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Abstract

We present a fast algorithm based on polynomial interpolation to approximate matrices arising
from the discretization of second-kind integral equations where the kernel function is either smooth,
non-oscillatory and possessing only a finite number of singularities or a product of such function with
a highly oscillatory coefficient function. Contrast to wavelet-like approximations, our approximation
matrix is not sparse. However, the approximation can be constructed in O(n) operations and
requires O(n) storage, where n is the number of quadrature points used in the discretization.
Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well
suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is
very accurate and stable for high degree polynomial interpolation.
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1 Introduction

Solution of integral equations of the second kind is a much studied subject and various direct and
iterative methods have been proposed for their numerical solutions, see [6] for instance. However, one
overriding drawback of these methods is the high cost of working with the associated dense matrices.
For problems discretized with n quadrature points, classical direct methods such as Gaussian elimina-
tion method requires O(n?®) operations to obtain the numerical solutions. For iterative methods such
as the conjugate gradient method (see [7]), each iteration requires O(n?) operations. Therefore even
for well-conditioned problems, the method requires O(n?) operations, which for large-scale problems
is often prohibitive.

In recent years, a number of algorithms for the fast numerical solutions of integral equations have
been developed, see for instance [8, 11, 2, 1]. The fast multipole method proposed in [8] combines the
use of low-order polynomial interpolation of the kernel function with a divide-and-conquer strategy.
For kernel functions that are Coulombic or gravitational in nature, it results in an order O(n) algorithm
for the matrix-vector multiplications. In [11], the integral equation is discretized at Chebyshev points
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and the resulting matrix is approximated by a low-rank modification of the identity matrix which
can be obtained in O(nlogn) operations. However, if the kernel function is not smooth enough, such
as the kernel functions discussed in that paper, the solution of the discretized system still requires
O(n?) operations to obtain. In [2], an O(nlogn) algorithm is developed by exploiting the connections
between the use of wavelets and their applications on Calderon-Zygmund operators. In [1], wavelet-
like bases are used to transform the dense discretization matrices into sparse matrices, which then is
inverted by the Schulz method. The complexity of the resulting algorithm is bounded by O(nlog? n).

In this paper, we will consider Fredholm integral equations of the second kind that are studied in
[1], i.e. the kernel functions are either smooth, non-oscillatory and possessing only finite number of
singularities or products of such functions with highly oscillatory coefficient functions, see (5). We will
start with the same approach as in [1]. More precisely, we write the discretized dense matrix A as the
sum of a sequence of block matrices where the blocks are of increasing size. Then we use polynomial
interpolation as in [8, 1] for each of the block matrix. However, we do not use wavelet-like bases as in
[1] to further approximate the operator to get a sparse representation. Our resulting approximation
A will therefore be a dense matrix in general.

However, we show that the approximation A can be obtained in O(n) operations and only
O(n) storage is required. We also show that matrix-vector multiplication of the form Ax can be
done in O(nlogn) operations. Thus for second-kind integral equations, which are in general well-
conditioned problems, solving the approximated systems by conjugate gradient type methods requires
only O(nlogn) operations. We have applied our scheme to kernel functions tested in [1] and also to
kernel functions where the algorithm in [1] is inapplicable. Our numerical results show that our method
is more accurate and stable even when higher degree polynomials are used in the approximation.

The outline of the paper is as follows. In §2, we recall the Nystrom method for the numerical
solution of integral equations. In §3 we derive our procedure in approximating integral operators. In
84, we discuss the construction cost of the approximation, the matrix-vector multiplication cost and
the storage requirement. A variety of numerical examples are given in §5 to demonstrate the accuracy
and stability of our proposed algorithm, its effectiveness in performing matrix-vector multiplications
and the convergence of the conjugate gradient type methods for the approximate systems. Finally in
86, we will give concluding remarks.

2 The Problem

Consider the linear Fredholm integral equation of the second kind:
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where the kernel function a(z,t) is in L2[0, 1] and the unknown function f(z) and the right-hand side
function g(z) are in L?[0,1]. Define the integral operator

1
(AN = [ atw oo (1)
Then the integral equation can be written as

Z-Af =g, (2)



where 7 is the identity operator.

As in [1], we concern ourselves first with kernel functions a(x,t) which are analytic except at
x = t, where it possesses an integrable singularity. It is well-known that integral operators with
weakly singular kernels are compact operators, see for instance [10, Theorem 2.21]. Therefore the
operator Z — A is well-conditioned unless 1 is the eigenvalue of A, in which case, the operator is
singular. Thus a good method for solving these well-conditioned equations is the conjugate gradient
method or its variants, see for instance [7, 3]. They converge to the solution in a linear rate, cf. [9]
and Table 2 in §5.

To find the solution numerically, we discretize (2) by Nystrom’s method (see [6]) at equally spaced
points (¢ —1)/(n—1),i=1,...,n, on [0,1]. This results in a matrix equation

I-A)f =g, (3)

where I is the identity matrix, g is a given vector and f is the unknown vector. As in [1], we define
the entries of the discretization matrix A to be

Al = { g6 w2 @)
0 1=7.

This corresponds to a primitive, trapezoid-like quadrature discretization of the integral operator A.

We can solve (3) by using conjugate gradient type methods. However, for these methods to work
efficiently, the matrix-vector multiplication Ay should be done fast for any vector y. For A defined
in (4), the multiplication requires O(n?) operations. In §3, we will find an approximation A of A,
such that Ay can be computed fast in O(nlogn) operations. The main idea is to take advantage of
the smoothness of the kernel function a(z,t). We know that smooth functions can be approximated
quite accurately by polynomials. As an example mentioned in [1], for any ¢ > 0, the function log|z|
can be approximated within 4% accuracy on [c,2¢] by using polynomials of degree at most 7. Since
A possesses the same smoothness properties as that of the kernel a(z,t), we see that if a(z,t) is
smooth, we can approximate A or submatrices of A by low rank matrices obtained via polynomial
interpolation. This is done in the next section.

Besides smooth kernels, the authors in [1] have also studied a more general class of integral equa-
tions which are of the form:

1
fz) = d(ﬂﬁ)/0 a(z,t)f(t)dt = g(x), = €[0,1], (5)

where a(z, t) is again analytic except with an integrable singularity at = ¢ and the coefficient function
d(x) can be oscillatory. These problems lie between the problems with smooth kernels and those with
arbitrary oscillatory kernels. The corresponding operator equation is of the form

where A is given in (1) and D is the operator defined by
(Df)(z) = d(z) ().

In [1], it is assumed that d(z) is positive and a new wavelet bases is applied to the symmetrized
operator DY/2ADY? to obtain a sparse representation. However, we note that as long as d(z) is



bounded (no need to be positive), then D will be a bounded operator. Therefore if a(z,t) is at
most weakly singular, then A and hence DA will be a compact operator. This is because product of
bounded operator and compact operator is still compact, see for instance [12, Theorem 4.18]. Hence
Z — DA will still be well-conditioned and we can solve (6) by conjugate gradient type methods and
the convergence rate will again be linear.

Clearly, the discretized equation of (6) is given by

(I-DA)f =g, (7)
where A is given by (4) and D is a diagonal matrix with entries given by

7—1
n—1
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We will approximate A by low rank matrices to obtain the approximation A, where the matrix-vector
product Ay can be obtained in O(nlogn) operations for any vector y. Since D is diagonal, we see
that the product (I — DA)y can be computed in O(nlogn) operations.

3 The Approximation

The main idea in getting an approximation of A is to approximate A by low rank matrices. However,
if the whole matrix A is approximated by one low rank matrix, the approximation will not be good in
general, especially for kernels with diagonal singularities. Therefore a general idea is to divide A into
blocks of different sizes and approximate each of the block by a low rank, say rank k£, matrix. We will
follow the partition as suggested in [1] (see also Figure 4 therein) and assume the size of A is given
by n = k- 2!. Here k is a small integer that depends on the smoothness of the kernel function af(-,-).

With the partition, the matrix A is cut into blocks of different sizes. The blocks near the main
diagonal are of size k-by-k, those next remote are of size 2k-by-2k, and so forth up to the largest
blocks of size 2'=2k-by-2!=2k. By grouping blocks of the same size into one matrix, we can express the
matrix A as

A=A0 + A 4+ .+ A(Z—Q), (8)

where A 4 =0,...,l — 2, consists only of blocks of size 2k-by-2“k. We can easily check that the
number of nonzero blocks in A®) is given by

6-2' —8 u=0,
”“_{ 6271 —1) w=1,---,1—2. )

We will denote these nonzero blocks by A®?) 4y =1, ... v,. As an illustration, for [ = 5, A?) is of



the form

i ACD A2 |
A(2:3)
A(210) A4 | A25)
o A1) [A(212) A(2:6)
A®?) =
A(2:13) AED | AR
A(2.14)| A (2,15) A(2:9)
A (2,16)
A217)] A (2,18)
L | (10)

where each A2 is a 4k-by-4k matrix and other blocks not written out explicitly are zero blocks. As
in [1], our idea is to write each block A®) in A(®) ag

A(U,’U) — A(uvv) + E(uvv),
where A (4% is of rank k and the error matrix E(®?) has small norm.
Our approach of constructing A®) ig ag follows. Let the entries of A(%?) be given by

1
(A5 = ——a((io +i— Dh,(jo +j — Dh), 1<i,j <2k, (11)

i.e. the entries of A(%?) are obtained by evaluating the kernel function a(z,t) in the domain [ioh, igh+
(2¢k—1)h] x [joh, joh+(2“k—1)h]. Our idea is to map this domain to [—1,1]2 and do our approximation
there. On the domain [—1,1]?, we will take k? samples of the function a(-,-) at equally-spaced points
and use the values to approximate the matrix A(®?). The resulting transformation matrix will be
more stable and requires less storage to store, see §4 and §5.

Clearly, the transformation is given by

g ®—ioh

81
|

t — joh (12)
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where (z,7) will be in [-1,1]%. For simplicity, let us denote a(z,f) = a(z,t). We then construct the
k-by-k sample matrix A(*?) by evaluating a(-,-) at k? equally-spaced points in [—1,1]?. That is
- 1 1—1 ) — 1
(wo))  — % =1 J—1 <ii<
[AY]; n—la( 1+2k—1’ 1+2k—1)’ 1<4,j<k. (13)

Since by the assumptions on a(-,-), the function a(-,-) is smooth and non-oscillatory in [—1,1]2, it can
be approximated accurately by polynomials of small degree. In particular, we have

Loamn~ Y Awegr-ip-t, (14)

n—1
r=1 s=1

where )\%’U) are the coefficients of the Taylor series expansion of the function on the left hand side.

Combining (13) and (14), we then have

k k . .
A, (o) (_1 49 = yr=1 1 L9l = Lys »
(ALY 5 >N Al 1+2k_1)’" ( 1+2k_1)8 , 1<i,j<k. (15)
r=1 s=1
In matrix terms, we then have B
A x PTAMYIP, (16)
where P, and A®?) are k-by-k matrices with entries given respectively by
J—1u -

and
(A5 =20, 1< <k,

We are now ready to approximate A(“%) by a rank k matrix. By (11), (12) and (14), we have
1

AUy = —al(io+i =D, (jo +7 = Dh)
1 1—1 j—1
= a(—1+2 142
L Ty L Ty
P& i—1 j—1
~ )\(u,v) -1 2 - r—1 -1 2 — s—1 1<4.4< 2Uk‘
ZZ T8 ( + 2uk_]_) ( + 2“]{:—1) ) _/L?]_
r=1 s=1
In matrix terms, we then have the approximation:
A1) (PN A @) p) (18)
where P(") is the k-by-2“k matrix with entries given by
S
PW];, = (—1+ 22;7% —)", 1<i<k1<j<2k (19)

Thus the approximation A®?) of A(#?) is obtained as follows:



1. Compute approximation S\,E?;’U) of >\1(};:”) by requesting that the approximate equation (15) holds
exactly for all k? sampled points. More precisely, we compute approximate coefficients matrix
A®) of Alw?) by (16), ie.

A(u,v) = (P;I)TA(H’U)PI;I (20)

where A% and Py, are given by (13) and (17) respectively.
2. The approximation A (%) of A(“?) ig then given by (18), i.e.
A) = (PNT A (wo)p(v) (21)
where P(®) is given by (19).

We emphasize that we do not have to form the 2“k-by-2“k matrix A(%?) in order to get its
approximation A(®%) . If only matrix-vector multiplications are required, as is in the case of conjugate
gradient type methods (see [7]), then there is no need to explicitly form the approximation A®?) and
we only have to store A(%?) and P®).

We remark that by transforming into the domain [—1, 1]?, both basis function matrices Py and P
are now independent of the index v of the block we are approximating. Numerical results show that our
basis function matrices are less ill-conditioned than those we would obtain without the transformation.
For example, when & = 8 and 14, condition numbers of P}, are about 10 and 10° respectively, whereas
if no transformation is used, the numbers will exceed 10° and 10'7 respectively and vary with v. In
[1], polynomial bases functions are used in the interpolation without mapping to the domain [—1,1]?
first. The resulting basis function matrices are then shifted and scaled by methods different from ours
to make them more stable. Their condition numbers, which vary with different blocks and depends
on n, are about the same order as that of our Py.

Another important advantage of having this v independence in the basis function matrices is that
we can use the same P for all A(®¥), Recalling the block structure of each A (cf. (10)) and the
approximation A (%) of each block A(®?) in (21), we see that A™) can now be approximated by

AW = [12,_u ® (P(“))T] AW [Igl_u ® P(“)} . (22)

Here I, is the identity matrix of size 2'~%, ® is the Kronecker tensor product and A® is a matrix
having the same block structure as A™ except that the blocks A(“’")jn A™ are of size 2“k whereas
the blocks A% in A are of size k. As an illustration, the matrix A®) for [ = 5 is of the form (cf.

(10)):



A [A22)
A@3)
A(2,10) A24) | A25)
. A1) [A(2,12) A(2:6)
A® = [18®(p(2>) } [Is @ P?)]
A213) A@D [ACS)
AR [A215) A9

A(2,16)

ARIT)[A(2,18)

where each A is a k-by-k matrix. .
Having defined the approximation matrix A® for each A, 4 =1,---,1 — 2, we can now define

our approximation matrix A to the original matrix A:
A=A0 L AW L AD 4 ... 4 A2 (23)

see (8). In §5, we will compute the difference A — A for different kernel functions a(z,t) and different
k and n to illustrate the accuracy of our approximation.

We remark that in [1], after the approximation with low-order polynomials, the operator is further
approximated (by throwing away entries less than a given threshold) by using wavelet-like basis func-
tions so that the final approximation matrix is sparse. In our case, we stop at the approximation by
low-order polynomials and the approximation matrices A are in general dense. However, we empha-
size that if we are going to solve the linear system relating to A by conjugate gradient type methods,
then only matrix-vector multiplications of the form Ay are required. In this case, there is no need to
explicitly form A. All we need is to store A, A®?) and P®) see §4. We will also show in §4 that
the matrix-vector multiplication Ay can be obtained in O(n logn) operations.

4 Complexity Analysis

In this section, we consider the complexity of obtaining and storing a representation of A so that
matrix-vector multiplications of the form Ax can be done fast. We also consider the cost of doing



such matrix-vector multiplication. We first recall that by (23) and (22), we have
Ax=AOx+Y" [IQH ® (P(“>)T] AW [IQH ® P(“>] x. (24)
u=1

Thus we see that for the computation of Ax, it suffices to form and store A(®), A®) and P®). For
simplicity, in the following, we count only the number of multiplications in the operation counts. The
number of additions is of the same order.

Storage Requirement:

Forming | Storage Explanation

A (6 -2 — 8)k? A O consists of (6 - 2" — 8) blocks of size k, see (9).

A 6(2-1=* — 1)k? | A®™ is a block matrix with 6(2/~'=% — 1) nonzero blocks, see (9).
Each nonzero block A is of size k, see (20).

P 2uk? P®™ is a k-by-2"k matrix, see (19).

Thus the total storage requirement is
1—2

(62— 8)k* + 3 {6(21 7" — k% + 292} < 10 2K = 10k
u=1

Construction Cost:

To form A®?) using (20), we first form the basis function matrix Py (see (17)) and its inverse.
This requires O(k%) operations and the matrices can be used for all v and v. For a given u and v, we
form A in (20) by forming A(*?) first. By using (13), this requires k> function evaluations of the
kernel function a(-,-). Then A®?) is obtained by using (20) which requires 2k multiplications. Thus
each A(®?) can be obtained in k2 function evaluations and 2k* multiplications. In the following table,
f.e. denotes function evaluation of a(,-).

Forming | Complexity Explanation
AO (6 -2 —8)k? fe. A O consists of (6 - 2" — 8) blocks of size k, see (9).
A™) 6(2-1=* — 1)k? fe. and | A™ contains 6(2/~T=% — 1) nonzero blocks, see (9) and each
12(20 1 — 1)k3 nonzero block A®?) requires k2 f.e. and 2k* multiplications.
P QU2 P® is a k-by-2k matrix, and its entries can be formed row-
wise to avoid taking power, see (19).

Summing all these costs together, we conclude that the cost of forming A®, A® and P®™ for all
u=1,---,1—21is

-2
S {12(2l—1—“ DK+ 2%2} < 6-2'k3 + 242 = 6nk? + O(nk)

u=1



multiplications and

-2
(6-2 = 8)k* + ) 62" — )k? <9 2'k? = 9nk
u=1
function evaluations. In contrast, forming A requires n? function evaluations.
Cost of Matriz-Vector Multiplication:

We compute matrix-vector multiplication Ax as in (24).

Forming Complexity Explanation

AOx (6 -2 — 8)k? Each of the (6-2" —8) blocks in A(®) need to multiply with
the corresponding subvector of length k.

Vo = (Iy- @ PW)x | 21E2 There are 2/=% copies of P in Iy, ® P® and multi-
ply each copy of P(*) to length 2"k vector requires 2“k?
multiplications.

z, = AWy, 6(2!='=% —1)k? | There are 6(2'~'=* — 1) nonzero blocks of size k in A%
and multiply each of them to length k vector requires k>
multiplications.

Iy ® (PEW)T] 2, | 2'K2 There are 2/=% copies of (P("))7 in Iy, ® (P™)” and
multiply each copy of (P())T to length k vector requires
2vk? multiplications.

Combining all these together, we conclude that the total number of multiplications required in forming
Ax is

-2
(6-2' - 8)k* +) {6(2“*“ — k2 +2. 2%2} < (20 +5)2'k? = (21 4 5)nk,
u=1

which is of order O(nlogn). In contrast, the cost of forming Ax is n? multiplications.

5 Numerical Examples

In this section, we show the efficiency and accuracy of our scheme by applying it to the following six
kernel functions:

(1 lOg |$ - t|7

(i) cos(zt?)log |z — t|,

)
)
(i) cos(xt?)|x — t|~1/2,
(iv) cos(xt?)|z — t|Y/2,

)

(v) (1 + % sin(1002)) log |z — t|, and

10



(vi) sin(100z)log |z — t|.

Kernel functions (i) to (v) are examples tested in [1]. We note that kernels (v) and (vi) are kernels with
a highly oscillatory coefficient function d(z) that is equal to 1+ 2 sin(100z) and sin(100z) respectively,
see (5). Obviously, both coefficient functions are bounded and therefore our algorithm works for both
examples, see §2. We note however that since d(x) for kernel (vi) is not positive, the algorithm in [1]
is not applicable for this kernel.

The discretized equations for kernels (i) to (iv) are given by (3) and for kernels (v) and (vi), they
are given by (7). Given a kernel function a(-,-), we compute the matrix A as defined in (4) and its
approximation A by (23). We measure the accuracy of the approximation by computing the relative
error |A—A||r/||Al|r, where ||-|| is the Frobenius norm. All our computations are done in MATLAB
on a SUN Sparc-20 workstation. Table 1 shows the results for different £ and [. We recall that the
size of the matrices is n = k - 2/. Thus the largest matrix we tried is of size 14, 336-by-14, 336.

Note that kernel functions (v) and (vi) give the same dense matrix approximation A as that of (i)
as the a(z,t) for all three kernels are all equal to log |x — t|. Therefore, in Table 1, results for kernel
functions (v) and (vi) are omitted. We see from Table 1 that our scheme provides a very accurate
approximation A to the original matrix A even for small k like 8. We recall from §4 that the cost of
forming A is of order O(nk?) operations whereas the cost of forming A is of O(n?) operations.

k=4 k=28 k=11 k=14 k=4 k=28 k=11 k=14

l a(z,t) =log |z —t| a(z,t) = cos(xt?) log |z — t|

4 | 7.69E-05 3.06E-08 1.79E-10 1.04E-11 | 7.57TE-05 3.10E-08 1.82E-10 1.18E-11
6 | 1.14E-04 4.68E-08 2.78E-10 1.86E-11 | 1.13E-04 4.73E-08 2.82E-10 1.93E-11
8 | 1.30E-04 5.40E-08 3.22E-10 2.27E-11 | 1.29E-04 5.44E-08 3.25E-10 2.23E-11
10 | 1.36E-04 5.67E-08 3.38E-10 2.41E-11 | 1.35E-04 5.71E-08 3.42E-10 2.33E-11
l a(z,t) = cos(xt?)|z — t|~1/? a(xz,t) = cos(xt?)|z — t|1/?

4 | 9.18E-05 5.24E-08 3.54E-10 1.12E-11 | 2.09E-05 5.53E-09 2.75E-11 2.29E-11
6 | 1.66E-04 9.09E-08 6.25E-10 1.55E-11 | 2.92E-05 7.85E-09 3.94E-11 2.26E-11
8 | 1.98E-04 1.17E-07 8.07E-10 1.87E-11 | 3.20E-05 8.59E-09 4.31E-11 2.39E-11
10 | 2.25E-04 1.34E-07 9.29E-10 2.01E-11 | 3.28E-05 8.80E-09 4.41E-11 2.53E-11

Table 1: ||A — A||r/||A||r for different kernels.

Next we illustrate the efficiency and accuracy of solving (3) and (7) using the approximation A.
For kernel functions (i) to (iv), we first choose a random vector x to generate the right hand side
vector b = (I — A)x. Then we solve the approximate equation (I — A)x = b for the approximate
solution x. For kernel functions (v) and (vi), we again choose a random vector x to generate the right
hand side vector b = (I — DA)x, see (7). Then we solve the approximate equation (I-DA)x = b for
the approximate solution x. All equations are solved by the CGLS method (see [3]) which basically
solves the normal equation of a given equation by the conjugate gradient method.

In the CGLS method, we choose the zero vector as the initial guess and the stopping criterion is

l[rqll2 < 10-10
lIroll2

11



where r, is the residual vector at the gth iteration. The numbers of iterations required for convergence
for the six kernels are given in Table 2. To measure the accuracy of the approximate solution x, we
have computed the relative error ||x — X||2/||x||2. The results are shown in Table 3.

k=4 k=8 k=11 k=14 k=4 k=8 k=11 k=14
l a(z,t) =log |z — ¢t a(z,t) = cos(xt?) log |z — t|
4 13 13 13 13 13 13 13 13
6 13 13 13 13 13 13 13 13
8 13 13 13 13 13 13 13 13
10 13 13 13 13 13 13 13 13
[ a(z,t) = cos(xt?)|z — t|~1/? a(z,t) = cos(xt?) |z — t|1/?
4 19 23 25 26 8 8 8 8
6 26 29 31 36 8 8 8 8
8 33 32 32 33 8 8 8 8
10 32 32 33 34 8 8 8 8
I | a(z,t) = (1+ 3sin(100z))log |z —t] | a(z,t) = sin(100z) log |z — ¢|
4 13 14 14 14 12 13 14 14
6 14 13 13 13 14 14 14 14
8 13 13 13 13 14 14 14 14
10 13 13 13 13 14 14 14 14

Table 2: Numbers of iterations required for convergence.

k=4 k=28 k=11 k=14 k=4 k=28 k=11 k=14
a(z,t) = log |z — t| a(z,t) = cos(xt?) log |z — t|
3.45E-05 1.27E-08 1.28E-10 9.89E-11 | 3.24E-05 1.22E-08 7.27E-11 7.31E-11
4.74E-05 1.87E-08 9.55E-11 T7.03E-11 | 4.47E-05 1.80E-08 7.84E-11 2.99E-11
5.27E-05 2.06E-08 8.68E-11 5.06E-11 | 5.00E-05 1.98E-08 7.87E-11 3.26E-11
5.38E-056 2.11E-08 7.75E-11 3.24E-11 | 5.11E-05 2.03E-08 7.36E-11 2.38E-11
a(z,t) = cos(zt?)|z —t|1/? a(z,t) = cos(zt?)|z — t|}/?
7.44E-05 4.16E-08 2.02E-10 3.32E-11 | 6.96E-06 1.29E-09 8.57E-12 3.61E-11
1.76E-04 1.54E-07 1.58E-09 1.48E-09 | 1.27E-05 2.03E-09 1.60E-11 2.61E-11
1.28E-03 2.03E-07 4.52E-10 7.03E-11 | 1.45E-05 2.27E-09 1.23E-11 2.03E-11
3.07E-04 1.44E-07 5.24E-10 5.93E-11 | 1.47E-05 2.33E-09 5.36E-12 1.94E-11
a(z,t) = (1 + 5sin(100z)) log |z — | a(x,t) = sin(100z) log |z — t|
3.81E-05 1.31E-08 b5.59E-11 2.40E-11 | 3.02E-05 1.28E-08 4.28E-11 3.19E-11
5.11E-056 1.84E-08 1.17E-10 1.27E-10 | 6.27E-05 1.92E-08 7.72E-11 9.68E-11
5.63E-05 2.04E-08 1.14E-10 4.75E-11 | 7.46E-05 2.11E-08 9.69E-11 1.07E-10
5.71E-05 2.06E-08 7.26E-11 6.02E-11 | 7.75E-05 2.19E-08 8.85E-11 5.66E-11

Table 3: ||x — x||2/||x]||2 for different kernels.
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—
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CoO O | =~

—
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Since the kernel functions we tried are at most weakly singular, we see from Table 2 that the
convergence rate is linear as expected, see [10, Theorem 2.21]. Recall from §4 that the cost of matrix-
vector multiplication Ay is of O(nlogn) operations, the total cost of solving the systems is thus of
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O(nlogn) operations too. We emphasize again that in order to get the approximate solution x, we
only have to form A (which requires only O(nk?) operations) and no need to form A.

We finally compare the operations required in computing the matrix-vector multiplications Ax
and Ax. Tables 4a—4d give the numbers of floating point operations (flops) required. We note that
the counts do not depend on the kernel functions used. In the tables, the ratios denote the ratios of
the operation counts when the size n of the matrix is doubled. We clearly see from the ratios that the
cost of the matrix-vector multiplication Ax is approaching O(nkl) = O(nlogn), whereas that of Ax

is O(n?).

n Ax  ratio Ax  ratio

32 3,067 — 2,096 —
64 9,682 3.1568 8,288  3.9542
128 25,705 2.6549 32,960 3.9768
256 62,896 2.4468 131,456  3.9883
512 147,127 2.3392 525,056  3.9942
1024 334,846  2.2759 2,098,688 3.9971
2048 748,357 2.2349 8,391,680 3.9985
4096 | 1,651,084 2.2063 | 33,560,576 3.9993
8192 | 3,607,507 2.1849 | 134,230,016 3.9996
16384 | 7,821,850 2.1682 | 536,895,488 3.9998

Table 4a: Flops counts in computing Ax and Ax for k = 4.

n Ax  ratio Ax  ratio
64 9,767 — 8,272 —
128 29,322 3.0022 32,928 3.9807
256 76,221  2.5994 131,392 3.9903
512 184,224 2.4170 524,928 3.9951
1024 427,459 2.3203 2,098,432 3.9976
2048 967,206 2.2627 8,391,168 3.9988
4096 | 2,152,073 2.2250 | 33,559,552 3.9994
8192 | 4,731,372 2.1985 | 134,227,968 3.9997
16384 | 10,307,919 2.1786 | 536,891,392 3.9998
Table 4b: Flops counts in computing Ax and Ax for k = 8.
n Ax  ratio Ax  ratio
88 17,438 — 15,592 —
176 51,570 2.9573 62,160 3.9867
352 132,786 2.5749 248,224 3.9933
704 319,158 2.4036 992,064 3.9966
1408 737,794 2.3117 3,966,592  3.9983
2816 | 1,664,862 2.2565 15,863,040 3.9992
5632 | 3,696,602 2.2204 63,445,504  3.9996
11264 | 8,113,302 2.1948 253,768,704  3.9998
22528 | 17,651,154 2.1756 | 1,015,048,192 3.9999
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Table 4c: Flops counts in computing Ax and Ax for k = 11.

n Ax  ratio Ax  ratio
112 27,377 — 25,216 —
224 80,262 2.9317 100,608 3.9898
448 205,515  2.5606 401,920 3.9949
896 492,216  2.3950 1,606,656  3.9975

1792 | 1,134,997 2.3059 6,424,576  3.9987

3584 | 2,556,306 2.2523 25,694,208  3.9994
7168 | 5,667,407 2.2170 102,768,640  3.9997
14336 | 12,423,564 2.1921 411,058,176  3.9998
28672 | 27,000,777 2.1734 | 1,644,199,936 3.9999

Table 4d: Flops counts in computing Ax and Ax for k = 14.

6 Concluding Remarks

In this paper, we have discussed the fast solution of second-kind integral equation where the kernel
function is either smooth, non-oscillatory and possessing only a finite number of singularities or a
product of such function with a highly oscillatory coefficient function. We have shown that our
approximation coefficient matrix A can be constructed in O(n) operations and requires O(n) storage,
and the matrix-vector multiplication of A requires O(nlogn) operations. The numerical results show
that our scheme is stable for high degree polynomial interpolation and to reach a given tolerance, the
number of iterations of CGLS is independent of the size n of the discretization system and small. For
an application of our scheme, we refer readers to [4, 5], where we discuss fast solution of boundary
integral equations.
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