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Abstract

High-resolution image reconstruction arises in many applications, such as remote sensing,
surveillance, and medical imaging. The model of Bose and Boo [2] can be viewed as the pas-
sage of the high-resolution image through a blurring kernel built from the tensor product of a
univariate low-pass filter of the form [% +el,--- ,1,% — e], where € is the displacement error.
When the number L of low-resolution sensors is even, tight frame symmetric framelet filters were
constructed in [9] from this low-pass filter using the unitary extension principle of [44]. The
framelet filters do not depend on €, and hence the resulting algorithm reduces to that of the case
where € = 0. Furthermore, the framelet method works for symmetric boundary conditions. This
greatly simplifies the algorithm. However, both the design of the tight framelets and extension to
symmetric boundary are only for even L and cannot be applied to the case when L is odd. In this
paper, we design tight framelets and derive a tight framelet algorithm with symmetric boundary
conditions that work for both odd and even L. An analysis of the convergence of the algorithms
is also given. The details of the implementations of the algorithm are also given.

1 Introduction

The resolution of digital images is a critical factor in many visual-communication related applications
including remote sensing, military imaging, surveillance, medical imaging, and law enforcement.
Although high-resolution (HR) images offer human observers accurate details of the target, the
high cost of HR sensors is a factor as is the reliability of a single-node sensor. With an array
of inexpensive low-resolution (LR) sensors positioned around the target, it becomes possible to
use the information collected from distributed sources to reconstruct a desirable HR image at the
destination. Much research has been done in the last three decades on the HR image reconstruction
problems. Determined by the method of image reconstruction, previous work on high-resolution
can be approximately classified into the following four major categories: frequency domain methods,
interpolation-restoration methods, statistical based methods, and iterative spatial domain methods.

The earliest formulation of the problem was proposed by Huang and Tsay in [26] and was moti-
vated by the need of improved resolution images from Landsat image data. They used the frequency
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domain approach to demonstrate reconstruction of one improved resolution image from several down-
sampled noise-free versions of it. Kim el al. [30] suggested a simple generalization of this idea to
noisy and blurred images using the aliasing relationship between the under-sampled LR frames and
a reference frame to solve the problem by a weighted recursive least squares method. The frequency
domain methods are intuitively simple and computationally cheap. However, they are extremely
sensitive to model errors, and that limits their use [1]. This sensitivity to model errors has been
improved by the development and use of a recursive total least squares (error-in-variables) algorithm
in [3] to handle errors not only in observation but also errors in the estimation of shifts between
frames.

Ur and Gross [50] applied Papoulis’ [43] and Yen’s [51] generalized multichannel sampling the-
orem to interpolate values on a higher resolution grid. Irain and Peleg [27, 28] employed iterative
back projection method to iteratively update the HR estimate. Tekalp et al. [48, 49] and Stark
and Oskoui [47] used the theory of Projection-Onto-Convex-Sets to solve the problem of restoration
and interpolation. Nguyen et al. [40] developed a super-resolution algorithm by interpolating inter-
laced data using wavelets. Recently, Lertrattanapanich and Bose [32] proposed a so-called Delaunay
triangulation interpolation method for high-resolution image reconstruction.

Statistical models for super-resolution image reconstruction problems have appeared in the lit-
erature recently. Schultz and Stevenson [45] used Maximum a Posteriori (MAP) estimator with
the Huber-Markov Random Filed prior. Hardie et al. [24] proposed a joint MAP registration and
restoration algorithm using a Gibbs image prior.

Iterative spatial domain methods are popular class of methods for solving the problems of reso-
lution enhancement [2, 20, 21, 22, 25, 31, 35, 38, 39, 42]. The problems are formulated as Tikhonov
regularization. Much work has been devoted to the efficient calculation of the reconstruction and
the estimation of the associated hyperparameters by taking advantage of the inherent structures in
the HR system matrix. Bose and Boo [2] use a block semi-circulant matrix decomposition in order
to calculate the MAP reconstruction. Ng et al. [35] and Ng and Yip [37] proposed a fast DCT-based
approach for HR image reconstruction with Neumann boundary condition. Nguyen et al. [41, 42]
also addressed the problem of efficient calculation. The proper choice of the regularization tuning
parameter is crucial to achieving robustness in the presence of noise and avoiding trial-and-error in
the selection of an optimal tuning parameter. To this end, Bose et al. [4] used a L-curve based
approach. Nguyen et al. [42] used a generalized cross-validation method. Molona et al. [33] used an
EM algorithm.

The reconstruction of HR images from multiple LR image frames can be modeled by

g=Hf+n (1)

where f is the desired HR image, H is the blurring kernel, g is the observed HR image formed from
the low-resolution images, and 7 is noise. Recently, new approaches for HR image reconstruction
problems using wavelet techniques have been proposed by Chan et al. in [6, 7, 8]. The problem of HR
image reconstruction is understood and analyzed under the framework of multi-resolution analysis
of £L2(IR?) by recognizing the blurring kernel H as a low-pass filter associated with a multi-resolution
analysis. This low-pass filter is a tensor product of the univariate low-pass filter:

L—-1

1 ——
L,Em(]:z +631a"'313 — € (2)

N | =
N | =

where the parameter ¢ is different in the z and y directions for each sensor.



The reasoning within the wavelet framework provides the intuition for new algorithms. The
wavelet-based HR image reconstruction algorithms in [6, 7, 8] are developed through the perfect
reconstruction formula of a bi-orthogonal wavelet system which has (2) as its primary low-pass
filter. The algorithms approximate iteratively the wavelet coefficients folded by the given low-pass
filter. By incorporating the wavelet analysis viewpoint, many available techniques developed in the
wavelet literature, such as wavelet-based denoising schemes, can be applied to the problem. The first
requirement is the construction of a bi-orthogonal wavelet system with (2) as its primary low-pass
filter. Examples for L = 2 and 4 are given in [7] for e = 0 and in [8] for € # 0. Minimally supported
bi-orthogonal wavelet systems with (2) as primary low-pass filter are constructed for arbitrary integer
L > 2 and any real number |e| < 1/2 in [46]. For the case without displacement error (i.e., when all
e = 0), the corresponding blurring kernel H is spatially invariant and (1) is actually a de-convolution
problem. The proposed algorithm in [7] outperforms the least squares method in terms of peak
signal-to-noise ratio (PSNR).

For the case with displacement error (i.e., some € # 0), the corresponding blurring kernel H is
spatially variant. The performance of the proposed algorithm in [8] is comparable with that of the
least squares method. We note that the algorithm in [8] is a nontrivial extension of the algorithmic
framework of [7], which applies only to spatially invariant blurring operators. There are several
issues affecting the performance of the wavelet approach for problems with displacement errors.
First, the design of the filters 1 my is related to displacement errors. As shown in [7, 8], the image
is represented in the multiresolution analysis generated by a dual low-pass filter, the regularity of the
dual scaling function plays a key role in the performance of wavelet-based algorithms. However, the
regularity of scaling functions varies with the displacement errors, and in some cases, the function
can even be discontinuous [46]. Although the regularity can be improved by increasing the vanishing
moments of the dual low-pass filter, it would produce ringing effects and increase the computational
complexity. Second, since the filters ;, .mg are not symmetric, we can only impose periodic boundary
conditions. However, numerical results from both the least squares and wavelet methods show that
symmetric boundary conditions usually provide much better performance than do periodic boundary
conditions (e.g., [7, 8, 36]).

To overcome these two problems, we proposed a new algorithm based on a tight framelet system
for every even number L (see [9]). The key idea is to decompose the low-pass filter 1 mg into a
low-pass filter (corresponding to € = 0) and a high-pass filter. More precisely,

LeMmo = LTo + V2 LT1, (3)
where
. L—-1 V3 L—-1
—— ——
LTo 1,2,---,2,1] and 7 = [1,0,---,0,—1]. (4)

T 2L 2L

The construction of the tight framelet system with 779 as low-pass filter and 71 as one of its high-
pass filters can be given explicitly for even integers L > 2 through piecewise linear tight framelets
(see [9]). Numerical experiments there show that the framelet approach is much better than the
wavelet approach in [7, 8]. This current paper was necessitated because both the design of tight
framelets with (2) as its low-pass filter and the extension to symmetric boundary conditions in [9]
could not be applied to the case when L is odd.

The outline of the paper is as follows. In §2, we introduce the model by Bose and Boo [2]. In §3,
we construct tight framelet systems for HR image reconstruction. An analysis of the convergence of
the algorithms is also given. Matrix implementations of the designed tight framelet are given under



symmetric boundary conditions in §4. Tight framelet based HR image reconstruction algorithms are
developed in §5. Numerical experiments are illustrated in §6. Finally, our conclusion is given in §7.

For the rest of the paper, we will use the following notations. Bold-faced characters indicate
vectors and matrices. The numbering of matrix and vector starts from 0. The matrix L’ denotes the
transpose of the matrix L. The symbols I and 0 denote the identity and zero matrices respectively.
For a given function f € L'(R), f(w) = [z f(z)e 7™ dz denotes the Fourier transform of f. For
a given sequence m, M(w) = 3., m(k)e 7% denotes the Fourier series of m, and 7 denotes the
complex conjugate of m. The Kronecker delta function is d;; = 1 if K = [ and 0 otherwise.

To describe Toeplitz and Hankel matrices, we use the following notations:

ap a1 o aAN-—2 aN-—1
by apg -+ aN-3 aN-2
Toeplitz(a, b) = : : : : ,  with ap = by,
bv—2 by_3 -+ ap ay
bv-1 bn—2 -+ by ap
and
ap a1 o aAN-—2 aN-—1
ay az - an-1 by -2
Hankel(a, b) = . , with ay_1 =bn_1.
an—2 an-1 -+ by by
an-1 by - b1 bo

The matrix PseudoHankel(a, b) is formed from Hankel(a, b) by replacing both the first column and
the last column with zero vectors, i.e.,

0 a1 et N2 0
0 a v GN-—1 0
PseudoHankel(a,b) = | : : : : |, with an_1 =bn_1.
0 aN—-1 - bQ 0
0 by_o -+ b1 O

2 Mathematical Model for High-Resolution Image Reconstruction

The system (1) is ill-posed. Usually it is solved by Tikhonov’s regularization method. The Tikhonov-
regularized solution is defined to be the unique minimizer of

min {12 — g|* + aR(f)} )

where R(f) is a regularization functional. The basic idea of regularization is to replace the original
ill-posed problem with a “nearby” well-posed problem whose solution approximates the required so-
lution. The regularization parameter « provides a tradeoff between fidelity to the measurements and
noise sensitivity. High-resolution reconstruction consists of two separate problems: image registra-
tion and image reconstruction. Image registration refers to the estimation of relative displacements
with respect to the reference low-resolution frame; and image reconstruction refers to the stage of
restoring the HR image. In this paper, we focus on the case where the registration is not required.
We follow the high-resolution reconstruction model proposed by Bose and Boo [2]. Consider a
sensor array with L x L sensors in which each sensor has Vi x Ny sensing elements and the size of



each sensing element is 77 X T5. Our aim is to reconstruct an image with resolution M; x My, where
M1:L><N1 anszzLXNz.

In order to have enough information to resolve the high-resolution image, there are subpixel
displacements between the sensors in the sensor arrays. For sensor (¢1,43), 0 < ¢1,0s < L with
(£1,242) # (0,0), its vertical and horizontal displacements dy, 4, and d‘zhb with respect to the (0,0)th
reference sensor are given by

Ty

T
dz Lo — (61 + 6%1,52) f and dgl,ﬂz = (62 + Egl,b) f

Here €}, ,, and ezl ¢, are the vertical and horizontal displacement errors respectively. We assume that

1 1
|6f1742| < 5 and |6z1,£2| < 5

For sensor (1, /), the average intensity registered at its (n1,n2)th pixel is modeled by:

[z, y)dzdy 4 1g, 0,01, n2]. (6)

1 Tl(n1-|-1/2)-i-d}”1,l2 T2(n2+1/2)+dz1,[2
gel,EQ [n17 n2] -

T\ Ti(ni—1/2)+df, , JTo(na=1/2)+d] ,,
Here 0 < ny < Ny and 0 < ny < Ny and 1y, 4,[n1,n2] is the noise, see [2]. We intersperse all the
low-resolution images gy, ¢, to form an M; X M, image g by assigning

glLny + £y, Lng + €3] = ge, 4,01, n2).

The image g is already a high-resolution image and is called the observed high-resolution image. It is
already a better image than any one of the low-resolution samples gy, s, themselves, c.f. the figures
in the second row with those in the first row in Figures 4-7.

To obtain an even better image than g (e.g. figures in the bottom two rows in Figures 4-7), one
will have to find f from (6). One way is to discretize (6) using the rectangular quadrature rule and
then solve the discrete system for f. Since the right hand side of (6) involves the values of f outside
the scene (i.e. outside the domain of g), the resulting system will have more unknowns than the
number of equations, and one has to impose boundary conditions on f for points outside the scene,
see e.g. [2]. Then the blurring matrix corresponding to the (¢1,#2)th sensor is given by a square
matrix of the form

Hy, 0 (€8, 0,0 €0, 0,) = HY (€7, 4,) @ H(€7, 4,)- (7)

The matrices H”(ef, ,,) and Hy(eg1 ¢,) vary under different boundary conditions and will be given
later.
The blurring matrix for the whole sensor array is made up of blurring matrices from each sensor:

L—-1 L-1

H(e" €') = Z Z Dy, 0, Hy, 0 (6%1,sz ezhb) (8)
£1=00>=0

where €* = [}, 742]2?2:0 and €’ = [¢], 742]45412:0. Here Dy, 4, is the sampling matrix for the (¢, ¢2)th
sensor, and is given by

Dflyb = Df2 ® Dll (9)

where ng = INj ® ezj with ey the j-th unit vector.

5



Let f and g be the column vectors formed by f and g. The model of the reconstruction of
high-resolution images from multiple low-resolution image frames becomes

g = H(e", e)f +1. (10)
The Tikhonov-regularization model in (5) becomes
(H(e",€¥)'H(e", €¥) + aR)f = H(e", €¥)'g (11)

where R is the matrix corresponding to the regularization functional R in (5).

Several different methods have been proposed to solve the system (10) in the literature. In the
case of no displacement errors, i.e. € = €/ = 0, the blurring matrix H(0,0) in (10) exhibits very
rich algebraic structure. In fact, by imposing traditional zero-padding boundary condition, H(O0, 0)
is a block-Toeplitz-Toeplitz-block matrix (see [2]). By imposing the periodic boundary condition,
H(0,0) in (10) is a block-circulant-circulant-block matrix. The resulting Tikhonov system (11) is
then solved by fast Fourier transform. By imposing Neumann boundary condition, H(0, 0) in (10) is
a block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks. The resulting Tikhonov system (11)
is then solved by fast cosine transform in [35]. In the case with displacement errors, one can use
the matrices H(0,0) as a preconditioner for H(e”, €¥), and solve the systems by the preconditioned
conjugate gradient method, see [2, 34].

A different viewpoint was proposed in [7, 8] for understanding (10). By (8), the observed image g
is formed by sampling and summing different blurring images Hy, 4, (ef1 Ly e%l , Zz)f . The low-resolution
image Dy, ¢, He, 0, (€7, 4, €7, 4,)f, which results from the sampling of Hy, ¢, (€7, ,, €7, 4,)f, is considered
as the output of the image f passing through a low-pass filter which associates with a multiresolution
analysis of £2(R?). An algorithm was then derived to solve the problem (10) using low-pass filters
and their duals [7, 8].

3 Tight Framelet Systems and Analysis of Algorithms

No matter which boundary condition is imposed on the model, the interior row of H” (€7, ,,) (similarly
of HY(ej, ,,)) is given by

L—-1
1 1 ——1
— 0,...,0754_62,62,1’...,1,5—6‘51’@,0,...,0 . (12)

This motivated us in [7, 8] to consider the blurring matrix HY (e}, 0,) @ HY(€7, 4,) as a low-pass filter
acting on the image f. This low-pass filter is a tensor product of the univariate low-pass filter (2).
Using this observation, wavelet algorithms based on bi-orthogonal wavelet systems were proposed in
[7, 8] and a tight framelet based algorithm was then developed in [9]. The numerical experiments in
[9] illustrated the effectiveness of the tight framelet based HR image reconstruction over the wavelet
approach in [7, 8]. However, in [9], we only consider the case where L is even. In fact, both the
approach for designing tight framelets with (12) as its low-pass filter and the symmetric boundary
extension for even number L given in [9] cannot be applied to the case of odd number L. In this
section, we will give a different method from [9] to derive the tight framelets for an arbitrary integer
L. Two algorithms are also proposed in the Fourier domain.



3.1 Tight framelet system

The construction of compactly supported (bi-)orthonormal wavelet bases of arbitrarily high smooth-
ness has been widely studied since Ingrid Daubechies’s celebrated works [13, 14]. Tight frames
generalize orthonormal systems and give more flexibility in filter designs. A system X C L£2(R) is
called a tight frame of £2(R) if

S UERE =111,

heX

holds for all f € £L3(R), where (-,-) and || - || = (-,-)/? are the inner product and norm of £2(R).
This is equivalent to

S h=f, feLR).

heX
Hence, like an orthonormal system, one can use the same system X for both the decomposition and
reconstruction processes. They preserve the unitary property of the relevant analysis and synthesis
operators, while sacrificing the orthonormality and the linear independence of the system in order
to get more flexibility.

If X is the collection of dilations of L7, j € Z, and shifts of a finite set ¥ C £2(R), i.e.,

X(0) = {4 eV, 1 << rj ke, (13)

where d)fJﬂ(t) = LI/2%(L7 - —k), then X () is called, in general, a wavelet system. When X (o)
forms an orthonormal basis of £2(R), it is called an orthonormal wavelet system. In this case the
elements in ¥ are called the orthonormal wavelets. When X (¥) is a tight frame for £?(R) and U is
generated via a multiresoultaion analysis, then each element of W is called a tight framelet, and X ()
is called a tight framelet system. Tight framelet systems generalize orthonormal wavelet systems.

3.2 Construction of tight framelets

The low-pass filter in (12), denoted by 1, ¢mg, can be considered as a combination of a low-pass filter
(corresponding to € = 0) and a high-pass filter. More precisely,

L—-1
111 —1
LeMmy = — _+€717"'717__€ :Lm0+2€Lm17 (14)
’ L |2 2
where
L—-1 L—-1
1 I N— 1 —N——
Lmoy = E[I,Q,--- ,2,1] and Lmy = E[I,O, ,0,—1]. (15)

Note that ;mg in (15) is the same as ;79 in (4). However, ;mq in (15) differs from ;71 in (4) by a
factor of v/2.
Let

+o0
Ld(w) = [ Lmolw/L*).
k=1

Then r¢ is a compactly supported scaling function with dilation L, and rmyg is the low-pass filter
associated with the scaling function r¢. Moreover, ¢ is Holder continuous with Holder exponent
of In2/1n L, see [46]. Furthermore, the sequence of spaces defined by

Vo=span{¢(- —k):k€Z}, Vi={h(/):heV}, jETL



forms a multiresolution analysis. Recall that a multiresolution analysis (MRA) generated by ¢ is a
family of closed subspaces {V;};cz of £2(R) that satisfies: (i) V; C Vi1, (ii) U, Vj is dense in L2(R),
and (iii) (; V; = {0} (see [17] and [29]).

Our purpose is then to construct a tight framelet system with rmg as a low-pass filter and rmq
high-pass filter. There is a growing interest in construction tight framelets derived from refinable
functions since Ron and Shen suggested the ‘Unitary Extension Principle’ in [44]. Recently, the
unitary extension principle was further extended independently by Daubechies, Han, Ron and Shen
in [16] and Chui, He and Stéckler in [12] to the Oblique Extension Principle. These two principles
lead to some systematic constructions of tight framelets from MRA generated by various refinable
functions (see [11, 12, 16, 23, 44]). Here, we will use the unitary extension principle to design a
tight framelet system from a given refinable function and a wavelet generator. The motivation for
considering this problem is derived from our practical requirement as mentioned above.

To present our result, let us introduce some further notations. We start with the low-pass filter
corresponding to the Haar wavelet with dilation P,

1
pHaarg = F[l’ 1---,1].

Then, the corresponding (orthonormal) Haar wavelet masks (high-pass filters) can be obtained via
DCT III as

2 3 2P —1
pHaar, = % [cos (5—;),(308 <%> ,- " ,COS (%)], p=1,...P—1.

Further, they satisfy

P—1

Z pHaar, (w) pHaar,(w + %) =0p0, £=0,...,P—1, (16)
p=0
where p@p is the Fourier series of pHaar,, p=0,1... ,P —1.

Now we can design a tight framelets with pmg as low-pass filter and m; as one of its high-pass
filters. The basic idea is that the filter ;my and ;m; can be interpreted as the sum and difference

of the elementary filter %[1, ..., 1]. For example, for L = 4, we have
L2221 = 10,110,100 4 —200,1,1,1,1]
2L ) 9’ ) 9’ - 2L 9’ ) 9’ ) 2L 9’ ) 9’ ) )
L 10,0,0,-1] = —=[1,1,1,1,0] — —[0,1,1,1,1]
2L 9’ ) 9’ ) - 2L 9’ ) 9’ ) 2L 9’ ) 9’ ) *

That is, in the Fourier domain
1o (w) = oHaarg(w) 4Haarg(w), and 4 (w) = oHaar () 4Haarg(w).
In general, for an arbitrary L, we have
1iio(w) = oHaary(w) rHaarg(w), and i (w) = oHaar (w) ;Haarg(w).
Motivated from the above equations, we define

—_

L Mopyq(w) = oHaar,(w) pHaar,(w) (17)



where g € {0,1} and p =0,...,L — 1. It follows from (16) that

>

q=0 p=0

! 2l

Lm2p+q Lm2p+q (w + T) = (5470, £=0,...,L—1. (18)

With this, the Unitary Extension Principle of [44] implies that the functions

\I/:{Lz/&p—l—q:ogpélj_la q=0,1, (paQ)#(an)}

defined by
~ . w\ ~[w
L) =tz (5) 19(3)
are tight framelets. That is

X(\Il) = {Lk/Zd)?p-i-q(Lk . _.7) : 0 Sp < L— 1,(] = Oala (paQ) 7& (030);ka] € Z}

is a tight frame system of £2(R). The framelet LY2p+q 18 either symmetric or anti-symmetric. Hence,
the symmetric boundary extensions can be imposed.

Before we present examples for L = 2, 3, 4, and 5, we will briefly explain why the method for
even L in [9] cannot be applied for the case with odd L. In fact, the design of tight frame systems
in [9] starts from the existing piecewise linear tight frame

1 2 1
To = 1[1727 1]77_1 = %[1707 _1]77_2 = Z[la _27 ]-] (19)

as reported in [44]. For any even L, ;my is then decomposed as the sum of 7y and its double shifted
versions while ;m;q is then decomposed as the sum of 71 and its double shifted versions. For instance,
for L = 6, we have

1 1
51222221 = [1,2,1,0,0,0,00 + [00,1,2,1,00] 2[0,0,0,0,1,2,1],

2 2 2
1—\/2_[1,0,0,0,0,0,—1] = 1—\/2_[1,0,—1,0,0,0,0]+1—\/2_[0,0,1,0,—1,0,0]+1—\/2_[0,0,0,0,1,0,—1].

Clearly, if L is an odd number, we do not have such a decomposition. We further point out that
for even L, the number of high-pass filters for the tight frame system designed in [9] is % —

The number of high-pass filters for the tight frame system designed in the current paper is 2L — 1.
Moreover, we will see in the next section that the symmetric boundary extension for even L and odd

L are completely different.

Example 1. L = 2: The low-pass filter my and the three high-pass filters my,ma, ms are mg =
%[1,2, 1], my = %[1,0,—1], me = %[1,0 —1], and mgz = [ —2,1], respectively. Note that my = ma,
we can design o tight wavelet frame system with only two high-pass filters. This new system has a
low-pass filter 7o = mg, T, = V/2my, To = m3 as shown in (19).

Example 2. L = 3: The low-pass filter mg and the five high-pass ﬁlters mi, Mo, M3, My, M5 are
mo = 1[1,2,2,1], my = £[1,0,0, 1], my = YO[1,1, -1, —1], m3 = ¥2[1, -1, —1,1], my = ¥2[1, -1, -1,1],
and mgy = g[l, —3,3, —1], respectively.



Example 3. L = 4: The low-pass filter mq and the seven high-pass filters m;, 1 <4 <7, are

Note that the tight framelet frame designed in [9] is To = %[1,2,2,2, 1, 7
1
<|—1,2,
s—1,

= %[132a232a l]aml = %[1,0,0,0, _l]a
Y2 cos(T)][1, V2,0, —v2,-1], my = L2[cos(Z), —v/2sin(L), —2sin(T), —v/2sin(Z), cos(L)],
= $[1,0,-2,0,1],ms = £[1,-2,0,2, —1],

¥2sin(Z)[1, V2,0, \/_ 1], my = f[sm(%) —V/2cos(%),2cos(%), —v2cos(Z), sin(Z)].

1= ¥2[1,0,0,0,~1], 7 =
—2,2, 1], 73 = 1[1,2,0,-2, 1], 74 = ¥2[1,0,-2,0,1], and 75 = £[~1,2,0,-2,1]. Again

we have 11 = \/_ml.

Example 4. L = 5: The low-pass filter mg and the nine high-pass filters m;, 1 < <9, are

1
my = 1—0[1,2,2,2,2,1],
1
my = 10[1,0000 1],
V2 T V2 T T V2 3t V2 3r V2 T T V2 T
me = [ECO 1005 %105 10 © E,—Ecos—0,—?cosl—ocosg,—ﬁcosl—0],
\/571’\/5_7(.71’\/537(\/537( \/§_7r_7r\/§7r
ms = [I—OCOSE —- sin gsin &, ——0 €08 7, — - cos T, ——=sin o sin &, S co —0],
V2 T V2 T 2 V2 o T V2 o V2 T 2 V2 T
my4 = [——COS—,— COS — COS —, ——— COS~ —, ——— COS~ —, — COS — COS —, cos —|,
10 5" 5 5 5 5 5 5 5" 5 5 5710 5
V2 T V2 w2 V2 2371'\/5 237r\/§ T 2t V2 T
ms = [Ecoss,—?smgsm?,—?cos 107 5 85 150§ 08 E €08, g 8 ¢,
_\/§ 37r\/§_7r_7r\/§ T V2 T V2 . m . V2 3w
me = [Ecosl—o,—?smﬁs AT T TR T T T T osl—o]
V2 3r V2 e T V2 T V2 e V2 T T V2 37
mr = [ECOSTO’_?COSECOSE ' 70 €10’ 10 100 5 510 < B I—OCOSE]
V2 27 \/§_7r,37r\/§,27r\/§,27r V2 .o o . 31 V2 27
mg = [——cos —,——sin — sin —, — sin”® —, — sin” —, —— sin — sin —, — cos —|,
10 5 5 10 10" 5 10" 5 10 5 10 107 10 5
V2 ot V2 T 37r\/§,227r \/5,227r\/§ T 3 V2 2w
mg = [1—0(308?,—?(3 10 1p> 5 S 5>~ sin ?’?COSECOSE’_ECOSE]'
3.3 Analysis of the Algorithms
Let mg, m1, ... muy be the low and high pass filters of a tight framelet system given in the previous

section with mg being the low-pass filter and m; being the high-pass filter defined in (15) for a fixed

L. The high resolution image reconstruction without displacement error is essentially to solve v

when mg v is given. We describe our algorithms here in the Fourier domain for the one dimensional

case. The matrix form of the algorithms in two dimensional case is given in the next section. In the

Fourier domain, the problem becomes one of finding ¥ when the function g * v = M0 is given.
Our tight frame iterative algorithm starts from

N
> i (w)i(w) = 1.
=0

10



Suppose that at step n, we have the nth approximation v,,. Then
N —_—
> Wity = . (20)
i=0

Assume that there is no displacement error. Since 740 = g * v is available, we replace Mg, in (20)
by mg * v (i.e. 7o) to improve the approximation. By this, we define

N

~ — = ~~

Upa1 = Moo * 0 + E ;115U - (21)
=1

For the case with displacement errors, the observed image is obtained from the true image v by
passing v through the filter mg 4 2emy, see (14). Hence we have (mg(w) + 2em1 (w))v instead of mgo.

Noting that
N

o (w) (7 (w) + 261 (w) — 26 (w)) + D (W) (w) = 1,
=1

and the fact that (mg(w) + 2emq(w))v is available, we obtain the following modified algorithm

N
T4 = o (g + 267 )T — 2efinTy) + > AifiiOp.- (22)
=1

Essentially, this algorithm uses mv,, to estimate the displacement error m,v in (Mg + 2emy )0 which
is the available data. The term (7 + 2em1)v — 2em1 0, can be viewed as the approximation of the
observed image without displacement errors. By this, we reduce the problem of reconstruction of
high-resolution image with the displacement errors to that of the one with no displacement errors.
This allows us to use the set of filters derived from the case with no displacement errors. Those
filters are symmetric and independent of e.

Proposition 1. Let my, mq, ... my be the low and high pass filters of a tight framelet system
derived from the unitary extension principle with mqg and my being the filters defined in (15) for
a fited L. Then, the sequence v, defined in (22) converges to ¥ in L2[—m, 7| for any arbitrary
Vo € L2[—m,7].

Proof. For an arbitrary vy € L2[—, ], applying (22), we have

N n
Oy — T = (} it — zem0m1> (3o — D).
i=1

~

Since Zf\;l m;(w)m;(w) is a real number, 2emg(w)i; (w) is a pure imaginary number, and |e| < 1/2,
we then have, for every w € [—7, 7],

.F_ﬂz
3

-
Il
_

~

i(W)i(w) = 2emo (W) (W) = (Y Mi(w)mi(w))? + 4 o (w) | (w)
=1

M-

<
i
=)

T?Ll(w)’r/sz (w) =1.

11



Furthermore, since

~ ~

(W) mi(w) = 2eig(w) i (w))[?

M=
3

=1

only equals to 1 at finitely many points, the inequality
N _ S
1> mi(w)i(w) — 2emo(w) i (w))]* < 1
i=1

holds for w € [—m, 7] a.e.. Hence,

N n
(Z i — 267?1—07711> (Vo — V)

=1

converges to zero for almost every w € [—m, w]. By the Dominated convergence theorem, v,, converges
to ¥ in £?-norm. O

When the observed image contains noise, then v, has noise brought in from the previous iteration.
One then has to apply a denoising procedure at each iteration. Here we consider two different
approaches. The first one is similar to the denoising procedure given in [9]. The idea is to decompose
the high frequency components m;0,, 1 = 1,... N via the standard tight framelet decomposition
algorithm. This gives a framelet packet decomposition of v,. Then, applying a framelet denoising

algorithm to this decomposition of each m;v,, i = 1,... , N and reconstructing m;v,, i = 1,... N
back via the standard reconstruction algorithm leads to a denoising procedure for m;v,,i =1,... , N.

The whole denoising procedure is implemented in space (or time) domain instead of Fourier domain.
The detailed algorithm is given in Algorithm 1 in the next section.

Another approach is to apply standard Donoho orthonormal wavelet denoising scheme on each
vy, before it is used to obtain the next iteration. Although our numerical simulation shows that the
denoising scheme mentioned in the last paragraph gives a better performance, this new iteration
can be proved to be convergent if the soft threshold (see (32) and (33) for the definitions of soft
threshold) is used in the denoising scheme. Indeed, this is a direct corollary of Theorem 3.1 in
[15]. For it was proven in [15] that given a converging iteration that solves an inverse problem, the
iteration will still be convergent if one adds a soft threshold denoising scheme based on an orthonormal
system at each iteration under the assumption that the underlying solution can be represented by
the orthonormal system sparsely. Since images can be modeled as piecewise smooth functions that
can be sparsely represented by orthonormal wavelet systems, and since our iteration defined in (22)
converges, Theorem 3.1 of [15] can be applied to conclude that this new algorithm converges. In fact,
Theorem 3.1 of [15] was stated in a more general setting and the interested reader should consult
[15] for the details. The details of implementation of this algorithm is given in Algorithm 2.

4 Matrix Form

Setting £ =0 in (18) yields

1
SN (@) = 1. (23)

12



For any signal u, we have
1
Do izpg(w)Pii(w) = T(w).

In the time domain, the above identity is equivalent to

1 L1
Z (Magpiq * Mapyq * u)(n) = u(n) Vn€Z, (24)
q=0 p=0
where my,. (k) = maopyq(—k) for all k. Our purpose is to construct, under certain symmetric

boundary conditions, N X N matrices Ty and T),, £ =0,... ,2L — 1, such that
1
q=0

for any vector u. This is equivalent to

L-1

M

TopiqToprqu =u (25)

Il
o

p

1 L-1
Z Z LoprqTap+q =1 (26)
q=0 p=0

To construct the matrices Ty, and T, for £ = 0,... ,2L — 1, we consider two separate cases: L is

even and L is odd. The detailed formulation of the matrices Tj and T}, is given in [10].

4.1 L is even

If L is even, the N x N matrices

T. — Toeplitz(a, b) + PseudoHankel(b, a), when k = 2p + ¢q and p + ¢ is even,
=k 7 1 Toeplitz(a, b) + PseudoHankel(—b, —a), when k = 2p + ¢ and p + ¢ is odd,

forall k =0,... ,2L —1, and

a = [my,(0),- - ,my(—L/2),0,--,0]" and b= [m(0), - ,my(L/2),0, - ,0]".

Similarly, the N x N matrices
T}, = Toeplitz(a, b) + PseudoHankel(b, a)

forall k =0,... ,2L — 1 with

a = [mp(0), - ,me(=L/2),0,--- 0] and b= [mg(0),- ,my(L/2),0,--- ,0]"
4.2 L is odd
If L is odd, the N x N matrices

Toeplitz(a, b) + PseudoHankel(b, 0) + Hankel(0, a),
T — when k£ = 2p + q and p + ¢ is even,
=k 7 ) Toeplitz(a, b) + PseudoHankel(—b, 0) + Hankel(0, —a),
when &k = 2p + q and p + ¢ is odd,

13



forall k =0,... ,2L — 1 with
a = [my(0), - mg(—(L+1)/2),0,-+ 0] and b = [my(0), - ,my((L — 1)/2),0,-- ,0]"
Similarly, the N x N matrices
T, = Toeplitz(a, b) + PseudoHankel(b, 0) + Hankel(0, a),
forall k =0,... ,2L — 1 with
a = [mg(0),--- ,mp(—(L —1)/2),0,---,0]" and b = [mg(0),--- ,ms((L+1)/2),0,---,0]".

5 Algorithms

For any number L > 2, the M; x M; matrices T and T} in (25) are denoted by T} and Tf,
respectively; the My x My matrices Tj, and T}, in (25) are denoted by T and TY, respectively. We
have

2L—1 2L—1
Y TiTi=Iy, and > TIT] =Ty,
k=0 k=0
This leads to
2L-1
Z Ipqup,q = IM1 X Mo (27)
p,q=0

where T), = T} ® T, and T, , = TY ® T;. Obviously, Too = H(0,0).
Recalling (14), we have
H*(e7, 4,) = T( + 2¢5, 5, T and Hy(eifl’b) =T§+ 2634{1,£2T?1/.

Therefore, the blurring matrix with displacement errors, i.e. H(€”,€¥) in (8), can be expressed as
the sum of the blurring with no displacement H(0,0) together with the matrices T, To,1, T1,1.
More precisely,

I‘IO,U(G%1 2% 6%1 ,52) = T(),[) + 262,[2'1‘170 + 26?1’& Tgyl + 462,526Z,Z2T171. (28)
By definition (9), ZZ_:IU fz_:lo Dy, ¢, = Ins, i, Hence we get

H(GI, Gy) = T0,0 + 2S(€I)T1,0 + 2S(6y)T0’1 + 4S(6my)T1’1 (29)

Ty — [T LY L-1 _ L—-1 L—-1 .
where € = [651,52 651,42]&,@2:0 and S(e) = 251:0 50 €162 * Doy 0y

Multiplying f to both sides of (29) leads to
H(e”, €’)f = T of + 2S(€”) T of + 2S(e¥) Ty 1f + 4S(e™) T 1 f.

This equation says that the observed high-resolution image g = H(e”, €)f is the sum of T of (which
equals to H(0,0)f, the observed high-resolution image without any displacement errors), and three
high-frequency images. Conversely, the observed image in the case with no displacement errors can
be represented by the observed images with displacement errors:

H(0,0)f = T of = H(e?, €/)f — [28(e%) Ty of + 2S(€¥) T f + 4S(e™) Ty 1f]. (30)

Thus with the matrices T; o, Tp 1, and T; ;, we can always approximate H(0,0)f independent of
the displacement errors. In other words, unlike the work in [8], the tight system we used is fixed and
can be used for all displacement errors.

Two algorithms will be proposed in the following subsections.
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5.1 Algorithm 1

This algorithm is essentially the same as the one proposed in [9].
Algorithm 1.

1. Choose an initial guess fy;

2. Iterate on n until convergence;

(a) compute all framelet coefficients T, £, for (p,q) # (0,0) for p,q=0,... ,2L —1.
(b) estimate the observed image g according to (30):

g =g — (2S(€*)T1 0+ 2S(€”)To,1 + 4S(e"™)T1,1) f,.

(c) denoise framelet coefficients T, ,f,, (p,q) # (0,0), by the denoising operator D (we will
define it later).

(d) reconstruct an image f,11 from the estimated observed image g and denoised wavelet
coefficients D(T)p 4f,), i.e.

2L—1
fo1 = I0,0g_’_ Z Ip,qD(TP,qfn)' (31)

P,q=0

(p,9)#(0,0)

One of the major points of our algorithm is that Donoho’s denoising operator D can be built
into the iteration procedure. Although orthogonal and bi-orthogonal wavelets can be used as the
denoising operator D, we insist in using the constructed tight framelets with L = 2 for Algorithm 1,
since it is simple and efficient. To this end, the matrices W), , and W, . correspond to the matrices
Tpqand T, in (27) with L = 2. The denoising operator for two-dimensional images can be simply
written as

Q-1 3
D(f) = (Wy,0)?(Wo,0)9f + Z(ﬂo,o)q Z W, AW, sWg of), (32)
=0 r,8=
! (rs}5(0.0)

where @) is the number of levels used in the decomposition. The operator 7 is the thresholding
operator defined in [19, 18]. More precisely, for a given A, let

Ta((z1,... ,xl,...)t) = (tx(z1),... ,t,\(xl),...)t, (33)

where the thresholding function t) is either (i) £x(x) = TX|>, referred to as the hard threshold, or
(ii) ta(z) = sgn(z) max(|z| — X,0), the soft threshold. A typical choice for X is A = o/2log(M;My)
where o is the variance of the Gaussian noise in the signal f estimated numerically by the method
given in [19]. We use the hard threshold in Algorithm 1.

The computational complexity of each iteration in Algorithm 1 is O(M;Mslog(M;Ms)). This
complexity is also proportional to 4L% — 1, the number of matrices T) 4, (p,q) # (0,0). Therefore, to
reduce the computational complexity at each iteration, one way is to construct a tight frame system
of LZ(R) with the smallest number of tight framelets as possible. Of course, ;mg and ;m; must be
the low-pass filter and one of the high-pass filters associated with this tight frame system.
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5.2 Algorithm 2

This algorithm is new and has not been proposed before.
Algorithm 2.

1. Choose an initial guess fy;

2. Iterate on n until convergence;

(a) denoise the image £, by the denoising operator D defined in (32), the resulting image is

£, = D(£,).

(b) estimate the observed image g according to (30):

g =g — (QS(GCE)TLO + QS(Gy)TO,l + 4S(6xy)T1,1) f,.

(¢) reconstruct an image £,11 from the estimated observed image g and ?n, i.€.

fri1=Toog + (I- IO,OTO,O)fn'

As indicated at the end of Section 3, Algorithm 2 will converge if orthogonal wavelets are used
in the denoising operator D. However, here we use linear tight framelets instead of the orthogonal
wavelets in the denoising operator D because the results with tight framelets are much better than
that with orthogonal wavelets. We use the soft threshold in Algorithm 2.

The computational complexity of each iteration in Algorithm 2 is still O(M;M;log(M;Ms)).
Unlike Algorithm 1, this complexity is independent of the number of matrices T4, (p,q) # (0,0).
Therefore, comparing with Algorithm 1, this new algorithm significantly reduces the computational
cost.

6 Numerical Experiments

In this section, we implement our tight framelet based high-resolution image reconstruction algorithm
developed in previous sections. We evaluate our method using the peak signal-to-noise ratio (PSNR)
which compares the reconstructed image f, with the original image f. It is defined by PSNR =
10logq 2??_%, where the size of the restored images is M; x M. We use the “Bridge”, “Boat”,
and “Baboon” 2images of size 260 x 260 as the original images in our numerical tests, see Figure 1.
We use @ =1 in (32) and stop the iteration process when the reconstructed HR image achieves the
highest PSNR value. The maximum number of iteration is set to 200.

For any L x L sensor array, the displacement errors matrices € and €Y are generated by the
following three MATLAB commands

rand('seed’, 100); €* = 0.99 x (rand(L) — 0.5); €Y = 0.99 * (rand(L) — 0.5);

The L x L sensor array with displacement errors €* and €? produces L?’s LR images.

For 2 x 2, 3 x 3, 4 x4, and 5 x 5 sensor arrays, the tight framelets we used are designed in
Examples 1, 2, 3, and 4, respectively. Figures 2-3 give the PSNR values of the reconstructed images
at each iteration for the “Boat” image (left column), the “Bridge” image (middle column), and
the “Baboon” image (right column) for sensor arrays of different sizes by using Algorithm 1 and
Algorithm 2, respectively. Figures 4-7 depict the reconstructed HR images with noise at SNR = 30
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Figure 1: Original “Boat” image (left); original “Bridge” image (middle); original “Baboon” image
(right).

dB. We see that we can obtain quite good images even for L as large as 5. In terms of PSNR values,
Algorithm 1 is better than Algorithm 2.

For comparison between the wavelet (or framelet) approach with Tikhonov approach, we refer the
readers to [7, 8, 9], where the numerical results have consistently shown that the wavelet approach
always outperforms the Tikhonov approach.

7 Conclusions

In this paper, we continue on our early work in [9]. First, we designed a tight wavelet frame system
with pmg as its low-pass filter and pm; as one of its high-pass filters for any integer L > 2.
The filters are symmetric or antisymmetric so that the proposed tight frame algorithms work for
symmetric boundary conditions. Secondly, an analysis of the convergence of the algorithm in [9] is
given. It is shown that the algorithm converges when there is no noise in the given data. When the
data has noise, a denoising scheme should be built in to remove noise. The algorithm can be proven
to converge for some denoising scheme, e.g. the one given in Algorithm 2. In our future works,
we will construct a tight frame system which has as small number of tight framelets as possible in
order to reduce the computational complexity of our proposed Algorithm 1. We will also develop an
efficient denoising scheme, since it is critical for getting good reconstructed images and proving the
convergence of the algorithm.
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Figure 2: PSNR values at each iteration for “Boat” (left), “Bridge” (middle) and “Baboon” (right)
images with 2 x 2, 3 x 3, 4 x 4, and 5 x 5 (from top to bottom) using Algorithm 1. Solid, dashdot,
and dotted lines denote the case where the observed HR images are corrupted with Gaussian white
noise at noise level SNR = 20, 30, and 40 respectively.
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Figure 3: PSNR values at each iteration for “Boat” (left), “Bridge” (middle) and “Baboon” (right)
images with 2 x 2, 3 x 3,4 x 4, and 5 x 5 (from top to bottom) using Algorithm 2. Solid, dashdot,
and dotted lines denote the case where the observed HR images are corrupted with Gaussian white
noise at noise level SNR = 20, 30, and 40 respectively.

22



Figure 4: From top to bottom, the (0,0)-th LR images, the observed HR images, and the recon-
structed HR images for 2 x 2 sensor array. The reconstructed HR “Boat” image, “Bridge” image,
and “Baboon” image by using Algorithm 1 (the third row) have PSNR = 35.81 dB, 29.05 dB, and
29.01 dB respectively. The reconstructed HR “Boat” image, “Bridge” image, and “Baboon” image
by using Algorithm 2 (the forth row) have PSNR = 35.11 dB, 28.48 dB, and 28.63 dB respectively.
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Figure 5: From top to bottom, the (0,0)-th LR images, the observed HR images, and the recon-
structed HR images for 3 x 3 sensor array. The reconstructed HR “Boat” image, “Bridge” image,
and “Baboon” image by using Algorithm 1 (the third row ) have PSNR = 31.87, 26.94 dB, and
27.59 dB respectively. The reconstructed HR “Boat” image, “Bridge” image, and “Baboon” image
by using Algorithm 2 (the forth row ) have PSNR = 31.38, 26.49 dB, and 27.17 dB respectively.
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Figure 6: From top to bottom, the (0,0)-th LR images, the observed HR images, and the recon-
structed HR images for 4 x 4 sensor array. The reconstructed HR “Boat” image, “Bridge” image,
and “Baboon” image by using Algorithm 1 (the third row ) have PSNR = 30.83 dB, 25.85 dB, and
26.24 dB respectively. The reconstructed HR “Boat” image, “Bridge” image, and “Baboon” image
by using Algorithm 2 (the forth row ) have PSNR = 30.37, 25.48 dB, and 26.07 dB respectively.
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Figure 7: From top to bottom, the (0,0)-th LR images, the observed HR images, and the recon-
structed HR images for 5 x 5 sensor array. The reconstructed HR “Boat” image, “Bridge” image,
and “Baboon” image by using Algorithm 1 (the third row ) have PSNR = 30.01 dB, 25.01 dB, and
25.81 dB respectively. The reconstructed HR “Boat” image, “Bridge” image, and “Baboon” image
by using Algorithm 2 (the forth row ) have PSNR = 29.42, 24.76 dB, and 25.49 dB respectively.
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