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Abstract

We propose iterative thresholding algorithms based on the iterated Tikhonov method
for image deblurring problems. Our method is similar in idea to the modified linearized
Bregman algorithm (MLBA) so is easy to implement. In order to obtain good restorations,
MLBA requires an accurate estimate of the regularization parameter α which is hard to
get in real applications. Based on previous results in iterated Tikhonov method, we design
two nonstationary iterative thresholding algorithms which give near optimal results without
estimating α. One of them is based on the iterative soft thresholding algorithm and the other
is based on MLBA. We show that the nonstationary methods, if converge, will converge to
the same minimizers of the stationary variants. Numerical results show that the accuracy
and convergence of our nonstationary methods are very robust with respect to the changes in
the parameters and the restoration results are comparable to those of MLBA with optimal α.

1 Introduction

We consider the problem of finding f ∈ RM in the system

g = Kf + e, (1)

where g ∈ RN is given, e ∈ RN is the noise and K ∈ RN×M , N ≤ M , is an ill-conditioned
matrix. Such problem arises in many practical problems in science and engineering [3, 43,
49, 29, 36]. For image deblurring problems, K in (1) can simply be a blurring operator or
be written as K = ADT , where A is a blurring matrix and DT is a wavelet or tightframe
synthesis operator [13, 7]. In the latter case, f will be the wavelets or tightframe coefficients
of the original image.

Due to the ill-conditioning of K, to find an estimation of the solution f , it is necessary to
resort to a regularization method [48, 18]. The following iterative soft thresholding algorithm
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(ISTA) was proposed independently from several authors [14, 32, 33, 20, 21]. We consider
here the formulation in [21]:

fn = Sµ(fn−1 +K∗(g −Kfn−1)), (2)

where the nonlinear operator Sµ is defined component-wise by

[Sµ(g)]i = Sµ(gi), (3)

with Sµ the soft-thresholding function

Sµ(x) = sgn(x) (|x| − µ)+ .

In [21] it was proven that, under the assumption that ‖K‖ < 1, the iteration (2) converges
to a minimizer of

Φµ(f) = ‖Kf − g‖2 + 2µ‖f‖1, (4)

where ‖·‖ denotes the `2-norm. Since the convergence in general is slow, many improvements
are proposed in literature to accelerate the convergence, see [1, 22, 40] and references therein.

A new fast algorithm is the modified linearized Bregman algorithm introduced in [8]. It
is derived in a different way, by considering the constraint minimization

min
f
{‖f‖1 : Kf = g}. (5)

The method we propose in this paper is also derived by considering the same minimization
(5). If f is a solution of (5), it is the only intersection point of the `1-ball B = {x :
‖x‖1 ≤ ‖f‖1} and the hyperplane P = {x : Kx = g}. Since both B and P are convex, the
intersection can be determined by alternate projections onto convex sets as proposed in [12].
The projection onto P is obtained by x̂ = x + K∗(KK∗)−1(g −Kx), while the projection
onto B requires the soft-thresholding. Since K is ill-conditioned, one can replace (KK∗)−1

by the regularized inverse (KK∗ + αI)−1, where α > 0 is the regularization parameter and
I is the identity operator. This results in our method:

fn = Sµ(fn−1 +K∗(KK∗ + αI)−1(g −Kfn−1)). (6)

We remark that the iteration inside Sµ is what is called iterated Tikhonov iteration, see [29].
Thus we name our method iterated Tikhonov thresholding algorithm (ITTA). Following the
analysis in [21], we can prove that it converges to a minimizer of

‖Kf − g‖2(KK∗+αI)−1 + 2µ‖f‖1,

where ‖x‖2P = 〈x, Px〉 for any positive definite matrix P .
We will see that our method (6) is very similar to the modified linearized Bregman

algorithm (MLBA), and requires the same computational cost at each iteration. The quality
of the restorations of the two methods are comparable. We will see that both methods
are very sensitive to the choice of α. If α is slightly off the optimal one, the quality of
the restorations can deteriorate quickly, see Figures 1 and 2 in Section 5. For practical
problems, it may be difficult to obtain the optimal α. Since our method (6) involves an
iterated Tikhonov step, well-known results for choosing optimal α in iterated Tikhonov
method, such as those in [34], can be applied here. We apply the strategy in [34] to both
ITTA in (6) and MLBA to obtain two nonstationary algorithms. Numerical results show
that the resulting nonstationary algorithms provide the solution with near optimal α. Hence
there is no need to estimate the optimal α in our algorithms.
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The paper is organized as follows. In Section 2 we recall the classical iterated Tikhonov
method and some convergence results. In Section 3 we derive our method ITTA, provide a
convergence analysis and investigate its relationship with MLBA. In Section 4 we propose
nonstationary version for both ITTA and MLBA and prove that the resulting methods,
if converge, will converge to the same minimizers of the stationary variants. Numerical
examples are given in Section 5 to show that our nonstationary methods are robust against
α. Concluding remarks are in Section 6.

2 Iterated Tikhonov Method

A classical approach for computing a regularized solution of (1) is to solve the minimiza-
tion problem minf ‖Kf − g‖2 by iterative methods but stop before it converges using, for
instance, the discrepancy principle [42, 36]. One example is the Landweber method:

fn = fn−1 + τK∗(g −Kfn−1), 0 < τ < 2/‖K∗K‖. (7)

It has the nice property that a precise estimation of the stopping iteration is not crucial
[39, 47, 29, 36]. However, it converges slowly. Its convergence can be accelerated by a proper
choice of τ or by adding a regularization preconditioner [46]. Alternatively, one can use
other iterative methods to get fast convergence. For example, conjugate gradient for normal
equations [29] can be used with similar regularization feature. In this paper we consider the
iterated Tikhonov method [29].

Iterated Tikhonov method can be defined as an iterative refinement of the Tikhonov
method [38, 37, 31]. The classical Tikhonov method computes the solution f̂ = (K∗K +
αI)−1K∗g of the following minimization problem

min
f
‖Kf − g‖2 + α‖f‖2, α > 0.

Refining the previous approximation by solving the error equation with the Tikhonov method,
we obtain the iterated Tikhonov method:

fn = fn−1 +K∗(KK∗ + αI)−1(g −Kfn−1). (8)

The previous iteration (8) can be interpreted in many different ways: (i) it is a preconditioned
Landweber method with regularization preconditioner (K∗K + αI)−1 and τ = 1 (see [46]),
(ii) it is equivalent to the Levenberg-Marquardt method applied to minf

1
2‖Kf − g‖

2 (see
[35]), and (iii) it is a gradient descent method for minf

1
2‖Kf − g‖

2
(KK∗+αI)−1 . The method

is characterized by the semiconvergence property: the iteration starts to converge to the
true solution for small values of n, but then when n becomes large, it diverges. If α is
chosen properly, it can converge to the true solution in few iterations. If α is too large the
convergence slows down, while if α is too small the noise is already amplified at the early
iterations and the computed solution will not be accurate.

It can be difficult to get a good α in practice, so in [6], the authors proposed the nonsta-
tionary iterated Tikhonov method:

fn = fn−1 +K∗(KK∗ + αnI)−1(g −Kfn−1), f0 = 0. (9)

Here αn is changing at each iteration n. Below we give some results on the convergence of
(9) for the noise free case, i.e., e = 0 in (1). Define

γn :=

n∑
j=1

α−1
j . (10)
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Theorem 1 ([6]) The method (9) converges to the solution f? of K∗Kf = K∗g if and
only if

lim
n→∞

γn =∞. (11)

Theorem 2 ([34]) If f? = (K∗K)νw for some ν > 0 with some w in the domain of
(K∗K)ν , and if there exists a constant cν > 0 such that

α−1
n ≤ cνγn−1, (12)

then ‖fn − f?‖ ≤ cνγ−νn ‖w‖.

A classical choice for αn is the successive geometric sequence

αn = α0q
n−1, 0 < q < 1. (13)

In this case γn in (10) satisfies γn ≥ q1−n/α0 and (12) holds with cν = 1/q as shown in [34].
Therefore, from Theorem 2 we have ‖fn − f?‖ = O(qνn) and hence we have a linear rate
of convergence. The sequence (13) provides a convergence faster than the stationary case
where αn = α for all n ∈ N. In the latter case, γn = n/α and (12) holds with cν = 1/(n−1).
Therefore, from Theorem 2 ‖fn−f?‖ = O(n−(ν+1)) and hence we only have a sublinear rate
of convergence.

For perturbed data, i.e., e 6= 0 in (1), it was proven in [34] that the nonstationary iterated
Tikhonov (9) with the αn defined in (13) converges again faster than the stationary method
(8). Moreover, numerical experiments in [26] show that the nonstationary method avoids
an accurate estimation of optimal α which may not be readily available in real applications.
Indeed, α0 in (13) has only to be chosen large enough (an over-estimation of the optimal α),
while q controls how fast the sequence decreases.

3 Iterated Tikhonov with Thresholding

The ISTA iteration in (2) can be viewed as a Landweber method (7) combined with a soft-
thresholding, hence it inherits the slow convergence of Landweber method. As mentioned in
the last section, the Landweber part can be accelerated in several ways, e.g.,

fn = Sµ(fn−1 + τnK∗(g −Kfn−1)),

with a proper choice of τn [1, 22, 40]. For instance, the choice

τn =
‖K∗(g −Kfn−1‖2

‖KK∗(g −Kfn−1)‖2
,

is equivalent to replacing the inner Landweber iteration with one step of conjugate gradient
for normal equation. Following this idea, another possible strategy to speed up the ISTA
iteration (2) is to replace the inner Landweber step with a faster convergent iterative regu-
larization method. In this paper we propose to replace it by the iterated Tikhonov method
in (8). We thus arrive at our iterated Tikhonov thresholding algorithm (ITTA):

fn = Sµ(fn−1 +K∗(KK∗ + αI)−1(g −Kfn−1)). (14)
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3.1 Convergence analysis of ITTA

To obtain the convergence of ITTA in (14), we first review the convergence of ISTA which
was given in [21] for general Hilbert spaces. Here for simplicity, we rewrite the lemma for
finite dimensional spaces.

Lemma 3 ([21], Theorem 3.1) Let K ∈ RN×M , N ≤ M with ‖K‖2 < 1. Then the
sequence of iterates (2), with Sµ defined in (3) and f0 arbitrarily chosen in RM , converges
to a minimizer of the functional

Φµ(f) = ‖Kf − g‖2 + 2µ‖f‖1 . (15)

If Null(K) = {0}, then the minimizer f? of Φµ is unique, and every sequence of iterates fn

converges to f? (i.e., ‖fn − f?‖ → 0), regardless of the choice of f0.

Defining P = (KK∗ + αI)−1 and using P 1/2K and P 1/2g to replace K and g in Lemma 3,
respectively, we have the following convergence theorem for ITTA.

Theorem 4 Let K ∈ RN×M , N ≤ M and assume Sµ as defined in (3). Then for any
given α > 0, the sequence of iterates in (14) with f0 arbitrarily chosen in RM converges to
a minimizer of the functional

Φµ,α(f) = ‖Kf − g‖2(KK∗+αI)−1 + 2µ‖f‖1 . (16)

If Null(K) = {0}, then the minimizer f? of Φµ,α is unique, and every sequence of iterates
fn converges to f? (i.e., ‖fn − f?‖ → 0), regardless of the choice of f0.

Proof: For any given α > 0, denote P = (KK∗ + αI)−1 for convenience. To employ
Lemma 3 for the matrix P 1/2K, we first show that ‖P 1/2K‖2 < 1. Clearly, we have

K∗(KK∗ + αI)−1 = (K∗K + αI)−1K∗.

This equation, combining with the definition of P , gives

‖P 1/2K‖2 = ρ
(

(P 1/2K)∗(P 1/2K)
)

= ρ(K∗PK) ≤ ‖K∗PK‖

=
∥∥K∗(KK∗ + αI)−1K

∥∥ =
∥∥(K∗K + αI)−1K∗K

∥∥ < 1, (17)

where ρ(·) is the spectral radius. Thus replacing K and g by P 1/2K and P 1/2g in Lemma 3,
respectively, we find that the sequence of iterates (2) becomes

fn = Sµ

(
fn−1 + (P 1/2K)∗

(
P 1/2g − P 1/2Kfn−1

))
= Sµ

(
fn−1 +K∗P

(
g −Kfn−1

))
= Sµ

(
fn−1 +K∗(KK∗ + αI)−1

(
g −Kfn−1

))
, n = 1, 2, . . . .

This is exactly the iteration (14). Moreover, it converges to a minimizer of the functional

Φµ,α(f) =
∥∥∥P 1/2Kf − P 1/2g

∥∥∥2

+ 2µ‖f‖1 = ‖Kf − g‖2(KK∗+αI)−1 + 2µ‖f‖1 .

According to Remark 2.4 in [21], if {φγ} is an orthonormal basis for RM and P is diag-
onalizable in {φγ}, then the surrogate function in (16) with P -norm can be reformulated as
the surrogate function in (15) with `2 norm, but at a different scale µ. Unfortunately, for the
image deblurring problems considered in this paper, P is not diagonalizable by {φγ} which
are piecewise linear B-spline framelets.
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3.2 Relationship with modified linearized Bregman iteration

Our proposed ITTA in (14) is similar to the modified linearized Bregman algorithm in [8].
To see this clearly, we first recall that linearized Bregman algorithm is a method designed to
solve (5) by using the iteration{

zn = zn−1 +K∗
(
g −Kfn−1

)
,

fn = δSµ(zn),
(18)

where z0 = f0 = 0; see [45, 50]. The convergence of linearized Bregman algorithm is given
in [10, 11] and we restate it as follows.

Lemma 5 ([10], Theorem 2.4) Assume K ∈ RN×M , N ≤ M , be any surjective matrix
and 0 < δ < 1

‖KK∗‖ . Then the sequence {fn} generated by (18) converges to the unique

solution of

min
f∈RM

{µ‖f‖1 +
1

2δ
‖f‖2 : Kf = g}, (19)

i.e., limn→∞ ‖fn − f?µ‖ = 0, where f?µ is the unique solution of (19). Furthermore,

lim
µ→∞

‖f?µ − f1‖ = 0,

where f1 is the solution of (5) that has the minimal `2 norm among all the solutions of (5).

A modified linearized Bregman algorithm (MLBA) for frame-based image deblurring was
proposed and analyzed in [8]. Its corresponding convergence, given in the next lemma, is
followed from similar analysis in [10, 11].

Lemma 6 ([8], Theorem 3.2) Assume P is a symmetric positive definite matrix and let
0 < δ < 1

‖KPK∗‖ . Then the sequence {fn} generated by the modified linearized Bregman

algorithm: {
zn = zn−1 +K∗P

(
g −Kfn−1

)
,

fn = δSµ(zn),
(20)

converges to the unique solution of

min
f∈RM

{µ‖f‖1 +
1

2δ
‖f‖2 : f = argmin ‖Kf − g‖2P }. (21)

Furthermore, as µ→∞, the limit of this iteration is the solution of

min
f∈RM

{‖f‖1 : f = argmin ‖Kf − g‖2P } (22)

that has a minimum `2 norm among all the solutions of (22).

We note that the matrix P in Lemma 6 serves as a preconditioner to accelerate the
convergence. Often P is chosen as (KK∗+αI)−1 and thus ‖KPK∗‖ < 1 (see (17)); so that
we can fix δ = 1. In this case the modified linearized Bregman iteration (20) becomes{

zn = zn−1 +K∗(KK∗ + αI)−1(g −Kfn−1),
fn = Sµ(zn).

(23)

Clearly, MLBA in (23) is similar to ITTA in (14). The only difference is in the first part of
the first equation in (23) where we replace fn−1 in (14) by zn−1 in (23). As a result, both
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methods have the same computational cost. The only small overhead of algorithm (23) is
that it requires two vectors for zn−1 and fn−1, while ITTA in (14) can be implemented with
only one vector.

Finally, we observe that ITTA (14) is modified from ISTA (2) exactly like MLBA (23) is
modified from the linearized Bregman iteration (18).

4 Nonstationary Methods

Numerical results in Section 5 will show that the regularization parameter α affects not only
the speed of convergence but also the accuracy of the restoration in both ITTA in (14) and
MLBA in (23), see Figures 1 and 2 in Section 5. In practice, it could be difficult to have
a good estimation of α. Recall in Section 2 one idea to get the optimal result in iterated
Tikhonov method is to use a geometric decreasing sequence of αn, such as those defined
in [34]. Applying the same idea to both ITTA in (14) and MLBA in (23), we get two
nonstationary methods:

1. Nonstationary iterated Tihkonov thresholding algorithm (NITTA)

fn = Sµ
(
fn−1 +K∗(KK∗ + αnI)−1

(
g −Kfn−1

))
, αn > 0. (24)

2. Nonstationary modified linearized Bregman algorithm (NMLBA):{
zn = zn−1 +K∗ (KK∗ + αnI)

−1 (
g −Kfn−1

)
,

fn = Sµ(zn),
αn > 0. (25)

We will see in the numerical results that the nonstationary methods are much more robust
against the parameter α than their stationary variants.

In the following, we derive convergence limits of both nonstationary methods (24) and
(25) under the following assumption.

Assumption 1 The sequence of regularization parameters αn > 0 satisfies

lim
n→∞

αn = ᾱ, 0 < ᾱ <∞.

Notice that Assumption 1 implies (11) and hence the nonstationary iterated Tikhonov
method (9) with such {αn} will converge according to Theorem 1.

4.1 Convergence limit of nonstationary iterated Tikhonov thresh-
olding algorithm (NITTA)

In this subsection, we derive the convergent limit of NITTA in (24) if it converges.

Theorem 7 Let K ∈ RN×M , N ≤ M , be any matrix and assume Sµ as defined in (3).
With Assumption 1, if the sequence {fn} of iterates (24) in NITTA converges, then its limit
is a minimizer of the ITTA functional in (16) with α = ᾱ:

Φµ,ᾱ(f) = ‖Kf − g‖2(KK∗+ᾱI)−1 + 2µ‖f‖1 .

If Null(K) = {0}, then the minimizer f? of Φµ,ᾱ is unique, and every convergent sequence
{fn} converges to f? (i.e., ‖fn − f?‖ → 0).

7



Proof: Assume fn converges to f?. From (24) and Assumption 1, as n→∞, we have

f? = Sµ
(
f? +K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
. (26)

We now prove that f? is a minimizer of Φµ,ᾱ. Since Φµ,ᾱ is convex, using the first-order
optimality condition of Φµ,ᾱ we equivalently show that 0 ∈ ∂Φµ,ᾱ(f?), where ∂ denotes the
subdifferential. It is clear that

∂Φµ,ᾱ(f?) = 2K∗(KK∗ + ᾱI)−1(Kf? − g) + 2µ∂‖f?‖1.

In the following we will prove 0 ∈ K∗(KK∗+ ᾱI)−1(Kf?− g) +µ∂‖f?‖1. It means that for
each index i, we need to show that

0 ∈
(
K∗(KK∗ + ᾱI)−1(Kf? − g)

)
i
+µ (∂‖f?‖1)i =

(
K∗(KK∗ + ᾱI)−1(Kf? − g)

)
i
+µ∂|f?i |.

This relation is established by considering three cases.

(i) If f?i +
(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i
< −µ, then the definition of soft-thresholding

and (26) give

f?i = Sµ
(
f?i +

(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i

)
= f?i +

(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i
+ µ < 0.

It follows that 0 =
(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i

+ µ · (−1). Since f?i < 0, we have
∂|f?i | = {−1}, and hence

0 ∈
(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i
+ µ∂|f?i |.

(ii) If
∣∣f?i +

(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i

∣∣ ≤ µ, then soft-thresholding and (26) give

f?i = Sµ
(
f?i +

(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i

)
= 0.

Thus
∣∣(K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i

∣∣ ≤ µ. Let p0 = − 1
µ

(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i
,

then |p0| ≤ 1 and 0 =
(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i
+ µ · p0. It says that

0 ∈
{(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i
+ µ · p, p ∈ [−1, 1]

}
.

Since f?i = 0, we have ∂|f?i | = [−1, 1], and hence

0 ∈
(
K∗(KK∗ + ᾱI)−1 (Kf? − g)

)
i
+ µ∂|f?i |.

(iii) The case where f?i +
(
K∗(KK∗ + ᾱI)−1 (g −Kf?)

)
i
> µ can be established analogously

as case (i), we therefore will omit it.

Combining cases (i), (ii) and (iii), we have established the result.

Moreover, if Null(K) = {0}, then ‖Kf − g‖2(KK∗+ᾱI)−1 is strictly convex in f . Thus Φµ,ᾱ
is strictly convex so that it has a unique minimizer.

We note that under Assumption 1, NITTA in (24), if converges, will converge to the same
minimization functional as ITTA with α = ᾱ.
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We also note that the condition limn→∞ αn = ᾱ > 0 is only sufficient and it is stronger
than the necessary and sufficient condition in (11). Nevertheless, similarly to the decreasing
geometric sequence (13), we choose

αn = α0q
n−1 + ᾱ, 0 < ᾱ < α0, 0 < q < 1, (27)

in our numerical tests such that limn→∞ αn = ᾱ > 0. The parameters α0, q and ᾱ in (27)
do not need to be estimated accurately to give the best results, see Section 5. They can be
fixed easily by keeping in mind that α0 should be large enough, ᾱ should be small (a good
regularization parameter for the method (14) has to be in the interval [ᾱ, α0]), and q controls
how fast αn approximates the limiting value ᾱ.

4.2 Convergence limit of nonstationary modified linearized Breg-
man algorithm (NMLBA)

We now derive the convergence limit of NMLBA defined in (25). Define the Bregman distance
as

Dp
J(u, v) = J(u)− J(v)− 〈u− v, p〉,

where J is a convex function, p ∈ ∂J(v) is a subgradient in the subdifferential of J at the
point v, see, e.g., [5] for details. The linearized Bregman algorithm is: given f0 = p0 = 0,{

fn = arg minf∈RM

{
1
2δ

∥∥f − (fn−1 − δK∗
(
Kfn−1 − g

))∥∥2
+ µDpn−1

J (f, fn−1)
}
,

pn = pn−1 − 1
µδ

(
fn − fn−1

)
− 1

µK
∗ (Kfn−1 − g

)
.

If J(f) = ‖f‖1, with a change of variable for p, the iteration can be rewritten as the compact
form (18); see [11]. We note that its convergence analysis has been stated in Lemma 5.

For the nonstationary case, define

K̃n = (KK∗ + αnI)−
1
2K, g̃n = (KK∗ + αnI)−

1
2 g, αn > 0. (28)

Given f0 = p0 = 0, we iterate fn = arg minf∈RM

{
1
2δ

∥∥∥f − (fn−1 − δK̃∗n
(
K̃nf

n−1 − g̃n
))∥∥∥2

+ µDpn−1

J (f, fn−1)

}
,

pn = pn−1 − 1
µδ (fn − fn−1)− 1

µK̃
∗
n(K̃nf

n−1 − g̃n).

(29)
Then similarly we obtain the compact form of the iterations:{

zn = zn−1 + K̃∗n

(
g̃n − K̃nf

n−1
)
,

fn = δSµ(zn).
(30)

We note from (28) that this iteration with δ = 1 is exactly NMLBA in (25). Moreover, using
a similar analysis as in [10, 11] for linearized Bregman iteration and Assumption 1, we will
derive the convergence limit of NMLBA in the following.

First, we give two lemmas. For the first equation of (29), we have the following result
from [50], see also Lemma 3.1 in [10].

Lemma 8 ([50]) Assume that ‖K̃∗nK̃n‖ < 1/δ. Then

‖K̃nf
n − g̃n‖2 +

(
1

δ
− ‖K̃∗nK̃n‖

)
‖fn − fn−1‖2 ≤ ‖K̃nf

n−1 − g̃n‖2.
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Lemma 9 Assume Assumption 1 holds. Let P = (KK∗+ ᾱI)−1. If {fn} generated by (30)
converges, then

lim
n→∞

K∗P (g −Kfn) = 0. (31)

Consequently, we have limn→∞K∗(g −Kfn) = 0.

Proof: From the assumption that {fn} converges, we obtain that {K∗P (g − Kfn)} also
converges. Let limn→∞K∗P (g −Kfn) = d, we now prove that d = 0 by contradiction.

Assume d 6= 0. Let Pn = (KK∗ + αnI)−1, then K̃n and g̃n defined in (28) can be

rewritten as K̃n = P
1
2
n K and g̃n = P

1
2
n g. From the first equation of (30), for any positive

integer l, we have

zn+l − zn =

l∑
j=1

K̃∗n+j(g̃n+j − K̃n+jf
n+j−1)

=

l∑
j=1

K̃∗n+j(g̃n+j − K̃n+jf
n) +

l∑
j=1

K̃∗n+jK̃n+j(f
n − fn+j−1)

=

l∑
j=1

K∗Pn+j(g −Kfn) +

l∑
j=1

K∗Pn+jK(fn − fn+j−1).

By the assumption that {fn} converges and Assumption 1, we have

lim
n→∞

Pn = P, lim
n→∞

‖fn+1 − fn‖ = 0, lim
n→∞

K∗Pn+j(g −Kfn) = lim
n→∞

K∗P (g −Kfn).

Thus,
lim
n→∞

(zn+l − zn) = l · lim
n→∞

K∗P (g −Kfn) = ld.

Therefore, there exists an n0 such that for all n > n0, ‖zn+l − zn − ld‖ ≤ 1. Hence

‖zn+l‖ ≥ ‖zn + ld‖ − 1 ≥ l‖d‖ − ‖zn‖ − 1. (32)

Notice that fn = Sµ(zn) and {fn} converges, hence {zn} is bounded, i.e., there exists a
c > 0, ‖zn‖ ≤ c,∀n. However, if we choose dl = (2c+ 2)/‖d‖e which is finite because d 6= 0,
then from (32) we have ‖zn+l‖ ≥ c+ 1. We arrive at a contradiction.

Notice that K∗P = (K∗K + ᾱI)−1K∗ and (K∗K + ᾱI)−1 is symmetric positive definite,
then from limn→∞K∗P (g −Kfn) = 0 we get limn→∞K∗(g −Kfn) = 0.

Following the analysis in [8], we derive the convergence limit of NMLBA. We note that
the uniqueness of the solution of (21) is guaranteed by the strict convexity of the object
function of (21).

Theorem 10 With Assumption 1, if the sequence {fn} generated by (25) converges, then
its limit is the unique solution of (21) with δ = 1 and P = (KK∗ + ᾱI)−1. More precisely,
let f?µ be the unique solution of

min
f∈RM

{µ ‖f‖1 +
1

2
‖f‖2 : f = argmin ‖Kf − g‖2(KK∗+ᾱI)−1}, (33)

then limn→∞
∥∥fn − f?µ∥∥ = 0. Furthermore, limµ→∞

∥∥f?µ − f1

∥∥ = 0, where f1 is the solution
of (22) that has the minimal `2 norm among all the solutions of (22).
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Proof: We first prove that {fn} converges to f?µ. Let limn→∞ fn = f̃ , we now show that

f̃ = f?µ. Let Pn = (KK∗ + αnI)−1. From (30) with z0 = 0, we obtain

zn = zn−1 +K∗Pn(g −Kfn−1) =

n∑
j=1

K∗Pj(g −Kf j−1) = K∗
n∑
j=1

Pj(g −Kf j−1).

Define wn =
∑n
j=1 Pj(g−Kf j−1). Then zn = K∗wn. Decompose wn = wnRan(K) +wnKer(K∗),

where wnRan(K) is in the range of K and wnKer(K∗) is in the kernel of K∗. It is clear that

zn = K∗wnRan(K). (34)

It is easy to check that K∗ is one-to-one from Ran(K) to RM and zn is bounded. Hence
wnRan(K) is bounded, i.e., ‖wnRan(K)‖ ≤ C for all n.

Notice that fn = Sµ(zn) = argmin 1
2‖z

n − f‖2 + µ‖f‖1, thus zn − fn ∈ ∂µ‖fn‖1, where
∂ denotes the subdifferential. Rewrite zn = fn + (zn − fn), and define

H(f) = µ‖f‖1 +
1

2
‖f‖2.

We have zn ∈ ∂H(fn). Thus, by the definition of subdifferential and (34), we have

H(fn) ≤ H(f?µ)− 〈f?µ − fn, zn〉 = H(f?µ)− 〈K(f?µ − fn), wnRan(K)〉.

For the second term of the above equation and using the Cauchy-Schwarz inequality, we get∣∣∣〈K(f?µ − fn), wnRan(K)〉
∣∣∣ ≤ ‖K(f?µ − fn)‖ · ‖wnRan(K)‖ ≤ C‖K(f?µ − fn)‖.

From Lemma 9, we have limn→∞K∗(g −Kfn) = 0. Thus, limn→∞Kfn = gRan(K). Recall
that f?µ is the unique solution of (33), hence it satisfies K∗PKf?µ = K∗Pg and thus (K∗K+
ᾱI)−1K∗(g−Kf?µ) = 0. Consequently, we have Kf?µ = gRan(K). Therefore, limn→∞ ‖K(f?µ−
fn)‖ = 0 and limn→∞

∣∣∣〈K(f?µ − fn), wnRan(K)〉
∣∣∣ = 0. It follows that H(f̃) = limn→∞H(fn) ≤

H(f?µ). The uniqueness of f?µ forces f?µ = f̃ .
The proof of the remaining part of the theorem, i.e., as µ → ∞, {f?µ} converges to the

solution of (22) that has the minimal `2 norm among all the solutions of (22), is exactly the
same as in Theorem 4.4 of [11]. We therefore omit it here.

We also note that with δ = 1 and Assumption 1, if NMLBA in (25) converges, then both
nonstationary and stationary modified linearized Bregman iteration converge to a minimizer
of (33).

5 Numerical Results for Image Deblurring

In this section, we apply the algorithms we derived in the previous section to deblur images
corrupted by Gaussian noise. We use the tight-frame synthesis approach [8, 21] and consider
K = ADT where A is a blurring operator and DT is a tight-frame synthesis operator. The
redundancy of the tight frame leads to robust signal representations in which partial loss of
the data can be tolerated without adverse effects, see [23, 16, 17]. The tight-frame we used
in our tests is the piecewise linear B-spline framelets given in [8, 9]. Replacing K by ADT

in our ITTA in (14), we obtain

fn = Sµ
(
fn−1 +DA∗(AA∗ + αI)−1(g −ADT fn−1)

)
. (35)

11



Similarly, the MLBA in (23) becomes{
zn = zn−1 +DA∗(AA∗ + αI)−1(g −ADT fn−1),
fn = Sµ(zn).

(36)

The nonstationary variants of the two methods are obtained by replacing α with αn in (35)
and (36). Therefore the methods (35), (36) and their nonstationary variants all have the
same computational cost. In the tests, we compare all four methods. We refer to [8, 9] for a
large experimentation that compares MLBA (i.e. iteration (36)) with other recent methods,
including the iterative soft thresholding algorithm.

In the experiment, we assume periodic boundary conditions on all images, and hence
A can be diagonalized by 2D Fast Fourier Transforms (FFTs) and (AA∗ + αI)−1 is easily
computable. In fact, the matrix vector product with the matrix A∗(AA∗ + αI)−1 requires
only 2 FFTs. For other boundary conditions associated to fast trigonometric transforms that
could be used as well, see [44, 25] and the references therein.

Our tests were done by using MATLAB 7.10.0 (R2010a) on an HP laptop with Intel(R)
Core(TM) i5 CPU 2.27 GHz and 2 GB memory. The floating-point precision is 10−16.
The initial guess of each algorithm is set to be the zero vector. According to [8], we stop
all methods using the discrepancy principle, i.e., stop at the first iteration n such that
‖ADT fn − g‖ ≤ (1 + 10−15)‖e‖, or when the number of iterations reached 300. Here e is
the error defined in (1). Note that for an image with N pixels, ‖e‖2 = Nσ2, where σ2 is
the noise variance which can be estimated by using the median rule [41] in practice. The
accuracy of the solution is measured by the PSNR value which is defined by 20 log10

255×N
‖f−f̃‖2

with f and f̃ being the original and restored images.
For the stationary methods (35) and (36), the optimal parameters µ† and α† are chosen

by trial and error. For their nonstationary variants, we will use the same µ† but with the
following decreasing sequences of αn replacing α in (35) and (36):

1. nonstationary iterated Tikhonov thresholding (NITTA): αn = α0 × 0.95n−1 + 10−15,

2. nonstationary modified linearized Bregman (NMLBA): αn = α0 × 0.9n−1 + 10−15.

Note that these choices of αn satisfy Assumption 1. For each test, we tried four different
choice of α0: α0 = 2α†, 10α†, 100α† and 0.5 to show the robustness of our methods with
respect to α0. We will see that the value of α0 does not affect the accuracy of the restoration
but only the number of iterations.

We have performed five tests.
Example 5.1. The true image is the 256 × 256 Cameraman image. It is distorted by a

15× 15 Gaussian blur with standard deviation 2 and a white Gaussian noise with standard
deviation σ = 2, 5, 10.

Example 5.2. Same Cameraman image is blurred by a 7 × 7 disk kernel generated by
MATLAB command fspecial(’disk’,3) and then corrupted by a Gaussian white noise
with standard deviation σ = 2, 5, 10.

Example 5.3. The 256×256 Bridge image is corrupted by a 9×15 motion kernel generated
by fspecial(’motion’,15,30) and a Gaussian white noise with standard deviation σ =
2, 5, 10.

Example 5.4. The 256 × 256 Boat image is blurred by fspecial(’average’,9) and
degraded by a Gaussian white noise with standard deviation σ = 3.

Example 5.5. The 256 × 256 Peppers is corrupted by a 15 × 15 Gaussian kernel with
standard deviation 2 and a Gaussian white noise with standard deviation σ = 7.

In Tables 1–4, we report the restoration results by all four methods. We see that the value
of α in the stationary methods ITTA and MLBA affects not only the speed of the convergence

12



Method σ = 2 σ = 5 σ = 10
PSNR(α†) Itr. PSNR(α†) Itr. PSNR(α†) Itr.

MLBA α†MLBA/10 23.23 21 22.03 10 21.3 8

α†MLBA 25.49(0.02) 33 24.73(0.04) 16 24.04(0.08) 14

α†MLBA × 10 25.13 87 24.42 48 23.74 46

NMLBA α0 = α†MLBA × 2 25.23 28 24.71 16 24.03 14

α0 = α†MLBA × 10 25.48 38 24.65 24 23.93 22

α0 = α†MLBA × 100 25.49 56 24.55 42 23.86 41
α0 = 0.5 25.49 44 24.62 25 23.96 19

ITTA α†ITTA/10 24.42 8 24.15 2 23.31 2

α†ITTA 25.47(0.05) 117 24.65(0.2) 89 23.89(0.3) 53

α†ITTA × 10 24.66 300 23.15 300 21.89 300

NITTA α0 = α†ITTA × 2 25.37 36 24.53 28 23.84 25

α0 = α†ITTA × 10 25.41 62 24.53 57 23.82 54

α0 = α†ITTA × 100 25.38 102 24.48 101 23.78 99
α0 = 0.5 25.41 62 24.54 32 23.83 22

Table 1: Restoration results for different algorithms for Example 5.1.

but also the accuracy of the restoration. In fact if α is underestimated, the PSNR can drop
significantly. If α is overestimated, the PSNR also drops while the number of iterations
required for convergence increases rapidly. Thus for these two stationary methods, α should
be carefully chosen.

For the nonstationary methods, the PSNR values are very robust with respect to the
parameter α0. For different α0, the changes in PSNR is always within 0.1dB except for one
case (NMLBA in Table 1 for σ = 2). Moreover, the best PSNR values they achieve are very
close to the optimal one obtained by their stationary counterparts. In fact, for all test cases,
the differences between the best PSNR’s from MLBA and NMLBA are always within 0.1dB.
We note that NMLBA performs better than NITTA both in terms of accuracy and speed
and hence NMLBA is the best method among the four if one has no idea what the best α
should be.

To further analyze the difference between the stationary and nonstationary methods, we
plot α against PSNR of the solution and iteration number for stationary methods ITTA
and MLBA, and α0 against the same for nonstationary methods NITTA and NMLBA for
Example 5.1, see Figures 1 and 2. (The graphs for other examples are similar so we omit them
here.) The figures clearly illustrate that one has to get a very good estimate of the optimal
α for the stationary methods while α0 for the nonstationary methods can be chosen to be
any reasonably large number. In particular, α0 = 0.5 can be a good choice for nonstationary
methods for all the examples.

In Figures 3–4, we give the restored images by all four methods with different choices of α
and α0 for Examples 5.2 and 5.4. (The images for other examples show similar conclusion, so
again we omit them here.) Clearly, nonstationary methods provide comparable restorations
in visual quality to stationary methods with optimal α†.
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Method σ = 2 σ = 5 σ = 10
PSNR(α†) Itr. PSNR(α†) Itr. PSNR(α†) Itr.

MLBA α†MLBA/10 20.30 16 16.62 8 19.65 8

α†MLBA 27.70(0.04) 34 25.61(0.06) 17 24.51(0.2) 20

α†MLBA × 10 26.85 153 25.12 65 24.24 93

NMLBA α0 = α†MLBA × 2 26.81 26 25.54 16 24.50 18

α0 = α†MLBA × 10 27.70 37 25.53 26 24.47 29

α0 = α†MLBA × 100 27.71 58 25.45 46 24.42 49
α0 = 0.5 27.70 39 25.56 25 24.50 19

ITTA α†ITTA/10 25.76 2 24.13 2 23.11 2

α†ITTA 27.50(0.1) 108 25.46(0.3) 69 24.35(0.6) 46

α†ITTA × 10 24.93 300 23.37 300 21.92 300

NITTA α0 = α†ITTA × 2 27.26 31 25.29 27 24.26 24

α0 = α†ITTA × 10 27.33 60 25.28 57 24.28 55

α0 = α†ITTA × 100 27.27 104 25.24 102 24.24 99
α0 = 0.5 27.32 48 25.29 24 24.13 10

Table 2: Restoration results for all algorithms for Example 5.2.

Method σ = 2 σ = 5 σ = 10
PSNR(α†) Itr. PSNR(α†) Itr. PSNR(α†) Itr.

MLBA α†MLBA/10 18.61 7 15.93 7 17.10 5

α†MLBA 23.68(0.02) 11 21.75(0.07) 15 20.60(0.2) 13

α†MLBA × 10 23.12 50 21.39 76 20.39 68

NMLBA α0 = α†MLBA × 2 23.64 12 21.71 15 20.59 13

α0 = α†MLBA × 10 23.58 22 21.64 25 20.54 24

α0 = α†MLBA × 100 23.58 43 21.63 46 20.50 44
α0 = 0.5 23.56 30 21.69 23 20.57 14

ITTA α†ITTA/10 22.87 2 20.67 2 18.38 2

α†ITTA 23.63(0.07) 36 21.67(0.2) 32 20.53(0.3) 14

α†ITTA × 10 21.26 300 19.83 300 19.22 300

NITTA α0 = α†ITTA × 2 23.61 24 21.64 23 20.53 18

α0 = α†ITTA × 10 23.54 53 21.57 53 20.48 48

α0 = α†ITTA × 100 23.47 97 21.54 98 20.46 93
α0 = 0.5 23.57 47 21.63 27 20.53 15

Table 3: Restoration results for all algorithms for Example 5.3.
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Figure 1: Plots of α and α0 against PSNR and iteration for Example 5.1.
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Figure 2: Plots of α and α0 against PSNR and iteration for Example 5.1.
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Method Example 5.4 Example 5.5
PSNR(α†) Itr. PSNR(α†) Itr.

MLBA α†MLBA/10 21.10 7 22.39 10

α†MLBA 25.96(0.04) 14 24.95(0.07) 17

α†MLBA × 10 25.60 77 24.64 52

NMLBA α0 = α†MLBA × 2 25.95 14 24.93 16

α0 = α†MLBA × 10 25.90 25 24.86 24

α0 = α†MLBA × 100 25.81 45 24.79 43
α0 = 0.5 25.81 26 24.89 22

ITTA α†ITTA/10 25.15 2 24.19 2

α†ITTA 25.77(0.2) 48 24.84(0.3) 56

α†ITTA × 10 23.29 300 22.97 300

NITTA α0 = α†ITTA × 2 25.64 26 24.74 25

α0 = α†ITTA × 10 25.65 57 24.74 54

α0 = α†ITTA × 100 25.57 101 24.64 98
α0 = 0.5 25.65 30 24.73 22

Table 4: Restoration results for all algorithms for Examples 5.4 and 5.5.

(a) MLBA: α†MLBA/10 (b) MLBA: α†MLBA × 10 (c) MLBA: α†MLBA (d) NMLBA: α0 = 0.5

(e) ITTA: α†ITTA/10 (f) ITTA: α†ITTA × 10 (g) ITTA: α†ITTA (h) NITTA: α0 = 0.5

Figure 3: Deblurring results for all four algorithms for Example 5.2 with σ = 10.
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(a) MLBA: α†MLBA/10 (b) MLBA: α†MLBA × 10 (c) MLBA: α†MLBA (d) NMLBA: α0 = 0.5

(e) ITTA: α†ITTA/10 (f) ITTA: α†ITTA × 10 (g) ITTA: α†ITTA (h) NITTA: α0 = 0.5

Figure 4: Deblurring results for all four algorithms for Example 5.4.

6 Conclusions

Combining iterated Tikhonov method with soft-thresholding we obtain our iterated Tikhonov
thresholding algorithm (ITTA) that has a very similar form as the modified linearized Breg-
man iteration (MLBA). Inspired by the results on nonstationary iterated Tikhonov we pro-
pose to vary the regularization parameter α in each iteration, and we arrive at the non-
stationary version of these two algorithms. We proved the convergence of ITTA and gave
some convergence properties of the nonstationary version of ITTA and MLBA under As-
sumption 1. Numerical tests show that ITTA and MLBA are very sensible to the optimal
choice of α, while our proposed nonstationary versions do not require any accurate param-
eter estimation (e.g., α0 = 0.5 is a good choice for image deblurring). In particular, the
nonstationary MLBA (NMLBA) is the best method among the four: it is robust both in
terms of accuracy and speed with respect to the choice of α0.

In this paper we have investigated only the synthesis approach while a nonstationary
sequence of regularization parameters could be useful also for the analysis and the balanced
approaches, cf [9]. Moreover, the combination of iterated Tikhonov with thresholding could
be useful also for other kinds of convex constraints (e.g. total variation) [24]. Concerning
the applications, we point out that our proposal does not depend on the particular problem
of image deblurring considered in this paper, so it could be applied also to multiresolution
[4, 15, 16, 17, 28], inpainting [2, 7, 19, 30], etc. Finally, all methods investigated in this
paper require solution of a linear system with the coefficient matrix KK∗ + αI which could
be hard in some applications. In such case, a preconditioning strategy should be considered
where K is replaced with an easily invertible approximation as in [27].
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[2] M. Bertalḿıo, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting,
SIGGRAPH, 34 (2000), pp. 417–424.

[3] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, In-
stitute of Physics Publishing, Bristol, UK, 1998.

[4] N. Bose and K. Boo, High-resolution image reconstruction with multisensors, In-
ternational Journal of Imaging Systems and Technology, 9 (1998), pp. 294–304.

[5] L. M. Bregman, A relaxation method of finding a common point of convex sets and
its application to the solution of problems in convex programming, Z . Vycisl. Mat. i
Mat. Fiz., 7 (1967), pp. 620–631.

[6] M. Brill and E. Schock, Iterative solution of ill-posed problems - a survey, 1987.

[7] J. F. Cai, R. H. Chan, and Z. Shen, A framelet-based image inpainting algorithm,
Appl. Comput. Harmon. Anal., 24 (2008), pp. 131–149.

[8] J. F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for frame-based
image deblurring, SIAM J. Imaging Sci., 2–1 (2009), pp. 226–252.

[9] J. F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image
restoration, Multiscale Model. Simul., 8–2 (2009), pp. 337–369.

[10] J. F. Cai, S. Osher, and Z. Shen, Convergence of the linearized Bregman iteration
for `1-norm minimization, Math. Comput., 78–268 (2009), pp. 2127–2136.

[11] J. F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for compressed
sensing, Math. Comput., 78–267 (2009), pp. 1515–1536.

[12] E. J. Candés and J. Romberg, Practical signal recovery from random projections,
Wavelet Applications in Signal and Image Processing XI Proc. SPIE Conf. Vol. 5914
(2004).

[13] A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math.,
106 (2007), pp. 529–587.

[14] A. Chambolle, R. A. De Vore, N. Y. Lee, and B. J. Lucier, Nonlinear
wavelet image processing: Variational problems, compression, and noise removal
through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), pp. 319–335.

[15] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen, Wavelet algorithms for high-
resolution image reconstruction, SIAM J. Sci. Comput., 24 (2003), pp. 1408–1432.

[16] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight frame: an
efficient way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal.,
17 (2004), pp. 91–115.

[17] R. H. Chan, Z. Shen, and T. Xia, A framelet algorithm for enhancing video stills,
Appl. Comput. Harmon. Anal., 23 (2007), pp. 153–170.

[18] T. Chan and J. H. Shen, Image Processing and Analysis–Variational, PDE,
wavelet, and stochastic methods, SIAM, Philadelphia, 2005.

[19] T. Chan, J. H. Shen, and H. M. Zhou, Total variation wavelet inpainting, J.
Math. Imaging Vision, 25 (2006), pp. 107–125.

19



[20] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward
splitting, Multiscale Model. Simul., 4–4 (2005), pp. 1168–1200.

[21] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math.,
57–11 (2004), pp. 1413–1457.

[22] I. Daubechies, M. Fornasier, and I. Loris, Accelerated projected gradient
method for linear inverse problems with sparsity constraints, J. Fourier Anal. Appl.
14 (2008), pp. 764–792.

[23] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based construc-
tions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1–46.

[24] I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse prob-
lems under general convex constraints, Inverse Problems Imaging, 1–1 (2007), pp.
29–46.

[25] M. Donatelli, Fast transforms for high order boundary conditions in deconvolution
problems, BIT, 50–3 (2010), pp. 559–576.

[26] M. Donatelli, On nondecreasing sequences of regularization parameters for non-
stationary iterated Tikhonov, Numer. Algor., 60–4 (2012), pp. 651–668.

[27] M. Donatelli and M. Hanke, Fast nonstationary preconditioned iterative methods
for ill-posed problems, with application to image deblurring, submitted manuscript.

[28] M. Elad and A. Feuer, Restoration of a single superresolution image from several
blurred, noisy and undersampled measured images, IEEE Trans. Image Process., 6
(1997), pp. 1646–1658.

[29] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems,
Kluwer, Dordrecht (1996).

[30] M. J. Fadili and J. L. Starck, Sparse representations and Bayesian image in-
painting, Proc. SPARS’05, Vol. I, Rennes, France, 2005.

[31] A. G. Fakeev, A class of iterative processes for solving degenerate systems of linear
algebraic equations, U.S.S.R. Comput. Math. Math. Phys., 21 (1981), pp. 15–22.

[32] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restora-
tion, IEEE Trans. Image Process., 12–8 (2003), pp. 906–916.

[33] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for `1-minimization:
methodology and convergence, SIAM J. Optim., 19–3 (2008), pp. 1107–1130.

[34] M. Hanke and C. W. Groetsh, Nonstationary iterated Tikhonov regularization,
J. Optim. Theory Appl., 98–1 (1998), pp. 37–53.

[35] M. Hanke and P. C. Hansen, Regularization methods for large-scale problems,
Surveys Math. Indust., 3 (1993), pp. 253–315.

[36] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia,
1997.

[37] J. T. King and D. Chillingworth, Approximation of generalized inverses by
iterated regularization, Numer. Func. Anal. Opt., 1 (1979), pp. 499–513.

[38] A. V. Kryanev, An iterative method for solving incorrectly posed problems, U.S.S.R.
Comput. Math. Math. Phys., 14 (1974), pp. 24–33.

[39] L. Landweber, An iteration formula for Fredholm integral equations of the first
kind, Am. J. Math., 73 (1951), pp. 615–624.

20



[40] I. Loris, M. Bertero, C. De Mol, R. Zanella, and L. Zanni, Accelerating
gradient projection methods for `1-constrained signal recovery by steplength selection
rules, Appl. Comput. Harmon. Anal., 27–2 (2009), pp. 247–254.

[41] S. Mallat, A Wavelet Tour of Signal Processing, 2nd edition. Academic Press: San
Diego (1999).

[42] V. A. Morozov, On the solution of functional equations by the method of regular-
ization, Soviet Math. Dokl., 7 (1966), pp. 414–417.

[43] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia,
2001.

[44] M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models
with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), pp. 851–866.

[45] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration
for compressed sensing and sparse denoising, Commun. Math. Sci., 8–1 (2010), pp.
93–111.

[46] M. Piana and M. Bertero, Projected Landweber method and preconditioning,
Inverse Problems, 13 (1997), pp. 441–464.

[47] O. N. Strand, Theory and methods related to the singular-function expansion and
Landweber’s iteration for integral equations of the first kind, SIAM J. Numer. Anal,
11 (1974), pp. 798–825.

[48] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization
method, Soviet Math. Dokl., 4 (1963), pp. 1035–1038.

[49] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia,
2002.

[50] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms
for `1-minimization with applications to compressed sensing, SIAM J. Imaging Sci.,
1–1 (2008), pp. 143–168.

21


