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Abstract. We consider the solutions of Hermitian Toeplitz systems where the Toeplitz matrices
are generated by nonnegative functions f. The preconditioned conjugate gradient method with well-
known circulant preconditioners fails in the case when f has zeros. In this paper, we employ Toeplitz
matrices of fixed band-width as preconditioners. Their generating functions g are trigonometric poly-
nomials of fixed degree and are determined by minimizing the maximum relative error ||(f —g)/f||oo-
We show that the condition number of systems preconditioned by the band-Toeplitz matrices are
O(1) for f with or without zeros. When f is positive, our preconditioned systems converge at the
same rate as other well-known circulant preconditioned systems. We also give an a priori bound of
the number of iterations required for convergence.
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1. Introduction. In this paper, we consider solutions of n-by-n Hermitian Toe-
plitz systems A,z = b by the preconditioned conjugate gradient method. The Toeplitz
matrices A,, are assumed to be generated by 2w-periodic continuous real-valued func-
tions f defined on [—m, 7], i.e. the entries of A,, are given by the Fourier coefficients
of f:

1 ” o
[Apljr = — (2)e”U=R7dr Y0 < j k < n.
2 ) .

We emphasize that the generating function f is given in some applications of
Toeplitz systems. Typical examples are the kernels of the Wiener-Hopf equations,
see Gohberg and Fel’dman [12, p.82], the spectral density functions in stationary
stochastic process, see Grenander and Szeg6 [14, p.171] and the point-spread functions
in image deblurring, see Oppenheim [16, p.200].

If the generating function f is positive, the preconditioned conjugate gradient
method with circulant preconditioners has proved to be a successful method — the pre-
conditioned systems converge superlinearly when f is smooth, see for instance Chan
and Strang [3] and Chan and Yeung [5]. However, these circulant preconditioners do
not work in general when f has zeros. A specific example is the 1-dimensional discrete
Laplacian given by the tridiagonal matrix trid[—1,2, —1]. Its generating function is
flz) = 4sin® , which has a zero at # = 0. The corresponding Strang’s circulant
preconditioner, see [17], is actually singular. (See also the numerical results in §4 for
the performance of the T. Chan [8] circulant preconditioner in the case where f has
7€r08s.)

Recently, Chan [4] proposed using band-Toeplitz matrices B, ¢ as preconditioners
for f that has zeros. These preconditioners are constructed by matching their gener-
ating function g with f at those zeros of f. It is proved that if the order of the zero of
f is 2¢, then the condition number k(4,,) of A, is O(n*%) whereas n(B;iAn) is O(1).
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However, when f is positive, the band-Toeplitz preconditioned systems converge much
slower than those preconditioned by circulant preconditioners.

Our main aim in this paper is to design band-Toeplitz preconditioners that work
when f has zeros and yet their preconditioned systems converge at the same rate as
the circulant preconditioned systems even when f is positive. Our idea is to increase
the band-width of the band-Toeplitz preconditioner to get extra degrees of freedom
which enable us not only to match the zeros in f but also to minimize the relative
error ||(f — g)/ fllco- The minimizer g is found by a version of the Remez algorithm
proposed by Tang [18]. The algorithm also computes the minimum relative error
which ultimately gives an a priori bound on the number of iterations required for
convergence.

We note that the band-Toeplitz preconditioner we proposed has band-width /¢
that depends only on the order of the zeros of f and is independent of n, the size of
the matrix. Hence for any vector z, B;jza: can be obtained by band-solver in O(¢*n)
operations. In contrast, solution of circulant systems requires O(nlogn) operations.
We remark that in [15], Ku and Kuo have considered using products of lower- and
upper-triangular band-Toeplitz matrices as preconditioners. Their resulting precon-
ditioners are in general non-Toeplitz and hence are different from ours.

The outline of the paper is as follows. In §2, we analyze the convergence rate of
our preconditioned systems B;%An in terms of the generating functions g of B,, and f
of A,,. In §3, we describe the Remez algorithm and how it is applied to construct the
generating function g and hence the preconditioner B, ;. In §4, we present numerical
results that confirm our analysis in §2. In §5, we discuss the use of regularization,
a technique that is relevant in computations corresponding to f having zeros and
especially when n is large. Finally, concluding remarks are given in §6.

2. Convergence Analysis. In this section, we analyze the convergence rate of
the preconditioned conjugate gradient method in terms of the generating functions f
and g.

We first note that if f is nonnegative, then A,, is always positive definite.

LEMMA 2.1. Let fiin and fmax be the minimum and mazimum of f in [—m, 7).
If fiin < fmax, then for all n > 0,

fmin<Ai(An)<fmaX; i:l,---,n,

where \;(A,,) is the ith eigenvalue of A,,. In particular, if f > 0, then A,, are positive
definite for all n.
The proof of the Lemma can be found in Chan [4]. Next we give a bound on the
condition number of the preconditioned systems.
THEOREM 2.2. Let f be the generating function of A, and g be the generating
function of a band-Toeplitz matriz By, ;-
-1
P ST
j=—(t-1)
Then, if
f-g
IITlloo =h<1,

then B, ¢ is positive definite and

>
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Proof. By assumption, we have
f@)1—h)<g(x) < f(z)A+h) Vre |-,

Clearly, g(z) is nonnegative. In particular, by Lemma 1, B, ; is positive definite for
n=1,2,3,.... Since A,, and B, ¢ are Toeplitz matrices, we have

. 1 T n—1 3
u Apu = Py /_Ff(:v)| guje”xpdw

and
1 T n—1 y
u*Bpu = o 77rg(:r)| Z u;e " 2dx

Jj=0
for an arbitrary (complex) n-vector u* = [ug, u1, -, un—_1], see Grenander and Sze-
g6 [14]. Hence, we get
(1) (1-hu*A,u <u*B,u < (14 h)u"A,u.
Since By, ¢ is also positive definite, we finally have

_ 1+h

By standard error analysis of the conjugate gradient method, see, for instance,
Axelsson and Barker [1, p.14], we conclude that the number of iterations required for

convergence is bounded by
1/1+h 1
——)1 — 1
2 (i57) e (7)1

where 7 is the tolerance. Since h is given explicitly in the Remez algorithm, we have
an a priori bound on the number of iterations required for convergence.

3. Construction of Preconditioner by the Remez Algorithm. In this sec-
tion, we describe how we construct our band-Toeplitz preconditioner. For the ease
of presentation, we assume the matrix A, is real symmetric. Handling the complex
Hermitian case will become clear once the symmetric case is explained. Since A,, is
symmetric, its generating function f is even, in additional to being 27-periodic and
continuous. It suffices to consider f on [0,7]. The generating function of a band-
Toeplitz matrix By, ¢,

bo b1 - be
by
B = be—1
bo—1
by

bg_l . b1 bo
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is given by
g(x) = bg + b1(2cos(x)) + b2(2cos(2z)) + ... + be—1(2cos((¢ — 1)x)).

Thus, in the case where f > 0 on [0, 7], determining the optimal P is a standard
linear minimax approximation problem:

minimizep, p,....p,, |1 — P(z)||,

where
-1
P@@) =3 piéy(@), do = 1/f(x) and 6;(x) = 2cos(jir)/f() for j > 0.
j=0

Note that P = g/f. This optimal P (and hence g) can be obtained by a standard
Remez algorithm (see Cheney [10], for example). We, however, use the version pro-
posed by Tang [18] which can be extended to handle the case when f(zo) = 0 for
some o € [0,7]. We now describe this version of the Remez algorithm briefly; after
that, the extension will also be explained.
Given ¢o(z) =0, and ¢;(x) = 2cos(jz)/f(x), j =1,...,¢ — 1, we are to solve
Problem P:

Minimize h

subject to

—1
hZS ]-_ijqu(x) ) (S,:L’) E{—l,].}X[O,’lT].

One can think of Problem P as a linear programming problem (by, say, replacing
[0, 7] by a finite set of points). The dual of this problem is given by the following.
Problem D:

Maximize E 5-Tsg

s,z
subject to

rse >0, and

ZTS,z‘ﬁj(l’)S:O, j:O,]_’_‘_’g_]__
8,z

It is observed in [18] that even without discretizing the domain [0, 7], the Simplex
algorithm can be applied to Problem D. The preconditioners in the next section are
obtained by this computation.

Now, suppose that f(zo) = 0. In practice, zg is often known. Because f > 0 (lest
A,, has negative eigenvalues for large enough n), we have f'(zp) = 0 also. Suppose
f"(xo) # 0, then we would determine P by imposing the constraint g(xg) = 0, that
is,

{—1

po+2 ij cos(jzg) = 0.
i=1
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This linear constraint on the coefficients p;’s can be naturally added to Problem P and
translated to its dual form in Problem D. In general, the case when f*)(z4) = 0 for
k=0,1,...,m can be handled by the constraints g(*) (o) = 0 for k = 0,1,...,m — L.

We note that when A,, is complex Hermitian, f will not be even necessarily (but
still continuous real-valued and 2m-periodic). The domain of approximation becomes
[-7, 7] and the approximant will be trigonometric polynomials with sin and cos.
Similar constraints can be imposed when f(z¢) = 0 for some xg.

Let us end the section by discussing the computational cost of our method. As
pointed out in [18], the number of Simplex iterations needed to determine g is propor-
tional to £. In practice, all of our experiments took less than 2/ iterations. Moreover,
after an initial LU decomposition of an ¢ x £ matrix, each Simplex iteration requires
only a modification to the decomposition after a rank-1 change. The total effort for
location g is O(£3). We stress the fact that g is independent of n. Thus, as long as f
is fixed and a sufficient band width £ is reached, the entries for B,, ; are determined
for all n.

In each iteration of the preconditioned conjugate gradient method we have to
compute matrix vector multiplications of the form A,z and B_ 153/ We note that
Apx can be computed in O(nlogn) operations by first embeddlng A,, into a 2n-by-2n
circulant matrix and then perform the multlphcatlon by the Fast Fourier Transform
(see Strang [17]). The vector z = Bn /¥ can be obtained by solving the banded
system B, ¢z = y with any band solvers, see for instance Golub and Van Loan [13], or
Wright [19] for a parallel one. Typlcally, we will decompose B, ¢ into some triangular
factors and then solve the system by a backward and forward solve. The cost of
obtaining the triangular factors is O(¢?n), and each subsequent solve will cost O(¢n),
as the triangular factors will also be banded.

Recall that the number of iterations is independent of the size of the matrix n,
we therefore conclude that the total complexity of our method is O(nlogn + £*n).

4. Numerical Results. In this section, we compare the convergence rate of the
band-Toeplitz preconditioner with circulant preconditioner on five different generating
functions. They are coshz, % + 1, 1 — e ", (z — 1)2(z + 1)? and 2. The first
two functions are positive while the others have either one or two distinct zeros.
The matrices A, are formed by evaluating the Fourier coefficients of the generating
functions.

We note that when f(z) =1 — e’z2, its Fourier coefficients cannot be evaluated
exactly. In this case, we approximate them by

1 Y
aj=5 | f( e
2n—1

Z f k‘ﬂ' _ij(kﬂ—/n—ﬂ'), j=0,£1,£2,---

where the last expression is evaluated by using the Fast Fourier Transform.

In our tests, the vector of all ones is the right hand side vector, the zero vector
is the initial guess and the stopping criterion is ||r,||2/||ro|l2 < 1077, where r, is
the residual vector after ¢ iterations. All computations are done by Matlab on a
Sun workstation. Tables 1-5 show the numbers of iterations required for convergence
with different choices of preconditioners. In the tables, I denotes no preconditioner
is used, C' is the T. Chan circulant preconditioner [8], and B, ¢ is the band-Toeplitz
preconditioner with half-bandwidth £.
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We note that for the cases when the f’s are positive, our preconditioners, with
half-bandwidths 4 to 5, work as well as the circulant preconditioners. In the cases
when the f’s have zeros, our preconditioned systems still converge at a rate that is
independent of the sizes of the matrices. For the circulant preconditioned systems,
however, the numbers of iterations required grow as the sizes of the matrices increase.

TABLE 1
Numbers of Iterations for f(x) = coshz.

| | n2|Bn,3|B

|| n n,5
16 6 9 7 6 5
32 16 6 10 7 6 6
64 21 5 11 8 6 6
128 23 5 10 8 6 6
256 24 5 10 7 6 6
TABLE 2

Numbers of Iterations for f(z) = z* + 1.

<,

| Bn,2 | Bn,B | B

|| ¢ n n,5
16 10 | 9 9 8 8 7
32 22 7 16 11 8 7
64 37 | 7 22 12 8 7
128 56 | 6 25 12 8 7
256 67 | 6 26 12 8 7
TABLE 3

Numbers of Iterations for f(z) =1 — e 7,

n || | C | Bn 2 | Bp,3 | B4 | Bn,5
16 6 7 4 3
32 14 7 15 7 5 3
64 24 8 17 8 5 3
128 42 | 10 17 8 5 3
256 77| 13 17 8 5 3

5. Regularization. We note that when f has zeros, the system of equations
Anz = b will become very ill-conditioned when n is large. Thus the usefulness of the
solution z can be in doubt even though we can solve for it quickly using our precon-
ditioners. In this case, one can employ the technique of regularization to alleviate the
problem. One approach is to solve the appended least squares problem:

min|[ | A le=| 2|

Here p is the regularization parameter and the n-by-n matrix P, is the regularization
operator that tries to smooth the solution x to a certain degree. Choosing P, as
the 2k-th difference operator will force the solution to have a small 2k-th derivative.
We note that the corresponding P, will be a banded Hermitian matrix with half-
bandwidth k£ + 1. Typical choices of P, are the n-by-n identity matrix and the
1-dimensional discrete Laplacian matrix. Choosing the regularization parameter p
on the other hand is usually not a trivial problem. One may need to solve the least
squares problem for several values of  to determine the best one, see Eldén [11].
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TABLE 4
Numbers of Iterations for f(z) = (z — 1)?(z + 1)2.

n || I | c | Bn,3 | Bn,4 | Bn,5 | Bn,6

16 11 9 9 9 8 7

32 27 14 13 11 9 7

64 74 17 16 11 8 7

128 193 | 22 18 11 8 7

256 465 | 28 19 11 8 7

TABLE 5
Numbers of Tterations for f(z) = x*.

n || 1 | C | Bn,3 | Bn,4 | Bn,5 | Bn,6
16 12 10 9 9 9 7
32 34 16 15 10 11 9
64 119 26 21 13 11 9
128 587 7 24 15 12 10
256 > 1000 179 27 16 12 10

The solution to the least squares problem can be obtained by solving the normal
equation:

(A2 + i’ P2z = Apb.

An obvious choice of preconditioners for the normal equation is the band matrix

B, + p?Py. Its half-bandwidth is max(2¢ — 1,2k 4+ 1). By using (1), we can easily
show that

1+ 7\

K A{(Bh + P~ (AL + p°P2)} < (m) .

In contrast, even if C, is a good circulant preconditioner for A,,, the matrix

C2 + u? P2 will no longer be circulant. However, we remark that regularization tech-

niques using other circulant preconditioners have been considered in Chan, Nagy and

Plemmons [7].

6. Concluding Remarks. By understanding Toeplitz preconditioner from the
point of view of minimax approximation of the corresponding generating functions,
we can construct band-Toeplitz preconditioners that offer fast convergence rates even
when the matrix to be preconditioned has a generating function with a zero. Moreover,
our preconditioner with modest bandwidth is also an excellent choice for f without a
zero. We emphasize that for a given f, the entries of the preconditioners are unchanged
as n increases. Thus, we need to invoke the Remez algorithm once for each f. We note
moreover that the Cholesky factors of B,, ¢ can be used to build the Cholesky factors of
B, +1,0. That can reduce the cost of factorization of the band-Toeplitz preconditioner.
We finally remark that our preconditioner can also be adapted easily to give a good
preconditioner for Toeplitz-plus-band systems of the form (A4, + D, )z = b, where D,
is an arbitrary band matrix. Toeplitz-plus-band systems appear in solving Fredholm
integral-differential equations, see Delves and Mohamed [9, p.343] and also in signal
processing literature, see Carayannis et. al. [2].

For such systems, direct Toeplitz solvers and the preconditioned conjugate gra-
dient method with circulant preconditioners will not work. However, one can use
B¢ + D, as a preconditioner and use the proof mentioned in Chan and Ng [6] to
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derive basically the same result that we have in Theorem 1, namely that

_ 1+h
Hence the number of iterations required for convergence is still fixed independent of
the size of the matrices. Since By, (+D,, is a band matrix, the system (B, ¢+D,)z =y
can still be solved efficiently by band solvers for any vector y.
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