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Abstract

We propose and analyze the use of circulant preconditioners for
the solution of elliptic problems via preconditioned iterative methods
such as the conjugate gradient method. Part of our motivation is
to exploit the fast inversion of circulant systems via the Fast Fourier
Transform (FFT). We prove that circulant preconditioners can be cho-
sen so that the condition number of the preconditioned system can
be reduced from O(n?) to O(n). Numerical experiments also indicate
that the preconditioned systems exhibit favorable clustering of eigen-
values. Both the computation (based on averaging of the coefficients of
the elliptic operator) and the inversion (using FFT’s) of the circulant
preconditioners are highly parallelizable.
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1 Introduction

In this paper, we are concerned with the numerical solution of linear bound-
ary value problems of elliptic type. After discretization, such problems re-
duce to the solution of linear systems of the form Az = b. In this paper,
we shall only consider the case where A is symmetric and positive definite.
In practice, large problems of this class are often solved by iterative meth-
ods, such as the Chebychev method and the conjugate gradient method.
Contrary to direct methods in which the coefficients of A are directly trans-
formed, at each step of these iterative methods only the product of A with
a given vector v is needed. Such methods are therefore ideally suited to
exploit the sparsity which A possesses.

Typically, the rate of convergence of these methods depends on the
condition number k(A) of the coefficient matrix A: the smaller x(A) is,
the faster the convergence. Unfortunately, for elliptic problems of sec-
ond order, usually k(A) = O(n?), where n is the number of degrees of
freedom (e.g. mesh points) in each coordinate direction, and hence grows
rapidly with n. To somewhat alleviate this problem, these iterative methods
are almost always used with a preconditioner M and the conjugate gradi-
ent method is applied instead to the transformed system Az = b where
A=M12AM 12 7 = MY2z and b = M '/2b. The preconditioner M is
chosen with two criteria in mind: to minimize (M ~'A) and to allow effi-
cient computation of the product M ~'v for a given vector v. These last two
goals are often conflicting ones and much research has gone into devising
preconditioners that strike a delicate balance between the two.

One of the most popular and most successful class of preconditioners
is the class of incomplete LU factorizations, see for instance, [10, 2]. The
central idea is to factor A into approximate triangular factors L and U via
an elimination process such that L and U have nonzero entries only where
the corresponding element of A is nonzero. For some of these precondition-
ers, it can be proven that k(M ~1A) = O(n) for certain classes of elliptic
problems, see [8, 11, 2]. This is a much slower growth compared to the
unpreconditioned system.

One potential problem with the ILU preconditioners is that both the
computation and the application of the preconditioners have limited degree



of parallelism, due to the inherently sequential way in which the grid is tra-
versed. Attempts to modify the method (e.g. by re-ordering the grid points)
and to devise other more parallel methods (e.g. polynomial preconditioners)
often result in a deterioration of the convergence rate.

The purpose of this paper is to propose another class of precondition-
ers, one that is based on averaging the coefficients of A to form a circulant
approximation M. Part of our motivation is to exploit the fast inversion
of circulant systems via the Fast Fourier Transform (FFT). We prove that
circulant preconditioners can be chosen so that (M 'A) = O(n), just as
for ILU type preconditioners. In addition, we are motivated by recent re-
search on circulant preconditioners for Toeplitz systems [5, 7], which shows
potential for favorable clustering of eigenvalues of the preconditioned sys-
tem. Finally, both the computation (based on averaging of the coefficients
of the elliptic operator) and the inversion (using FF'T’s) of our circulant pre-
conditioners are highly parallelizable across a wide variety of architectures.

Our preliminary numerical experiments show that the circulant precon-
ditioners are quite competitive in terms of number of iterations with the ILU
preconditioners for elliptic problems with mildly varying coefficients. As is
well-known, the ILU preconditioners are rather insensitive to the variation
of the coefficients and for such problems they rquire much fewer number of
iterations (than most known preconditioners in fact). Part of our numerical
experiments are designed to study the cross-over point in this comparison.

Recently, several interesting multilevel elliptic preconditioners have been
proposed in the literature [1, 3, 18, 14] which are highly parallelizable and
have very attractive convergence rates. However, these preconditioners are
not directly applicable when the discrete algebraic problem does not have
an underlying multilevel structure. For such problems, we hope that the
circulant preconditioners proposed here will offer an interesting alternative
to ILU-type preconditioners on parallel computers.

The idea of circulant preconditioners has been proposed independently
by Holmgren and Otto [12] for preconditioning implicit systems arising from
hyperbolic problems. For such problems, the coefficient matrix A is often
highly nonsymmetric and non-diagonally dominant and hence many clas-
sical preconditioning techniques are not effective (and sometimes not well-



defined). For these problems, the circulant preconditioners are often the
only ones that work.

We mention that it is also possible to use skew-circulant precondition-
ers for general Toeplitz systems. Huckle [13] has shown that skew-circulant
preconditioners and combinations of skew-circulant and circulant precondi-
tioners can be as effective as the circulant preconditioners. However, we
shall limit our attention only to circulant preconditioners in this paper.

The outline of the paper is as follows. In §2, we define the circulant
preconditioner and analyze a model problem in the one-dimensional case.
Analysis of the spectral condition number of the preconditioned system are
given in §3 for the model Laplacian operator on a square and extended
to variable coefficient operators in §4. Some numerical experiments are
presented in §5 to verify these theoretical bounds and to illustrate the effect
of clustering of the spectrum. Extension to the case of irregular domains
are discussed in §6.

2 Circulant Approximations to Elliptic Operators:
The 1D Case

In this section, we derive various circulant preconditioners for elliptic oper-
ators on rectangular domains. Our basic strategy is to choose as precondi-
tioner a matrix C' which is a good approximation to the coefficient matrix
A in the sense of minimizing [|A — C|| in some appropriate norm. In the
Frobenius norm, denoted by || - ||, this problem has a trivial solution, first
noted in [7]. Let the elements of A be denoted by a;; and the elements of
the first row of C' be denoted by (c1, ¢, ..., ¢y ).

Theorem 1 The best circulant approximation C to a given n-by-n matriz
A in the sense of minimizing |A — C||F is given by:

1 n
¢i=_ 21 Qj (j+i—1)modn- (2.1)
]:

Moreover, C is symmetric positive definite if A is.



The above formula has a simple graphical interpretation: ¢; is simply
the arithmetic average of that diagonal of A (extended to length n by wrap-
around if necessary) containing the corresponding element a; ;. For further
properties of this circulant approximation to a general matrix, we refer the
reader to [6].

We remark that if A is a general Toeplitz matrix, one can define other
good circulant approximations to A, see for instance, [13, 16, 17]. How-
ever, we emphasize that some of these circulant approximations, such as the
Strang’s preconditioner [16], are not defined for general non-Toeplitz matrix.

Now consider applying the result on the best circulant approximation C'
to a simple elliptic problem in 1D, namely the problem:

—(a(z)uz)z = f(z) (2.2)

on the interval [0,1] with Dirichlet boundary conditions u(0) = wy and
u(1) = u;. Using the usual 3-point centered differencing on a uniform mesh
with n interior grid points z;’s, the corresponding matrix A is a symmetric
tridiagonal matrix with nonzero elements of the i-th row given by

(—a(%f%)aa(%fé) +a($i+%)v_a($i+%))'

The best circulant approximation to A is given by

1 n—1
cy = an—ﬁjzﬂa(xfr;)

1
. = —2¢+ H(a(mé) + a(:z:nJr%)),
with all other coefficients ¢;’s defined to be zero. The coefficients of the
circulants are therefore simple averages of the coefficient a(x) over the grid

points.

The question now is how good this preconditioner is in the sense of
minimizing k(C~1A). As it turns out, C' defined this way is not as good
as some of the ILU type preconditioners asymptotically. Precisely, it can
be shown (as part of a result which we shall prove later) that x(C14) =
O(n3/?).



The above situation is reminiscent of that of the unmodified ILU precon-
ditioner [15]. In that situation, the bound for the condition number can be
lowered to O(n) if we modify the preconditioner in a simple way: [8, 11] at
each step of the elimination process, we add enough to the main diagonal
entry to make the row sum zero and then add a quantity of size O(n 2).
Borrowing from this idea, we can modify our circulant preconditioner C by
keeping the definitions of ¢o and ¢, the same and redefining c¢; as follows:

c1 = —(2¢9) + pn™ %, (2.3)

where p is a positive constant independent of n and a > 0. Clearly, this

modified circulant matrix has each row sum equal to pn™%.

It turns out that this simple modification is sufficient to reduce x(C 1 A)
to O(n) for a suitably chosen «. We shall illustrate this for the special case
of a(x) = 1. In this constant-coefficient case, A is a tridiagonal Toeplitz
matrices given by tridiag(—1,2,—1) and C is a circulant matrix with the
only three nonzero coefficients given by ¢; = 28 4+ pn=® and co = ¢, = —0,
where § = ”T_l For easy reference by later discussion, we denote A and C
for this constant-coefficient 1D case by Ay and Cj respectively.

Theorem 2 Let Ay = tridiag[—1,2, —1] and Cy be the circulant matriz with
the first row given by

(2/8+n%a_ﬁaoa"'aoa_ﬁ)’ (24)
where B = (n—1)/n, p=0(1) and a > 0. Then we have,
O(n®72) < XNCyt4g) < O(n?), if a <2,

and

O(1) < MCyt4g) <O, if a > 2.

As a consequence, we have:
K(CylAg) < O(n>7%), if a < 2,

and
K(CytAp) < O(n™Y), if a > 2.
@)

The optimal value of k(Cy " Ag) < O(n) is achieved with a = 2.



Proof. See Appendix.

Remark. It can be easily verified that the unmodified circulant precondi-
tioner corresponds to the case p = 2 and @ = 1. The results of the above
theorem show that in that case x(Cy ' A4g) < O(n'?), justifying our earlier
statement.

When o = 2, we can show furthermore that the spectrum of C LAy is
clustered.

Corollary 1 If o = 2, then at most one eigenvalue of C(;IAO lies outside
[e,n/(n —1)], where ¢ = 4% /(872 + p) + O(n~1).

Proof. See Appendix.

3 Analysis for the 2D Model Problem

While so far we have discussed only 1D problems for the purpose of illustra-
tion, the results do extend to higher dimensions. Consider for example the
2D problems:
—(a(w,y)ug)s — (b(xvy)uy)y = f(z,y)

on the unit square [0,1] x [0,1] with Dirichlet boundary condition. Let
the domain be discretized by using a uniform grid with n grid points in
each coordinate direction, denoted by z; and y;. Consider the usual 5-
point centered difference approximation with the grid points ordered in the
z-direction first. The matrix A is an n’-by-n? block tridiagonal matrix
where the diagonal blocks are scalar tridiagonal matrices and the off-diagonal
blocks are diagonal matrices.

We consider two choices of circulant preconditioners for A. The first is
obtained by applying the circulant approximation in Theorem 1 directly to
A. This preconditioner, denoted by Cp, is defined by

e = 2(@+b)+pn (3.1)



where
a= EZZa(wHé,yj), (3.4)
and

b= mZZb(%yﬂ%), (3.5)

and all other ¢;’s defined to be zero. Again these coefficients are simple
averages of the coefficients a(z,y) and b(x,y) of the differential problem
over the grid. We shall call Cp the point-circulant preconditioner for A.

For the second choice of preconditioner, we preserve the block structure
of A and define a block-circulant preconditioner Cp as follows:

Cp=C@I+I®C" (3.6)

where C® and C? are n by n circulant matrices defined by:

Ct = 2a+pn™“,
cy = -—a,
Ccy = -—a,
Ct = 2b4pn?,
Ch = —b,
ct = —bp,

with all other diagonals of C® and C? defined to be zero.

We note that C'p can be inverted on a given vector using n FFTs of size

n, whereas Cp requires one FFT of size n?.

Similar circulant matrices can be defined for more general elliptic opera-
tors with more complicated difference stencils and also in higher dimensions.

We now analyze the convergence rate of our method for the special case of
the discrete Laplacian on the unit square with Dirichlet boundary conditions.



The n?-by-n? coefficient matrix A, is given by
A=A @1+ 1® Ay, (3.7)

where Ay = tridiag[—1,2,—1]. In this case, a = b = 3 = (n— 1)/n. In
particular, the block-circulant preconditioner, denoted by C} now, is given
by

Co=CoI+I®C(Cy, (3.8)

where (Y, given by (2.1) and modified by (2.3), is the circulant approxima-
tion of Ayp.

For the block-circulant preconditioner, the results in the 1D case can
readily be generalized.

Theorem 3 For the block-circulant preconditioned systems for the 2D model
problem, we have

O(n®?) < X(C, A, <O(n?), ifa <2,

and
O(1) < ANCy'A) <O, if a > 2.

As a consequence, we have:
K(Cy TAL) < O(M*72), if a < 2,

and
K(Cy tA:) < O™ ), if a > 2.

The optimal value of K(Cy 'A.) < O(n) is achieved with o = 2.
Proof: See Appendix.

For the point-circulant preconditioned systems, we obtain a slightly
larger bound on their condition numbers. For simplicity, we only consider
the case where o = 2.



Theorem 4 Let C, be the point-circulant preconditioner for the 2D model
problem with o = 2. Then we have O(1) < X(C,'A,) < O(nlogn) and
hence k(C, tAc) < O(nlogn).

Proof: See Appendix.

4 Analysis for Variable Coefficient Problems in 2D

In this section, we shall make use of the results of the previous section and
extend them to variable coefficient problems. We consider elliptic equations
of the form

—(a(z, y)uz)e = (b(z,y)uy)y = f(2,9) (4.1)

on the unit square. We assume that the coefficients a(z, y) and b(z, y) satisfy
0 < emin < a(:z:,y), b(I,y) < Cmax

for some constants cpin and cpax. Without loss of generality, we assume
Cmin < 1and ¢max > 1. Let A be the nZ—by—n2 matrix obtained by discretizing
(4.1) by the standard 5-point scheme on a uniform n by n grid. Define
Amax = Cmax * A¢ and Apin = ¢min - Ae, where A, is given by (3.7). We claim
that both A, — A and A — Anin are both positive semi-definite matrices.

We verify the claim for A — Anjn. Let us assume that the domain is
discretized by using a uniform grid with n grid points in each coordinate
direction, denoted by z; and y;. It is easy to see that every row in A — Apin
has at most five nonzero entries and they are given by

(A= Amin)j; = alz;_1,95) +alz;,1,y5) +bzj,y;_1)
+b(fL'], y]_i_%) - 4Cmina
(A - Amin)j,jfl = Cmin — a(xjféayj)a
(A - Amin)j,j+1 = Cmin — a($j+%7yj)a
(A - Amin)j,j—n =  Cmin — b(xja yj_%)a
(A_Amin)j,j+n = Cmin _b($jayj+%)a J= ]-7"'777'27

10



where we employ the convention that (-);; = 0 if k& lies outside the range
[1,n2]. Tt is now clear that the diagonal entries of (A— Ap,i,) are non-negative
and the off-diagonal entries are non-positive. Moreover, we have

n2
(A= Amin)jj > D (A= Amin)jil-
i%
Hence by the Gerschgorin Theorem, A — Ay, is positive semi-definite. Sim-

ilarly, we can show that Apnax — A is also positive semi-definite. Thus we see
that for all nonzero vectors z,

0 < 2*Apint < ™Az < 2" Apaxe. (4.2)

Now let Cp, Ciax and Ciuin be the the block-circulant approximations
of A, Apmax and Apin respectively. Clearly, Chax = Cmax - Cp and Cpin =
Cmin - Cp, where Cy, given by (3.8), is the block-circulant approximation of
A.. Consider first the matrix Cg — Cyin- By our definition of block-circulant
approximations, it can be easily verified that this matrix has non-negative
diagonal entries and non-positive off-diagonal entries. It therefore follows
that

2 2
o 2p(1 — cmin <
(Cp — Chin)jj = Z [(Cs — Cmin)jil + % > Z [(Cs = Cmin)jil-
= 2

Thus by the Gerschgorin Theorem, the matrix Cp — Cpy, is positive semi-
definite. By a similar argument, so is the matrix Cpax — Cg. Hence for all
nonzero vectors z, we also have,

0 < 2*Chint < 2°Cpx < 2" Chax.
Combining this result with (4.2), we get

0< Cmin T¥Acx 2 Aminx ¥ Ax T¥* Amax®  Cmax T Acx
Cmax TCpz *Cpaxz — 2*Cgx — *CpinT  Cmin 2¥Chz

Recalling the results for the constant-coefficient case, namely Theorem 3,
we have the following theorem.

11



Theorem 5 Let A be the 5-point discretization matriz of
—(a(z,y)us)e — (b(z,y)uy)y = f(z,y)
on the unit square with
0 < ¢min < a(z,y),b(z,y) < cmax

for some constants cmin and cmax and let Cg be the block-circulant precon-
ditioner of A as defined in (3.6). Then we have

O(n®2) < A(Cp'A) <O(n?), if a <2,

and
O(1) < A(Cg'A) < O(n*7h), if a > 2.

As a consequence, we have:
K(CZLA) < O(n?73), if a <2,

and
K(Cg'A) <O, if a > 2.

The optimal value of k(Cz'A) < O(n) is achieved with o = 2.

For the point-circulant preconditioned systems, using a similar argu-
ment, we have the following results. As in Theorem 4, we only consider the
case where o = 2.

Theorem 6 Let A be the 5-point discretization matriz of
—(a(z,y)uz)e — (b(z,y)uy)y = f(z,y)
on the unit square with
0 < ¢min < a(z,y),b(z,y) < cmax

for some constants cmin and cmax and let Cp be the point-circulant pre-
conditioner of A as defined in (3.1)-(3.3) with o = 2. Then we have
O(1) < M(Cp'A) < O(nlogn) and K(Cp'A) < O(nlogn).

12



Finally, we note that the application of the circulant preconditioners
require O(n?logn) flops, which is slightly more expensive than the O(n?)
flops for the ILU-type preconditioners. However, the FFTs can be computed
in O(logn) parallel steps with O(n?) processors whereas the ILU precondi-
tioners require at least O(n) steps regardless of how many processors are
available.

5 Numerical Experiments

In this section, we compare the performance of our method to the modi-
fied incomplete LU (MILU) preconditioner [2]. In these preliminary tests,
we shall mainly compare the number of iterations, rather than the actual
computing time. The equation we used is

Sl e i1 Ssinen(a + ) 5] = F (o)

on the unit square and where € is a parameter. We discretize the equation
using the standard 5-point scheme. Both the right hand side and the initial
guess are chosen to be random vectors and are the same for the different
methods. Computations are done with double precision on a VAX 6420 and
the iterations are stopped when ||77||2/||7°||2 < 1075. Here 7 is the residual
at the jth step and ||(z1, -, 2zn)*||3 = Y_r; 27. The block- and the point-
circulant preconditioners we used are defined in §3 and §4. The parameters
we choose for our experiments are p = 1 and o = 2 for both the circulant
and the MILU preconditioners.

Since the circulant preconditioners are based on averaging of these coeffi-
cients over the grid points, their performance will deteriorate as the variation
in the coefficients increase. To somewhat alleviate this potential problem,
we first symmetrically scale A by its diagonal before applying the circulant
preconditioners. This technique has also proven to be very useful when used
in conjunction with other kinds of preconditioners. In our experiments, we
apply diagonal scaling to all methods.

Tables 1a-1b show the number of iterations required for convergence for

different choices of €. The data for the preconditioned iterations are also
plotted in Figures la-1d.

13
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We see that for small values of € (e.g. € < 0.01), the performance of the
circulant preconditioner seems to be better than that of MILU. However,
the MILU method is less sensitive to the changes in €, and for larger values
of € (e.g. € > 1.0), MILU requires less number of iterations than the circu-
lant preconditioners, at least for the values of n used in our experiments.
We also observe that the number of iterations for the circulant precondi-
tioners grows with a rate slightly slower than the predicted O(y/n) growth
of MILU. Therefore, the circulant preconditioners appear more competitive
with MILU as n increases. In all cases, the number of iterations grows slower
than as predicted by Theorems 5 and 6.



€ 0.0 0.01

n No | Block | Point | MILU | No | Block | Point | MILU
4 9 9 9 7 12 9 9 7
8 23 11 12 9 23 12 12 9
10 26 12 13 10 30 13 13 10
16 43 13 16 13 47 15 16 13
20 53 15 17 15 57 17 17 15
32 82 17 20 19 89 20 20 19
40 | 101 18 22 21 106 21 22 21
64 || 157 22 25 27 171 25 26 27
80 | 194 24 28 31 215 28 28 31
128 || 307 28 33 40 333 33 34 40

TABLE la: Number of iterations for different systems.

€ 0.1 1.0

n No | Block | Point | MILU || No | Block | Point | MILU
4 13 9 10 6 14 10 11 6
8 26 12 12 9 28 13 14 9
10 31 13 13 10 34 15 15 10
16 49 16 16 13 51 18 19 13
20 59 17 18 14 61 21 20 15
32 89 20 20 19 99 25 27 18
40 || 118 22 22 21 122 28 30 20
64 | 175 25 27 27 195 35 35 26
80 || 228 29 29 30 246 39 40 29
128 || 366 35 36 39 395 50 51 38

Tables 2 and 3 show the eigenvalue distributions of the preconditioned
systems for € = 0.0 and 0.1 respectively. In the table, the eigenvalues are
“An—1 < A,. We see that for the point- and the
block-circulant preconditioned systems, they have one outlying eigenvalue
An- The rest are in a relatively small interval. In Figures 2 and 3, we plot

ordered as A\ < Ay < -

TABLE 1b: Number of iterations for different systems.

16




the eigenvalue distributions, leaving out the rightmost eigenvalue A,,. The
clustering effect is similar to that of MILU.

No MILU

n A1 An—1 An A1 An—1 An
0.191 | 1.559 | 1.809 | 0.844 | 1.312 | 1.332
0.0630 | 1.853 | 1.940 || 0.878 | 2.114 | 2.117
16 || 0.0170 | 1.958 | 1.983 || 0.912 | 3.874 | 3.885

I

co

TABLE 2a: Eigenvalue Distribution for ¢ = 0.0

Block Point
n A1 An—1 An A1 An—1 An
4 || 0.730 | 1.500 | 2.522 || 0.759 | 1.723 | 4.386
8 || 0.609 | 2.150 | 5.132 || 0.643 | 2.356 | 9.045

16 || 0.553 | 3.602 | 10.380 | 0.575 | 3.889 | 18.347

TABLE 2b: Eigenvalue Distribution for e = 0.0

No MILU

n A1 An—1 An A1 An—1 An
0.192 | 1.589 | 1.808 || 0.845 | 1.302 | 1.331
0.0606 | 1.863 | 1.939 || 0.878 | 2.106 | 2.114
16 || 0.0171 | 1.961 | 1.983 || 0.912 | 3.856 | 3.864

=~

co

TABLE 3a: Eigenvalue Distribution for e = 0.1

Block Point
n A1 A1 An A1 An—1 An
4 1 0.730 | 1.568 | 2.528 || 0.752 | 1.761 | 4.400
8 || 0.604 | 2.300 | 5.142 | 0.637 | 2.471 | 9.067

16 || 0.543 | 3.912 | 10.394 | 0.561 | 4.207 | 18.377

TABLE 3b: Eigenvalue Distribution for e = 0.1

17
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Figure 2. Spectra of the preconditioned systems for n = 16.
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Figure 3. Spectra of the preconditioned systems for n = 16.
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To summarize, we make the following observations from the numerical
results:

1. The circulant preconditioners seem to grow slower than O(y/n) in num-
ber of iterations, which is the asymptotic rate for the MILU precondi-
tioner and also slower than the bounds in Theorems 5 and 6.

2. For small variation of coefficients (¢ < 0.1 in our test problem), the
circulant preconditioners seem to be competitive with the MILU pre-
conditioner in number of iterations.

3. For large variation of coefficients (¢ > 1.0), MILU requires fewer num-
ber of iterations.

4. The circulant-preconditioned systems exhibit clustering of the eigen-
values around 1, similar to MILU.

6 Extensions and Remarks

We first discuss several ways for extending the idea of circulant precondi-
tioners for solving more general elliptic problems.

First, we discuss how to apply the idea of circulant preconditioners for
problems on irregular domains. It should be obvious that the circulant
approximation we use is sensitive to the ordering of the grid points. The
regularity of the coefficient of the matrix A for the natural ordering on
rectangular domains, which plays a fundamental role in the successful per-
formance that we have observed so far, is not naturally present for irregular
domains. We now describe an embedding technique which does maintain
the regularity of the rectangular case. The main idea, which is similar to
one used in the Capacitance Matrix method [4], is to embed the irregular
grid, say €2, in an inscribing rectangular grid S. A natural ordering of the
grid points of S is then used. For grid points in €2, the difference stencil and
right hand side are chosen to match those of the corresponding problem de-
fined on 2. In addition, the difference operator must be chosen so that there
is no coupling with grid points in S\ 2. For the grids points in S\ ©, we
can use an artificially chosen elliptic operator and right hand side, as their
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choice do not affect the solution in Q. The circulant approximation (which
is defined on the embedding domain S) is then obtained by the averaging
procedure defined in Theorem 1. Note that in this approach, the iteration is
carried out on the whole domain S. Of course, the quality of the circulant
approximation will depend on the operator we choose on S\ Q. Intuitively,
one should choose it to be as close to the operator on {2 as possible.

We now make some general remarks on the application of the circulant
preconditioners. First, circulant preconditioners can be applied to more gen-
eral discretizations (e.g. higher order finite elements) and problems other
than second order elliptic problems with Dirichlet type boundary condi-
tions. As mentioned in the introduction, the possibility of applying them
to nonsymmetric linear systems arising from discretizations of hyperbolic
systems is particularly attractive, because many of the classical precondi-
tioners (e.g. ILU) either are not well-defined or do not perform very well
for these problems, primarily due to the non-diagonal-dominance of the co-
efficient matrix. Some promising preliminary numerical results have been
reported in [12]. Finally, the type of boundary conditions may also affect
the performance of the circulant preconditioners, which should work better
for problems with periodic boundary conditions.

We would like to make a final comment on the relationship of circulant
preconditioners to preconditioning by approximations by separable elliptic
operators (and the use of fast direct solvers (FDS)). Both derive their ef-
ficiency from that of the Fast Fourier Transform (FFT). For problems on
regular domains, it is possible for the FDS method to produce a spectrally
equivalent preconditioner to the original operator [9] (although this does not
necessarily mean it is a more efficient method for a problem with a given
size). Unfortunately, for problems on irregular domains, the separable pre-
conditioner itself cannot be directly solved efficiently via FDSs. The usual
approach is the capacitance matrix method, in which an embedding of the
irregular domain within a regular one is also made. The coefficient matrix
S of the separable approximation to A on the embedded domain can be
written as: S = B + UV, where B is a separable operator on the regular
embedded domain and U and V are low rank matrices. In the capacitance
matrix approach, the system with S is solved using the Woodbury formula
and at each step the necessary application of B! is computed by the FDS.
Thus, this approach consists of a two-step process: preconditioning A by

20



S and then computing S~'v via repeated applications of B~'. The circu-
lant preconditioner approach can be viewed as directly solving the system
Az = b by the preconditioned conjugate gradient method with a circulant
preconditioner B without going through a separable approximation first. In
some sense, one can view the circulant proconditioner approach as a way of
extending the FDS to irregular domains by using the main tools of the FDS
(i.e. FFT) to define a preconditioner.
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8 Appendix

Proof of Theorem 2: In the constant-coefficient case,
Ay = tridiag[—1, 2, —1], (8.1)
and Cj, constructed according to (2.1) and (2.3), is given by
Co=p[+{Ag—eie), —enel} + n%[ (8.2)

where 8 = (n —1)/n = O(1) and e; is the j-th unit vector.

To compute Amin(Cy L Ay), we first note that for all n-vectors z,

z*Cox = Bz Aoz + Pz (ere] + eney)x — Br*(e1 +epn)(er +e,) T + n—'oax*m

Since the matrices (e; + ep)(e1 + en)* and Ay — (e1e] + epe);) are positive
semi-definite, we have

x*Cox < 202" Agx + n—pax*ac (8.3)
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Using the fact that z*z < O(n?)z* Agz and p = O(1), we see that

(284 0> ) ™" < Ain( G5 Ao). (8.4)

To compute )\max(CO_lAg), we note from (8.2) that for all n-vectors z,

B Agx = x*Cox+§x*(el +en)(e1ten) z— E:E*(el —ep)(e1—ep) x— n—pax*x,

where the last two terms on the right hand side are always non-positive.
Thus

Br*Agx < ©*Cox + gx*ee*x, (8.5)
where e = e; + e,,. Next we claim that for all nonzero n-vectors z,

Tz*ee*r

=1/2 4« ~—1/2 a/2 a—1
< < . .
T Cor = [|Cy "Tee*Cy ]2 < O(n*) +O(n* ") (8.6)

Substituting this into (8.5), we have
Amax(Cy ' Ap) < O(n?) + O(n*1).

Theorem 2 now follows by combining this with (8.4).

It remains to prove (8.6). We note that for all nonzero vectors z,

T*ee*r
z*Chx

< ||C(;1/2ee*0(;1/2||2 = e* ale.

Since Cy is a circulant matrix, Cy = FAF*, where

1 g
F = _627r7,]k/n
N
is the Fourier matrix and A is the diagonal matrix containing the eigenvalues
of Cy. It can easily be shown that

0<j<n—1,0<k<n—1,

p .
[A]j,j = )\j(C@) = n—a + 46 sin? 9]',
where 0; = 7j/n, 0 < j <n—1. Hence
e* ale = e*FA'F*e
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n—1
4 cos? 0

- 2.
= p/n® + 45 sin” 0;

2 cos?@; 8 cos? 0
< 0 a—1 J e
S O™+ nf Z sin? § n p/ne
j=n/n*/? !
2 [/ 2 8 n n®
< = - .
O(n” )+,87r /7r/na/2 cot 0d9+n oz,
2 a/2
< O( )+ﬁ_C0t( /2)+O(n )
< O N +0n?). O

Proof of Corollary 1: We first observe that for any n-vectors z,

(n+1)2

—1 %
Agr < ————
)@ ow < 472

z*z < (4sin’

*
Apz.
n+1 T

Thus by (8.3), we have

472 1
T Lo

(C-1 P T
Amin(Cy " Ag) > (2ﬁ+ — T 0 )) 28W25+p "

Next we rewrite (8.2) as

CoiAnCy? = Lo L ey —en)(er — en)C
0 0%V - /8 ﬂnZ 1 n 1 n 0

1
+C, 2(61 +ep)(e1 +en)Cy 2.

N =

Notice that the second and the third terms in the right hand side are negative

semi-definite matrices. Hence the matrix formed by the first three terms in

the right hand side will have eigenvalues A < 1/3. Since the last term in the

right hand side is a rank one matrix, by Cauchy interlace theorem, see [10,
1

_1 1

p.269], at most one eigenvalue of C| 2 AgC,, * has value greater than 1/4.
_1 _1

Since Cj * ApC, > and Cj LAy are similar, the Corollary follows. O
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Proof of Theorem 3: For the constant-coefficient case, we have
A=A 1+ 1® Ay,

and its block-circulant approximation is given by
Co=Co @1+ 1®Ch.

Here Ay and Cj are given by (8.1) and (8.2) respectively. By (8.3), we have
for any n’-vector x,

z'Chx = " (Co®@ Nz +z"(I®Chx
2
< 20[z* (Ao ® Dz + 2" (I ® Ag)z] + n—Z:z:*(I ® I)z
2p

= 202" Acx + — "1
n

Since z*z < O(n?)z* Az for all vectors x, we have

28+ 0(n* ) < Amin(C; ' Ao).

To find Amax(C, *4.), we note that by (8.5), we have

fz*Acx = z"(fAy @Iz + 2" (I ® Aoz

< ' Chx + g:ﬁ*[(I ®ee) + (ee” ® I)]z, (8.7)

where e = e +¢,,. Since (Cy®1I) is positive definite, we have for all nonzero
vectors z, 2*Cpz > z*(I ® Cp)z. By (8.6), we then have

(I ® ee*)x (I ®@ee")r _1 . _1
z*Chyx = I*(I@ C())II? - ||(I® CO) 2([@66 )(I® CO) 2”2
_1 _1 _1 _1
= TG I e) T eyl = 110 (G Fee Tyl

1 1
= ||C, *ee’C, *|l2 < O(na_l) + O(na/Q).

Similarly, we have

27*(66* ®I)$ a—1 /2
— < .
TR <OMm* )+ 0(n*°)
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Thus by (8.7),

Amax(Cy tA.) <O Y +0(n*?). O

Proof of Theorem 4: We first observe in this case,
Cp = BAc— BLin + %I, (8.8)

where Ly, is a symmetric matrix of rank 4n given by

n n—1
* * *
Liyn = €16,z + 2 :ejen27n+j + 2 :ejnejn-l-l

n n—1
en261 6n27n+jej 63n+16jn.

By the Gerschgorin Theorem [10], we can easily check that A. + Lay is a
positive semi-definite matrix. Thus for any n’-vector =, —z*Lypz < z*A.x.
Since z*z < O(n?)z*A.x, we have, by (8.8)

" Cpz < (26 + O(1))z* Az,
for any vector 2. Thus Amin(C, 'Ac) > O(1).

Next we claim that )\maX(C’p_lAc) < O(nlogn). By (8.8),

N =

1 1 1 1 _
Cp* Ay ™ = (1 - %o;l) +Cp 2 LunCy 2. (8.9)
Let
} n n2 n n—1
Lin=3_ei€j+ D, €€+ et Y Cint1€nii;
j=1 j=n2—n+1 Jj=1 Jj=0
and

M = i4n — L4n
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then it is straightforward to check that

n

M = Z(BJ — €n2_n+j)(€j — €n2_n+]’)*
j=1
n—1

+ 3 (ejn = ejnt1)(ejn — ejn1)” + (e1 — ez2)(e1 — €p2)",
=1

which is clearly a positive semi-definite matrix.

Rewrite (8.9) as

_1 _1 1 o)
For j =1,2,- , since
\i(Cp) = 4B sin* (Z2) + 48sin? (2L) + £ (8.11)
n n n
we have

L48p2000)2 5.
Therefore,

dn(1 = B0 < G- —Fom <o @1

_1 _1
Since Cp *MC) * is a positive semi-definite matrix, to get a bound for
AmaX(C’p_lAc), it remains to estimate the 2-norm of the last term in (8.10).
We notice that for all j = 1,---,n?,

1
ICp 2ejeiCp 2, = le5Cy teillz = (G, s

the j-th diagonal entry of C} L. Since C, 1'is circulant and positive definite,

Cy 11j; = d for all j, where d is some positive constant. Thus

1 _1
1, ? LunCyy |2 < 4nd. (8.13)

Next we estimate d. By the Trace Theorem and (8.11), we have

HQZ( + 4B sin? (_g>+45sm (7;7)>_1.
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Since
. mj . ]
Ap2_i(Cp) = % + 48 sin? (1 — —]) + 48 sin? (nm — ;‘7)
P T T
) + 4B sin’ (_2) + 4B sin® (= o ) = Ai(Chp),

for j = 1,---,n2%/2, we see that

n/2

L\ -1
Z( + 4f sin” (—g)+4ﬂsm (fj)) + (8.14)

2
>
We now compute the summation in (8.14) by partitioning the interval [1, ”—22]
into n subintervals of length %n

Let k =0,---,5—1. We first consider the case when kn+1 < j < kn+3.
Since ) " 5 1
ﬂ<7r(n+n/)<7r(+)n

0<

< m/2,

n? — n? n?

we see that . .2
.27 J

4 sin (m) > lﬁﬁﬁ.

Similarly, if we let £ = j — kn, then n¢/n < 7/2, and we have
l 7

4/ sin® ( ) > 16,8 .

Thus using the substitution ¢ = 5 — kn, we have
kn+n/2 . DN -1
7 T

| Z (% + 43 sin? (n—';) + 43 sin® (%))
j=kn+1
n/2

Z(n lﬁﬁ(€+kn) + 455 [W(E—J;kn)])

(=1
n/2

-1
B 1) 02 2Wkn k2 w4
= g <ﬁ+166(m+7+ﬁ)+4’881n (;)

J 2 €2
< +16,8 +168— )

n/2

n?> " (p+168(k* + £2))”

£=0

-1

IN

3
N =

/

IN

(=1

1

IN

(8.15)
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For kn—i—%n—i—l < j<kn+mn, welet £ =j — kn and use the same
argument as above, we have

kn+n

) . —1
Z (% + 4ﬁsin2(%) + 4(3 sin? (%))
j:kn-}-%n—i—l
n -1
P k2 w4
< Z <ﬁ+16ﬁﬁ+4ﬁsm (;)
t=3n+1
an ! P k? !
_ 102
= Y <ﬁ+165ﬁ+4ﬂsm (;)>
=0
n/2
< 02> (p+ 168K + ) .
£=0

Combining this inequality with (8.15), we see that (8.14) becomes

n/2—1n/2

2<4 3 S (p+ 16608 + 2) " + 2 = O(logn).
k=0 (=0 p

8.12) to (8.10) and noting that C, >MC, *> and C, 2A.C, > are positive
g P P P f2
semi-definite, we see that

1. 1
Hence by (8.13), ||Cp 2 L4Cp *|l2 < O(nlogn). Applying this result and
1 1 1 1

_1 _1
)\max(CIleC) = ||Cp 2A.Cp %|l2 < O(nlogn). O
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