioner W,,.

Lemma 3.1. (Chan [2, Corollary 1]) For any given € > 0, there exist positive
integers N1 and Na, such that for all n > Ny, one can write p2I, + T, — W, =
Ry, + Ly, with ||R,||2 < € and rank L, < Ns. Moreover, the smallest eigenvalue
of Wy, is uniformly bounded away from zero. In particular, the spectrum of the
preconditioned matriz W, 1 (u*I,, + T,,) is clustered around 1.

Now we are going to establish the same result for S,,, when it is used to precon-
dition p?I,, + Hy, ,Hpm,n. We note by direct verification that the diagonals d; of
Hy,  Hpn are given by

m—1—j
di= Y hhiegy, 0<j<n-—1 (3.11)
k=—m+1

with d_; = d;. Thus a generating function of Hp, o Hyn is given by

(D * ) (D * g),

where D,, * g is the convolution of g with the Dirichlet kernel, i.e.

(Do % 9)(0) = / LoD - s = Y he ™ (312)

k=—m+1
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with
sin(m — £)6

sin(16)

Note that if h,, = 0 for |m| > §, i.e. Hy, p» has a fixed band-width 3, then by
(3.12), Dy x g = g for all m > (3. Hence for all m > 3, Hy, ,Hp, = Ty, and
Sp = Wy. We are now going to show that when the sequence {h;}2__ does
not have a fixed band-width, but is absolutely summable, then Hy,  Hy, , and its
generalized Strang preconditioner S,, are close to T, and W, respectively, in the
2-norm.

D (0) =

Lemma 3.2. Let the sequence {h; };?‘;_Oo be absolutely summable. Then for m > n,

lim ||, Hyn — Talls = 0.

n—o0

Proof Note that by Lemma 2.1., for m > n,

||H;z,nHm,n_Tn||2 < (D * 9) (D x g) — 97110
= ||(Dm*g)(Dm xg) = g) + (Dmx g — 9)7lco
< (D *g)((Dnxg) = g) + (Dnxg — 9)7lco-

Since g is in the Wiener class, D, x g converges to g uniformly. Hence the last term

in the above equality will tend to 0 as n tends to infinity. ]
Lemma 3.3. Let the sequence {h; };?‘;_Oo be absolutely summable. Then for m > n,

lim |[W, — Sull2 = 0.
n—oo

Proof Since S,, and W,, are both Strang circulant preconditioners, their eigenval-
ues are given by

Me(Sn) = Y de®™ R and N(Wp) = Y et 0<k<n-1,
1< n/2] 1< n/2]

see (2.4). Therefore

||Sn - Wn||2 < m]?X Z (dj - tj)eQﬁijk/n < Z |d] - tj|'
l71<[n/2] li1<Ln/2]

However, by (3.10) and (3.11), we have

IS0 =Wall: < D { PRI Ihkhkj|}
i<t/ <m k>m
o0
< > Il D2 Ihyl
|k|>m j=-—o0
< MY
|k|>n

where the last inequality follows from (3.9). As {hy}72 _ . is absolutely summable,
the last summation tends to 0 as n tends to infinity. ]
Combining Lemmas 3.1. to 3.3., we have the following theorem.
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8 R. Chan, M. Ng and R. Plemmons

Theorem 3.1. Let the sequence {hj}.(j)ozfoo be absolutely summable. Then for any
given € > 0, there ezist positive integers N1 and N, such that for all m >n > Ny,
at most Na eigenvalues of the matriz St (1?1, + H,*nnHmn) — I, have absolute
values larger than €.

Proof We note that
,UQIn + H;L,nHm,n —Sp = {(,UQIn +Tn) — Wn} + {H;z,nHm,n - Tn} + {Wn - Sn}-

By Lemmas 3.1. to 3.3., we see that M2In+an,nHm,n—Sn can be written as the sum
of a low rank matrix and a matrix of small norm for n sufficiently large. Moreover,
since the smallest eigenvalue of W), is also uniformly bounded away from zero and
limy,— 00 ||Sn — Wh||2 = 0, the smallest eigenvalue of S, is also uniformly bounded
away from zero for sufficiently large n. Thus we see that S, (u* I+ H}, \ Him n) — I,
can also be written as the sum of a low rank matrix and a matrix of small norm
for n sufficiently large. ]

It follows from Theorem 3.1. that the conjugate gradient method, when applied
to the preconditioned system S, (u*I, + Hy, ,Hpm n), converges superlinearly (see
Chan and Strang [3].)

In practical applications such as signal restoration, the most significant informa-
tion of regarding the discrete point spread function is often confined to values in
the convolution vector h near hg [17]. Moreover, the magnitudes of the ;| decrease
significantly as k increases. Figure 1 shows a particular example of a 1-dimensional
discrete point spread function in signal restoration with a Gaussian form [17]. When
the rate of decrease of h| is known, we can get a more precise bound on the con-
vergence rate of our method than (1.2) in terms of the rate of decay of the numbers
hlkl .

Theorem 3.2. If
c
|kl < THET k=0,+1,42,..., (3.13)

for some constants £ > 0 and C, then for sufficiently large n, then the error vector
eq at the qth iteration in exact arithmetic satisfies

C1
q =z leolll

[lleqll] <

where C is a constant depending on {he}5e

(1.3).

Proof By (3.13), the function g associated with {h;}32_ is a ((+1)-times differ-
entiable function. It implies that ¢g is also a (£ 4+ 1)-times differentiable function.

It follows that the rate of decrease of wy;| in (3.10) is given by

and € only and ||| - ||| is defined in

—00

N

C .

The remaining part of the proof is similar to that in Theorem 3 of Chan [2] and
therefore is omitted. u
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Figure 1. Example of a discrete 1-D Gaussian blur point spread function h

Next we consider 2-dimensional deconvolution problems. In this case, one is still
concerned with solving a least squares problem as in (3.5). Here, the matrix A is a
block column circulant matrix with column circulant blocks. More precisely,

Al=m+1) 0
A(=m+2)  g(=m+1)
A0 . Al=mtD)
A= - N (3.14)
Alm—1) 400)
Alm—1)
0 Alm=1)

with each subblock AY) being a 2m +n — 2-by-n matrix of the form given by (3.6).
We note that A*A will be a n-block-by n-block block Toeplitz matrix with n-by-n
Toeplitz blocks. The 2-dimensional deconvolution problem has n? unknowns since
A has n? columns.

The generalized Strang circulant preconditioner S for A* A is related to the level-
2 Strang circulant preconditioner proposed by T. Chan and Olkin [10]. For block
Toeplitz matrices with Toeplitz blocks that are generated by a fixed generating
function, the convergence rate of the method has been discussed in [7, Theorem
3]. Here however, in contrast to the 1-D case, the block Toeplitz matrices with
Toeplitz blocks A* A do not have a fixed generating function — their diagonals vary
with n. However, if we assume that the diagonals of A are absolutely summable,
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10 R. Chan, M. Ng and R. Plemmons

ie., ||A|]1 £ M < oo, then the same arguments used in 1-D case can also give us
the same convergence result (cf, [7, Theorem 3]).

Theorem 3.3. Consider the 2-D deconvolution problem with n? unknowns. For
A given in (3.14), suppose ||A|ll1 < M < oco. Then for any given € > 0, there
exists a positive integer N, such that for all n > N, at most O(n) eigenvalues of
STL(u?I + A* A) — I have absolute values larger than e.

We note that the ground-based atmospheric imaging problem considered in §4
satisfies the conditions of Theorem 3.3..

3.2.  Toeplitz Least Squares Problems

For simplicity, we first consider pre-windowed Toeplitz least squares problems [13].
The general Toeplitz least squares problems will be discussed later. For pre-windowed
Toeplitz least squares problems, the Toeplitz matrices A, , are given by

ao 0 --- 0
a ao
0
Am,n = Am—n 0]
am_l DR DR a’m—n

with m > n and full column rank n. The solution of these least squares problem
[|Ib — A nzl|2 can be found by solving the normal equations

A A = A b,

. . . . . .
Since Ay, is not column circulant, the normal equations matrix A}, | Ay, is

non-Toeplitz. We employ the generalized Strang preconditioner (S*S,,)'/? for the
normal equations matrix and solve the preconditioned systems

(S3Sn) M2 AL, At = (ShSn) 2 A nb.

Here S, is a circulant matrix with its [ |th column given by A7, Ay ne s .
Since Ay, p, is lower-triangular, we can write

ArnAmn = B, B — UpUp, (3.15)
where U, is the n-by-n upper triangular Toeplitz matrix with its first row given by
[0; Am—1,Am—2,"" ", am7n+1]

and By, p is the (m 4+ n)-by-n column circulant matrix obtained by stacking A, »
on top of U,. By (3.15), we see that S,, is the difference of two circulant matrices,

S, =S —52) (3.16)
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Generalization of Strang’s Preconditioner with Applications to Toeplitz Least Squares Problems 11

where the | 7 |th columns of Sy(Ll) and 57(3) are given by

Br*n,an,neL%J and U;Une[%J

respectively. We note that Sr(Ll) is Hermitian and Sr(f) is in general not.
Since By, , is column circulant, we can use the results in §3.1 to study the ap-

proximation properties of S,(f). For this, we associate the (7, k)th entries a;_j of
Ay, »n with the function

)= aet?
k=0

defined on [0, 27]. We will assume that f is a function in the Wiener class (i.e. the
sequence {ay}%2, is absolutely summable) and has no zero on [0,27]. Then using
arguments similar to that used in Lemmas 3.2., 3.3. and Theorem 3.1., we have the
following Lemma.

Lemma 3.4. Let f be in the Wiener class. Then for any given € > 0, there ex-
ist positive integers N1 and Ns, such that for all m > n > Ni, one can write

By, 2B — S = Ry, + Ly, with ||Ryl|2 < € and rank L, < Na. If moreover f

has no zeros on [0,2x], then the spectra of Sr(Ll) and of its inverse are uniformly
bounded for all large n.

Thus for large n, By, ,Bmn — S5V is the sum of a small norm matrix and a low
rank matrix. Next we show that U, is a sum of a low rank matrix and small norm
matrix and 57(12) is also small norm matrix for large n.

Lemma 3.5. Let f be in the Wiener class. Then for any given € > 0, there exists
integer N1 > 0, such that for n > Ny,

U,U, =R, + Ly,
with ||Rpll2 < € and rank L, < 2N;. Moreover, we have

lim ]S, = 0.
n—o00

Proof Since {a;}32, is absolutely summable, we have

o0
Z|aj|§M<oo,

Jj=0

and also for any given € > 0, there exists a positive integer N; such that

Y lai] < %

k=N,

For n > N, we partition U, as L, + R, where the first (n — N1) columns of L,
are zero vectors and the last Ny columns of L, are given by the last Ni columns
of U,. Clearly L,, is matrix of rank /Ny and

m—1 m—1

~ €
1Bali < >0 el < DD gl < W

j=m—n+1+N; j=N1+1
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12 R. Chan, M. Ng and R. Plemmons

Thus R y R 3
UrU, = (Lp+ Ryp)" (Ln+ Ry) = Ly, + Ry,
where o o o
rank L, = rank (L} R, + R L, + L;L,) < 2N;
and

- €
1Ball> < |7 Ball2 < 37

Similarly, for n > 2Ny, we get

15213 < 1SS oo
< U Unesl?
< URIBUnes |
2
m—1
< M oo e
h=m—[%]+1
< €.

1/2

Using the above two lemmas, we can show that (S)S,)"? is close to SiH.

Lemma 3.6. Let f be a function in the Wiener class with no zeros on [0, 2n].
Then

lim [|(S%S,)'? — SV|l» = 0.

n—oo

In particular, the spectra of (S;‘LSn)l/2 and of its inverse are uniformly bounded.

Proof We first note that S,, 53, S{? and (S:S,)'/? are all circulant matrices
and hence can be diagonalized by the same Fourier matrix. For simplicity, let us
denote their eigenvalues by g, )\Ecl), )\,(62) and \; respectively. By (3.16), A can be
expressed as

e =A<k <n—1.

Hence R ) ) , ) ,
X = 07 = Mk = )7 = I = 20 Re(1]?)
where Re(-) denotes the real part of a complex number. By Lemmas 3.4. and 3.5.,

we know that as n tends to infinity, )\561) are uniformly bounded while |)\§c2)| will
tend to zero uniformly. In particular, we have

lim max [\ — (/\,(cl))2| = lim max |)\§c2)|2 - 2/\,(:)Re()\§c2)) =0.

n—o0 0<k<n—1 n—o00 0<k<n—1

Since )\,(Cl) are uniformly bounded, this implies that Aj, are also uniformly bounded
and hence

lim max |\ — )\561)| =0.
n—o00 0<k<n—1

| |
Combining the last three lemmas, we can easily prove that the preconditioned
matrices have clustered spectra.
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Theorem 3.4. Let f be a function in the Wiener class and has no zeros on [0, 27].
Then for any given € > 0, there exist positive integers N1 and Ny such that for all
n > Ni, at most Na eigenvalues of(S;‘lSn)_l/QA:n’nAm,n have absolute values larger
than €.

Proof We note that
(S;;Sn)lﬂ - A:n,nAmJl = {(S;Sn)l/2 - Sr(zl)} + {Sr(zl) - B:n,an,n} + UpUn.

Combining the results in Lemmas 3.4., 3.5. and 3.6., we thus see that (S*S,)!/? —
A}, nAm,n can be written in a sum of a small norm matrix and a low rank matrix.
~1/2

The result now follows by noting that (S%S,,) is uniformly invertible and

(SiSn) ™ 2 As A = In + (S;Sn) 2 {Af nAmn — (S3Sn)'?}.

|
From Theorem 3.4. we have the desired clustering result. It can also be shown,
in a manner similar to the derivation in §4 of [6], that if the condition number of
A is of O(nY), v > 0, then the conjugate gradient method converges in at most
O(vylogn + 1) steps. Since each iteration requires O(m logn) operations using the
FFT, it follows that the total complexity of the algorithm is only O(ymlog®n +
mlogn). When v = 0, i.e., K(An,n) = O(1), the number of iterations required for
convergenceis of O(1). Hence the complexity of the algorithm reduces to O(m logn),
for sufficiently large n. In contrast, the method converges just linearly for the non-
preconditioned case, as is illustrated by numerical examples in the next section.
Finally we consider the general Toeplitz least squares problems. In this case, the
rectangular Toeplitz matrices A, , are given by

ao a_1 ' QA_pit1
aj ao
a_—1
Am,n = Am—n 0]
am71 ... ... am*n

We remark that in the pre-windowed case the entries [Ap, ]k for j < k are assumed
to be zero. Similar to (3.15), we have

Af nAmn = By, yBin — UpUy — ViV,

where V,, is the n-by-n lower triangular Toeplitz matrix with its first column given

by
T
0,0 ny1,0 ny2, - ,a1] .

and By, p, is the (m + 2n)-by-n column circulant matrix given by
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Thus instead of (3.16), we have
S, =81 52 _ g
where the | % |th columns of 57(11), 57(12) and 57(13) are given by
B:n,anmeL%Jv U;UnCL%J and V;angj

respectively. In order to prove convergence, we assume similar to the pre-windowed
case that the function

o0
f(a) _ Z akefike
k=—o0

defined on [0, 27] is in the Wiener class and has no zero on [0, 27]. Then by using
similar arguments as in Lemma 3.5., we can prove that for sufficiently large n, V.V,
is a sum of a low rank matrix and a small norm matrix, and that ||S,(L3)||2 is small.
Therefore, the conclusion of Lemma 3.6. still holds and hence the preconditioned
matrices (S;Sn)’lﬂA;‘n’nAm,n will still have clustered spectra around 1. Accord-
ingly, the preconditioned conjugate gradient method with the generalized Strang
preconditioner will also be an efficient algorithm for solving Toeplitz least squares
equations.

4. Numerical Results

In this section the effectiveness of our preconditioner is illustrated by some nu-
merical examples. For each of the 1-D examples we use the vector of all ones as
the right hand side and the zero vector as the initial guess. The stopping crite-
ria is ||u?||2/||u®||2 < 1077, where u'/) is the normal equations residual after j
iterations. We conclude with a 2-D problem arising in ground—base astronomical
imaging. All computations were performed using Matlab. In the first two test ex-
amples, we consider column circulant matrices Hp, , as in (3.6) with entries given
by {hi}72 . that satisfy the conditions of Theorem 3.1.. We note that in Example
2, the bandwidth of the column circulant matrices is set to 63.

Example 1. b, = 1/(k+1)*, k=0,£1,+2,....
Example 2. b, =1/(k+1)*, k=0,+1,+2,...+31.

In Table 1, we present the number of iterations needed for convergence when
using the preconditioned conjugate gradient method with no preconditioner, our
generalized Strang preconditioner, the displacement preconditioner as defined in
[8], and the preconditioner based on partitioning rectangular Toeplitz matrices as
defined in [6]. We denote these by “no”, “gens”, “disp” and “part” respectively.

Next, in Examples 3-5, we consider matrices A, , that are not column circulant
but Toeplitz. Hence the normal equations matrices are not Toeplitz, and therefore
the original Strang preconditioner is not defined. Here we will use the generalized
Strang preconditioner and compare it with the other circulant preconditioners. We
denote the entries of the first columns and the first rows of the matrices A,,,, by
¢(-) and r(-) respectively. We remark that the matrices in Examples 3 and 4 are pre-
windowed Toeplitz matrices while the matrices in Example 5 are general Toeplitz
matrices. The convergence results are listed in Tables 2 and 3.

19/4/2001 17:26 PAGE PROOFS gstrang



Generalization of Strang’s Preconditioner with Applications to Toeplitz Least Squares Problems

15

Table 1. Numbers of iterations for Examples 1 and 2 when m =n
Example 1 a=2 a=11
n no gens disp part | no gens disp part
17 9 5 5 5 10 7 5 6
33 13 4 5 5 17 6 5 5
65 16 4 5 5 28 6 5 5
129 20 4 5 5 42 5 5 5
257 22 5 5 5 57 5 5 5
Example 2 a=2 a=11
n no gens disp part | no gens disp part
65 17 5 5 5 28 7 6 7
129 20 5 5 5 43 6 6 6
257 22 5 5 5 56 6 6 6
Table 2. Numbers of iterations for Examples 3, 4 and 5 when m = n.
Example 3 Example 4 Example 5
n no gens disp part | no gens disp part | no gens disp part
17 | 15 6 6 6 12 7 6 6 14 9 10 8
33 | 22 6 6 6 17 7 6 7 29 6 14 10
65 | 30 6 7 6 21 7 7 7 56 6 11 9
129 | 31 6 7 7 25 7 7 7 98 6 9 8
257 | 31 6 7 7 30 7 7 7 142 6 8 7
ck) = e’o'1k2, k=1,....m
Example 3. r(1) = ¢(1),
r(k) = 0, k=2,...,n.
ck)y = 1/k*  k=1,....m
Example 4. r(1) = ¢(1),
r(k) = 0, k=2,...,n.
ck) = 6_0'1k2, k=1,....m
Example 5. r(k) e~ 0187 k=1,...,n.

From Tables 1, 2 and 3, we observe that the number of iterations needed for con-
vergence for the preconditioned systems is essentially independent of the sizes of the
matrices. These numerical results illustrate that the generalized Strang circulant

Table 3. Numbers of iterations for Examples 3, 4 and 5 when m = 2n.
Example 3 Example 4 Example 5
n no gens disp part | no gens disp part | no gens disp part
17 9 4 6 5 12 7 6 6 24 11 16 12
33 | 15 4 6 5 17 7 6 7 46 9 17 11
65 | 22 4 5 5 21 7 7 7 85 9 14 10
129 | 30 4 5 5 25 7 7 7 137 9 12 9
257 | 31 4 5 4 30 7 7 7 186 9 10 9

19/4/2001 17:26 PAGE PROOFS gstrang




16 R. Chan, M. Ng and R. Plemmons

preconditioner can significantly reduce the number of iterations needed for conver-
gence. The performance of all three circulant preconditioners is similar for these
1-D problems. We stress, however, that the generalized Strang circulant precondi-
tioner can be defined for more general matrices such as the non—Toeplitz normal
equation matrices arising from Toeplitz least square problems.

Finally we consider a 2-dimensional deconvolution problem arising in ground-
based atmospheric imaging. We use the preconditioned conjugate gradient algo-
rithm with the generalized Strang circulant preconditioner to remove the blurring
in an image resulting from the effects of atmospheric turbulence. The problem con-
sists of a 256-by-256 image of an ocean reconnaissance satellite observed by a sim-
ulated ground-based imaging system together with a 256-by-256 image of a guide
star observed under similar circumstances (see Figure 2.) The data are provided by
the Phillips Air Force Laboratory at Kirkland AFB, NM [1]. The imaging system
detects the atmospheric distortions using a natural guide star image. A wavefront
sensor measures the optical distortions which can then be digitized into a blurred
image of the guide star pixel. To form the discrete point spread function h, the rows
of the blurred pixel image are stacked into a column vector. Then the point spread
function matrix A is given in block form as in (3.14) with h as its first column.
Moreover A satisfies the conditions of Theorem 3.3., since the guide star for the
atmospheric imaging problem yields a Gaussian point spread function [20].

In Figures 3 and 4, we present restorations without and with using the general-
ized Strang preconditioner described in §3. The regularization parameter y in both
cases is chosen to be 0.01. From the figures, we observe that when no precondi-
tioner is used, an acceptable restoration is achieved after 34 iterations. Essentially,
the same restoration is achieved in 3 iterations when preconditioning is used. We
remark that the cost per iteration using Strang’s preconditioner is less than that
using the preconditioner proposed in [20]. This is because we use circulant based
preconditioning, whereas an inverse Toeplitz based preconditioner is used in [20],
which doubles the dimension of the problem being solved. In particular roughly
0.61 x 10® floating point operations per iteration are used for our circulant based
deconvolution, while roughly 0.98 x 108 per iteration are necessary using the method
in [20]. The count for no preconditioning is 0.50 x 108.

For comparison, we also used T. Chan’s circulant preconditioner [9] to test the
restoration of the above atmospheric image. We report that about the same restora-
tion is achieved in 6 iterations when T. Chan’s circulant preconditioner is used. This
is twice the number of iterations required using our generalized Strang precondi-
tioner, and both schemes require the same number of operations per iteration.
Figure 5 shows the 2-norm of the normal equations residuals of these precondi-
tioned conjugate gradient methods. We observe that the decrease of residuals when
Strang’s preconditioning is used is faster than that when T. Chan’s preconditioning
is used.

In summary, these preliminary experiments suggest that the preconditioned con-
jugate gradient algorithm with the generalized Strang circulant preconditioner may
be an efficient and effective method for deconvolution problems.

19/4/2001 17:26 PAGE PROOFS gstrang



Generalization of Strang’s Preconditioner with Applications to Toeplitz Least Squares Problems 17

Figure 2. Observed Image (left) and guide star image (right).
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Figure 3. Restored images with no preconditioning: (a) 3 iterations, (b) 15 iterations
and (c) 34 iterations respectively.
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Figure 4. Restored images using the generalized Strang preconditioner: (a) 1 iteration,
(b) 3 iterations and (c) using T. Chan’s preconditioner: 6 iterations.
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Figure 5. Normal equations residuals for using Strang’s, T. Chan’s and without using
preconditioners.
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