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Abstract—The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when
compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on
probabilistic models, like Hao’s and Yu’s formulas, have been proposed. In this paper, we improve these formulas by using the entropy
principle which can quantify the non-randomness occurrence of patterns in the sequences. More precisely, existing formulas are used
to generate a set of possible formulas from which we choose the one that maximizes the entropy. We give the closed-form solution to
the resulting optimization problem. Hence from any given CV formula, we can find the corresponding one that maximizes the entropy.
In particular, we show that Hao’s formula is itself maximizing the entropy and we derive a new entropy-maximizing formula from Yu’s
formula. We illustrate the accuracy of our new formula by using both simulated and experimental datasets. For the simulated datasets,
our new formula gives the best consensus and significant values for three different kinds of evolution models. For the dataset of tetrapod
18S rRNA sequences, our new formula groups the clades of bird and reptile together correctly, where Hao’s and Yu’s formulas failed.
Using real datasets with different sizes, we show that our formula is more accurate than Hao’s and Yu’s formulas even for small datasets.

Index Terms—Composition vector method, maximum entropy principle, optimization model, alignment-free sequence comparison,
phylogenetics.
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1 INTRODUCTION

NOwadays, powerful sequence comparison
methods, together with comprehensive biological

databases, have changed the practice of molecular
biology and genomics. Sequence comparison methods
can be divided into two categories: alignment-based
[14], [22] and alignment-free [28]. The composition
vector (CV) method [9], [17] is an alignment-free
method, and has been extensively studied recently [12],
[17], [30], [34]. Compared with the multiple sequence
alignment methods which are widely employed, the
CV method has several advantages. For instance, it can
be used for phylogenetic analysis of complete genome
sequences of bacteria, eukaryote, etc [5], [17], [34]. In
contrast, as every species has its own gene content and
gene order, it is difficult to align two complete genome
sequences [17]. The CV method also requires no scoring
matrix or gap penalty, and hence it has less parameters
compared to the alignment method [17].

In CV method, the distance between two taxa can be
computed in O

(
N logN

)
operations and the memory

requirement is O(N), where N is the length of the longer
sequence. Hence the distance matrix of M taxa, each of
length at most N , can be obtained within O(M2N logN)
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operations. Their phylogenetic tree can be obtained
in another O(M3) operations by the neighbor-joining
method [19], [26]. With the development of sequenc-
ing technologies, more and more complete genome se-
quences are available, and these advantages of CV meth-
ods are becoming more important or even necessary for
sequence comparison methods.

Let us briefly introduce the CV method which consists
of the following 4 steps:

1) Consider a taxon sequence of length N . Any con-
secutive k nucleotides within the sequence is called
a k-string. For each k-string u, we count the fre-
quency of the pattern u occurring in the sequence
and denote it by f(u), the frequency vector. Since
there are 4k different possible k-strings, the vector
f(·) is of length 4k.

2) For every k-string u, we estimate its expected fre-
quency of appearance and denote it by q(u). Then
the composition vector of the taxon is just the 4k-
vector where each entry equals [f(u)− q(u)]/q(u).

3) The cosine angle between two composition vectors
is used to compute the distance between the two
taxa.

4) Once the distances amongst all taxa are obtained,
the neighbor-joining method can be used to con-
struct the phylogenetic trees.

As mentioned in [5], [6], [7], [12], [17], [30], [34], step 2
above is essential for the CV method, and there are quite
a few models proposed and corresponding estimation
formulas for estimating the expected frequencies q(u)
have been derived. Here we introduce two of them. For
any k-string u, let us write it as LwR, where the characters
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“L” and “R” represent the first and the last nucleotides
of u respectively, and “w” represents the (k− 2)-string in
the middle. The first formula was proposed by Hao et
al. [17]:

q(LwR) =
f(Lw)f(wR)

f(w)
, k ≥ 3. (1)

It is derived under the Markov chain assumption. Yu et
al. proposed [34]:

q(LwR) =
f(L)f(wR) + f(Lw)f(R)

2
, k ≥ 2. (2)

It is derived under the assumption that L, w, and R occur
independently. We remark that (1) was also used by
Brendel et al. [4] for revealing functional and evolution-
ary relatedness of sequences, and (2) appeared in the
area of complexity and dynamical systems [32].

Shannon’s entropy measures the information content
in random sequences [20]. Hu and Wang [11] used
it to find statistically significant strings in biological
sequences under the constraints:{

q(vA) + q(vC) + q(vG) + q(vT) = f(v),
q(Av) + q(Cv) + q(Gv) + q(Tv) = f(v),

(3)

where the entropy in q(·) is to be maximized given the
frequency f(v) for all (k− 1)-strings v. An optimization
problem was thereby proposed, and formula (1) was
given without proof to be the solution to the optimiza-
tion problem.

In this paper, we adopt their idea of using maximum
entropy to estimate the expected frequency q(·). How-
ever, instead of assuming a relationship between q(·) and
f(·) as in (3), we derive their relationship using existing
formulas. More precisely, we put existing formulas such
as (1) or (2) into the left hand side of (3) and get the
corresponding right hand side in terms of f(·). In this
way, the existing formula generates a set of possible
estimation formulas q(·) to which the existing formula
also belongs. We then choose the one formula in this set
that maximizes the entropy.

We show that Hao’s formula is itself maximizing
the entropy and we derive a new entropy-maximizing
formula from Yu’s formula. We illustrate the accuracy
of our new formula by using both simulated and ex-
perimental datasets. For the simulated datasets, our
new formula gives the highest consensus and significant
values for three different kinds of evolution models.
For the tetrapod sequences [31], our new formula can
group the clades of bird and reptile together correctly,
where Hao’s and Yu’s formulas failed. By applying the
formulas to tetrapod datasets of different sizes, we also
show that our formula is more accurate than Hao’s and
Yu’s formulas for small datasets.

The rest of the paper is organized as follows. In Section
2, we introduce the optimization problem for maximiz-
ing the entropy in existing formulas. We then derive a
closed-form solution to the optimization problem. From
that we can generate new entropy-maximizing formulas
from existing ones straightforwardly. In Section 3, we

show the accuracy of our new estimation formula by
applying it on both simulated and experimental datasets.
Finally, we discuss on the computational complexity of
CV method and its extension to protein sequence com-
parison. A way for choosing the optimal string length k
is also provided.

2 OUR METHOD

2.1 The optimization problem

The CV method starts by computing the frequency of
each of the 4k’s k-strings in the given DNA sequence.
They are computed as follows. Given a k-string u, we
count the number of times n(u) that the pattern u ap-
pears in the sequence. The frequency of the k-string u is
then defined to be f(u) = n(u)/(N −k+1). For instance,
in the sequence GATCAGATTG, f(G) = 3/10, f(AT) = 2/9,
and f(ATC) = 1/8.

The second step of the CV method is to estimate the
expected frequency q(u) of each k-string u. Our idea is
to use existing estimation formulas q(·) to determine the
relationship between q(·) and f(·). Then we generate
new estimation formulas by maximizing the entropy in
q(·). As an example, if we substitute Hao’s formula (1)
for q(u) into the left hand side of (3), we can easily verify
that for any (k − 1)-string v = Lw = xR where w and x

are (k − 2)-strings and L and R are 1-strings, we have

q(vA) + q(vC) + q(vG) + q(vT)

=
f(Lw)

f(w)
[f(wA) + f(wC) + f(wG) + f(wT)],

q(Av) + q(Cv) + q(Gv) + q(Tv)

=
f(xR)

f(x)
[f(Ax) + f(Cx) + f(Gx) + f(Tx)].

(4)

Note that the right hand sides of (4) are frequencies
f(·) computable from the DNA sequence. Moreover, by
construction, Hao’s formula is just one of the many
possible formulas that satisfy (4). Amongst all those
formulas, we will choose the one that maximizes the
entropy −q(u) log q(u).

In general, from any existing estimation formula q(·)
given in terms of f(·), we can derive a set of constraints:{

q(vA) + q(vC) + q(vG) + q(vT) = l(v),

q(Av) + q(Cv) + q(Gv) + q(Tv) = r(v),
(5)

where v is a (k−1)-string, and l(v) and r(v) are numbers
computable from the frequency f(v). Note that in (5),
there are (2 · 4k−1) constraints and 4k unknowns q(u),
where u are all the possible k-strings. Thus the system
is under-determined and the solution is not unique. By
construction, the given estimation formula will only be
one of the many q(·)’s satisfying (5).

To obtain the unique q(u), we maximize their entropy
−q(u) log q(u). More precisely, we obtain q(u) for all u by



IEEE / ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 3

solving the optimization problem:

maximize −
4k∑
i=1

q(ui) log q(ui)

subject to

{
q(ui) satisfies (5),
q(ui) ≥ 0 for i = 1, . . . , 4k.

(6)

2.2 Decoupling of the optimization problem (6)
In this subsection, we show that the optimization prob-
lem (6) can be decoupled into 4k−2 sub-problems of size
8-by-16 each, and hence can be readily solved.

The idea is to write the k-strings in the left hand sides
of (5) out as LwR where w is a (k− 2)-string and L and R

are 1-strings. By exhausting different combinations of L
and R, we see that the following constraints are all the
constraints involving w:

q(AwA) + q(AwC) + q(AwG) + q(AwT) = l(Aw),

q(AwA) + q(CwA) + q(GwA) + q(TwA) = r(wA),

q(CwA) + q(CwC) + q(CwG) + q(CwT) = l(Cw),

q(AwC) + q(CwC) + q(GwC) + q(TwC) = r(wC),

q(GwA) + q(GwC) + q(GwG) + q(GwT) = l(Gw),

q(AwG) + q(CwG) + q(GwG) + q(TwG) = r(wG),

q(TwA) + q(TwC) + q(TwG) + q(TwT) = l(Tw),

q(AwT) + q(CwT) + q(GwT) + q(TwT) = r(wT).

(7)

Recall that the numbers l(·) and r(·) are computable from
f(·) (cf. (4)). From (7), we also see that they are not
arbitrary but must satisfy a consistence condition:

l(Aw) + l(Cw) + l(Gw) + l(Tw)

=
∑

L,R∈{A,C,G,T}

q(LwR)

=r(wA) + r(wC) + r(wG) + r(wT).

(8)

An important observation is that the system (7) for
each w is decoupled from each other. In fact, for any
(k − 2)-string w, the unknowns q(LwR) for different L

and R can only occur in the constraints (7) for that
particular w, and will never occur in the constraints for
any other (k − 2)-string w̃. It is because if w ̸= w̃, then
LwR ̸= L̃w̃R̃ no matter what L, R, L̃, and R̃ are. Obviously
the objective function in (6) is already decoupled for
each w as each term in the objective function involves
only one q(LwR). Since there are 4k−2 different (k − 2)-
strings, the optimization problem (6) can be decoupled
into 4k−2 sub-problems of the form (7), each of which
is of size 8-by-16. Specifically, we need to solve the
following problem with 16 unknowns:

maximize −
4∑

i,j=1

pij log pij

subject to



pi1 + pi2 + pi3 + pi4 = li,

i = 1, 2, 3, 4,

p1i + p2i + p3i + p4i = ri,

i = 1, 2, 3, 4,

pij ≥ 0,

i, j = 1, 2, 3, 4,

(9)

where pij are the unknowns q(LwR) to be sought in (7).

2.3 Solution of the optimization problem (9)
In this subsection, we use the Lagrange multiplier
method [3] to show that the solution of (9) is:

pij =

{
lirj
σ

, if σ ̸= 0,

0, if σ = 0,
(10)

where σ is defined by the consistence condition (8):

σ ≡ l1 + l2 + l3 + l4 = r1 + r2 + r3 + r4. (11)

Note that if any of the li or ri is equal to 0, say for
instance, l1 = 0, then by (9) and the fact that pij ≥ 0, we
have p11 = p12 = p13 = p14 = 0. Hence (10) is true for
those variables. Thus in the following, we can assume
that all the li and ri are positive.

We first consider solving (9) without the nonnegative
constraints pij ≥ 0. The Lagrange function is:

F = −
4∑

i,j=1

pij log pij +
4∑

i=1

λi(li − pi1 − pi2 − pi3 − pi4)

+
4∑

j=1

µj(rj − p1j − p2j − p3j − p4j)

where λi and µj are the Lagrange multipliers for the
equations involving li and rj respectively. By setting
∂F/∂pij = 0 for all i, j = 1, 2, 3, 4, we have log pij +
1 + λi + µj = 0. This gives

pij = e−(λi+µj+1). (12)

By inserting (12) into (9), we obtain{
e−(λi+1)(e−µ1 + e−µ2 + e−µ3 + e−µ4) = li,

e−(µj+1)(e−λ1 + e−λ2 + e−λ3 + e−λ4) = rj .
(13)

Hence

(e−λ1 + e−λ2 + e−λ3 + e−λ4)(e−µ1 + e−µ2 + e−µ3 + e−µ4)

=e · (l1 + l2 + l3 + l4) = eσ.
(14)

Combining (13) and (14), we obtain e−(λi+µj) = elirj/σ.
Then from (12), pij = lirj/σ, which is the expression
in (10). Clearly all such pij ≥ 0. Therefore, they are the
solution to (9).

2.4 New estimation formulas
In this subsection, we derive new estimation formulas
that maximize the entropy by using existing formulas.
As the first example, we try Hao’s formula (1). If (1) is
used for the q(LwR) in the left hand side of (7), then we
have

l(Lw) =
f(Lw)

f(w)

[∑
I

f(wI)

]
, (15)

r(wR) =
f(wR)

f(w)

[∑
I

f(Iw)

]
, (16)
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cf. (4). For simplicity, here and in the following, all
summations are over the four possible nucleotides A, C,
G, and T. Substituting (15) and (16) into (11), we have

σ =
1

f(w)

[∑
I

f(Iw)

][∑
I

f(wI)

]
. (17)

By (10), our estimation formula is:

q(LwR) =
f(Lw)f(wR)

σf2(w)

[∑
I

f(Iw)

][∑
I

f(wI)

]

=
f(Lw)f(wR)

f(w)
, (18)

where the last equality follows from (17). We note that
this formula is exactly the same as (1). Thus we have
formally proved the result in [11] that Hao’s formula (1)
satisfies the maximum entropy principle.

Next let us use Yu’s formula (2) to see if we can derive
a new estimation formula. Putting (2) into (7) for q(LwR),
and using the fact that

∑
I f(I) = 1, we have

l(Lw) =
1

2

[
f(Lw) + f(L)

∑
I

f(wI)

]
, (19)

r(wR) =
1

2

[
f(wR) + f(R)

∑
I

f(Iw)

]
. (20)

Hence by (11),

σ =
1

2

[∑
I

f(Iw) +
∑
I

f(wI)

]
. (21)

By (10), the estimation formula is:

q(LwR) =
1

4σ

[
f(Lw) + f(L)

∑
I

f(wI)

]

×

[
f(wR) + f(R)

∑
I

f(Iw)

]
, (22)

where σ is defined in (21). This formula, which satisfies
the maximum entropy principle, is different from (2). We
will call this formula Yu1.

In order to show that our approach is generic, let
us derive another entropy-maximizing formula from the
following Yu-like formula (cf. (2)):

q(LYxZR) =
1

2
[f(LY)f(xZR) + f(LYx)f(ZR)] , k ≥ 5. (23)

Here L, Y, Z and R are single nucleotide and x is a (k −
4)-string in the middle, i.e. w ≡ YxZ is a (k − 2)-string.
Putting this into (7) for q(LYxZR) = q(LwR), we have

l(LYxZ) =
1

2

[
f(LY)

∑
I

f(xZI) + f(LYx)
∑
I

f(ZI)

]
, (24)

r(YxZR) =
1

2

[
f(xZR)

∑
I

f(IY) + f(ZR)
∑
I

f(IYx)

]
. (25)

Hence by (11),

σ =
1

2

[∑
I

f(IY)
∑
I

f(xZI) +
∑
I

f(IYx)
∑
I

f(ZI)

]
.

(26)

By (10), the estimation formula is:

q(LYxZR) =
1

4σ

[
f(LY)

∑
I

f(xZI) + f(LYx)
∑
I

f(ZI)

]

×

[
f(xZR)

∑
I

f(IY) + f(ZR)
∑
I

f(IYx)

]
,

(27)

where σ is defined in (26). Thus we obtain another new
formula. We will call this formula Yu2.

2.5 Construction of phylogenetic trees

Once we have the q(u)’s, the corresponding entry of the
composition vector c is constructed as below:

c(u) =


f(u)− q(u)

q(u)
, if q(u) ̸= 0,

0, otherwise,
(28)

see [9]. Note that entropy measures the randomness
in stochastic sequences, see [20]. By maximizing the
entropy in q(u) and then subtracting q(u) from the
frequency vector f(u), we are quantifying the non-
randomness occurrence of the pattern u, see Hu and
Wang [11].

Let c1 and c2 be the composition vectors of two DNA
sequences from two taxa C1 and C2. Then the distance
between C1 and C2 can be computed as follows [2], [17],
[24], [25]:

d(C1, C2) =
1− cos⟨c1, c2⟩

2
,

where cos⟨c1, c2⟩ is the cosine of the angle between
the two composition vectors c1 and c2. Once the dis-
tances amongst all taxa are obtained, the neighbor-
joining method [19], [26], such as the one in the software
MEGA4 [27], can be used to construct the phylogenetic
trees.

We remark that here we follow the papers [2], [17],
[24], [25] and use the cosine angle to measure the dis-
tance between vectors. However, there are some other
ways to measure the distances, see [28].

3 EXPERIMENTS

In this section, we compare the effectiveness of the
estimation formulas by Hao (1), Yu (2), and by us, i.e.
Yu1 (22) and Yu2 (27).
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3.1 Simulated datasets
In order to compare the effectiveness, we use three dif-
ferent evolution models to generate sets of 10 sequences
that have a tree topology as shown in Figure 1. Then
for each set, we apply the estimation formulas to see
how many branches they can identify correctly. The 18S
rRNA sequence of Human ribosomal DNA complete
repeating unit (GenBank: U13369.1), which is 1871bp
long, is employed as the root sequence. We set k = 8
(see Section 4 for the choice of k) and we repeat the
experiments 100 times for each model. Consensus values
[13] and binomial significant tests [21] are used to gauge
the accuracy.

Fig. 1. The tree topology used in the simulation test.

In our first experiment, we generate the 10 sequences
by MySSP [15], [18] where the HKY model [15], [18] with
the mutation rate 10% was employed as the substitution
model. The other parameters were set by default. The
consensus trees were then generated using the neighbor
joining program in the PHYLIP package. In Table 1, we
show the consensus values for the correct tree topology
in each branch for the four different formulas. The table
clearly shows that the new entropy-maximizing formula
Yu1 (22) derived from Yu’s formula (2) gives the highest
consensus values.

In the second and third experiments, we generate
the 10 sequences by using the Markov model (Hao’s
model) and the totally independent model (Yu’s model)
respectively with mutation rate of 10%. For the Markov
model, they are generated as follows. Given the par-
ent sequence, we first compute the frequencies of all
its (k − 1)-strings and k-strings. Then we randomly
choose 10% of the necleotides in the sequence. For
each necleotide chosen, we compute the probability of
change conditioned on the (k − 1)-string on its left, and
change the necleotide according to the probability. For
the independent model, we just randomly choose 10%
of the necleotides and change them randomly.

When all ten sequences are generated, we apply the
formulas to get their resulting tree topologies. We count
the result as a “success” if all the branches are the same
as in Figure 1, or as a “failure” if at least one of the
branches is wrong. We then apply a one tail binomial

significant test [21] to compare the formulas pairwise,
see Table 2. In the table, the p-value for “Formula X vs
Formula Y” is the probability that Formula X failed to
outperform Formula Y. Thus the smaller the p-value, the
more confident we can say that Formula X outperforms
Formula Y. The binomial significant test clearly shows
that Yu1 (22) is the best amongst all four formulas for
all three different evolution models. This indicates that
Yu1 can provide more consistent phylogenies.

Since the new formula Yu2 (27) is not as good as Yu1
(22), in the following, we only compare Yu1 with Hao’s
and Yu’s formulas.

3.2 Experimental datasets

We test the three formulas on two real datasets: the
archaeal 16S rRNA sequences (∼ 1400 bp) in Arahal et al.
[1], and the tetrapod 18S rRNA sequences (∼ 1800bp) in
Xia et al. [31]. We note that the use of 16S rRNA for the
prokaryotic organisms and 18S rRNA for the eukaryotic
organisms is well-documented, see [23] and [29].

Arahal et al. [1] analyzed 22 halophilic archaeal strains
in the family Halobacteriaceae collected from Dead Sea.
The strains were first separated into five groups accord-
ing to their phenotypic features, and one representative
strain (E1, E2, E8, E11 and E12) was then selected
from each group. A 16S rRNA neighbor-joining tree was
constructed on these 5 strains as well as the published se-
quences of 27 halophilic archaea and two non-halophilic
archaea. The five unknown strains were assigned into
three genera, Haloferax, Haloarula and Halobacterium
in the neighbor-joining tree. All three formulas support
this assignment of the five strains, see Figure 2.

The phylogenetic relationship amongst tetrapods has
been widely discussed in the area of phylogeny and
evolution. One early topic is whether birds are more
closely related to crocodilians or to mammals. Several
studies based on 18S rRNA sequences supported the
grouping of birds and mammals [31]. But according
to the traditional classification and the results derived
from a large amount of molecular, morphological and
paleontological data, birds are thought to be grouped
with crocodilians. This opinion is more acceptable in the
biological area [10], [31].

Here we apply the CV method on the tetrapod dataset
in Figure 3 of [31], except that we deleted the sequence
Latimeria since it is a fish and is irrelevant to the clades
we are considering. Using any one of the three formulas,
every taxon is grouped to their corresponding amphib-
ian, reptile, bird or mammal clade correctly. However, for
Hao’s (1) and Yu’s (2) formulas, birds are grouped with
mammals whereas for Yu1 formula (22), the bird and
reptile clades are grouped together, see Figure 3. Thus
our groupings conform with the traditional classification
[10], [31].

Finally in order to show that our formula is better
even for small datasets, we tried the following exper-
iment. We started with Xia’s dataset which consists of
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Fig. 2. The CV tree (k = 7) with estimation formula (22) based on the 16S rRNA sequences analyzed by Arahal et al.
[1].
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Fig. 3. The CV tree (k = 8) with estimation formula (22) based on the 18S rRNA sequences analyzed by Xia et al.
[31].
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Estimation formula num1 num2 num3 num4 num5 num6 num7 num8
Hao (1) 99 99 67 62 53 45 88 88
Yu (2) 100 100 95 91 50 51 100 100

Yu1 (22) 100 100 97 93 62 63 100 100
Yu2 (27) 100 100 95 90 50 50 100 100

Table 1: Consensus values of CV trees (k=8) for simulated datasets from MySSP.

P-value MySSP Markov Independent
Formula Yu vs Formula Hao 9.60E-03 7.62E-06 2.46E-05
Formula Yu1 vs Formula Hao 7.68E-09 1.23E-07 2.31E-07
Formula Yu1 vs Formula Yu 1.05E-05 1.13E-01 1.5E-02
Formula Yu1 vs Formula Yu2 3.6E-03 1.21E-02 3.83E-07

Table 2: Binomial significant test for CV trees (k=8) from 3 different evolution models.

40 sequences. We randomly delete a certain number of
sequences from it while keeping at least one sequence in
each clade: birds, reptiles and mammals. The deletion of
the sequences from the dataset increases the distances
amongst the remaining sequences. We then apply the
three formulas to the remaining dataset and see if a
correct phylogeny [[birds, reptiles], mammals] can be
obtained. The result is shown in Figure 4. In the figure,
the x-axis is the number of sequences in the dataset and
the y-axis is the number of correct phylogeny out of ten
trials (we repeated each experiment ten times). In this
experiment, all sequences are grouped correctly to their
corresponding clades by all 3 formulas. However, for the
correct phylogeny [[birds, reptiles], mammals], our Yu1
formula (22) outperforms the other two formulas for all
datasets. Moreover, the accuracy of (22) is monotonic
increasing with respect to the number of sequences in
the dataset, indicating that our formula is more stable
than Hao’s and Yu’s. Notice that though Hao’s and
Yu’s formulas give the same performance in the figure,
we observed from the results that Hao may perform
better on some samples, while Yu may perform better on
others. There is no obvious pattern which one is better.

4 DISCUSSION
Compared with sequence alignment methods, the CV
method has several advantages which were mentioned
in Section 1. In this paper, we proposed a general way of
constructing new estimation formulas for the CV method
based on the maximum entropy principle. Existing es-
timation formulas can be used to give new estimation
formulas that maximize the entropy. In this paper, we
used Hao’s (1) and Yu’s (2) formulas to derive new
formulas. The new Hao’s formula happens to be Hao’s
formula itself (hence is maximizing the entropy). The
Yu’s formula leads to a new and accurate formula (22),
which is shown to be better than the Hao (1) and Yu (2)
formulas in simulated as well as experimental datasets.
Of course one may also use other existing formulas to
derive new estimation formulas via our approach as we
have done in §2.4.

We note that only nucleotide sequences were consid-
ered here. If amino acid sequences were considered, the

system will be of size (2 · 20k−1)-by-20k. But it can still
be decoupled into 20k−2 small systems of size 40-by-
400 each, and new estimation formulas can be derived
similarly.

One problem in CV method is how to choose the
optimal string length k. Here we propose to use the
simulated dataset to determine k. Specifically, using the
simulated dataset, the consensus trees for different k are
generated, and we choose the best k where the consensus
values are maximal. As an example, consider the same
setting as in Figure 1 and Table 1. The consensus trees
with estimation formula (22) for k=6, 7, 8, 9, 10, are given
in Table 2. We find that k = 8 is the best.

In implementing the CV method, we note that the
maximum number of possible k-strings in a sequence of
length N is (N−k+1). Thus the number of non-zero en-
tries in the frequency vector is at most (N−k+1). We can
save the indices and the values of these non-zero entries
in two vectors of length at most N . When constructing
the index vector, we can sort the indices in ascending
order for easy searching later. Hence the total cost of
constructing the index vector will be of O(N logN) for
any given k. Using our estimation formulas, e.g. (22), the
cost of computing the expected frequency q(·) is O(1)
for each entry. Hence the composition vector c for each
taxon can be constructed in O(N logN) operations. To
compute the distance between two taxa, the total cost
will then be O(N logN) and the memory requirement is
O(N). Moreover, we note that the construction of the
composition vectors can be done in parallel for each
taxon, and so is the computation of the entries in the
distance matrix after the composition vectors are formed.
These are important advantages of CV method especially
when large datasets are considered.
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