Available online at www.sciencedirect.com

Applied and
SCIENCE@DIRECT@ Computationa]
o s Harmonic Analysis
ELSEVIER Appl. Comput. Harmon. Anal. 17 (2004) 91-115

www.elsevier.com/locate/acha

Tight frame: an efficient way for high-resolution image
reconstruction

Raymond H. Chaa! Sherman D. Riemenschneider?
Lixin Shen®?® and Zuowei Sheft*

@ Department of Mathematics, the Chinese University of Hong Kong, Shatin, NT, PR China
b Department of Mathematics, Armstrong Hall, P.O. Box 6310, West Virginia University, Morgantown, WV 26505, USA
¢ Department of Mathematics, National University of Singapore, Science Drive 2, Singapore 117543, Singapore

Received 19 September 2003; revised 18 January 2004; accepted 2 February 2004
Available online 18 May 2004
Communicated by Christopher Heil, Guest Editor

Abstract

High-resolution image reconstruction arise in many applications, such as remote sensing, surveillance, and
medical imaging. The model proposed by Bose and Boo [Int. J. Imaging Syst. Technol. 9 (1998) 294—-304] can be
viewed as passing the high-resolution image through a blurring kernel, which is the tensor product of a univariate
low-pass filter of the fornil/2+¢, 1, ...,1, 1/2—¢], wheres is the displacement error. g a wavelet approach,
bi-orthogonal wavelet systems from this low-pass filter were constructed in [R. Chan et al., SIAM J. Sci. Compult.
24 (4) (2003) 1408-1432; R. Chan et al., Linear Algebra Appl. 366 (2003) 139-155] to build an algorithm. The
algorithm is very efficient for the case \witut displacement errors, i.e., whens# 0. However, there are several
drawbacks when some£ 0. First, the scaling function associated with the dual low-pass filter has low regularity.
Second, only periodiboundary conditions can be imposed, and thire, wavelet filters so constructed change
when some change. In this paper, we design tight-frame symmetric wavelet filters by using the unitary extension
principle of [A. Ron, Z. Shen, J. Funct. Anal. 148 (1997) 408—447]. The wavelet filters do not dependruh
hence our algorithm essentially reduces to that of the case whei@ This greatly simplifies the algorithm and
resolves the drawbacks of the bi-orthogonal approach.
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1. Introduction

High-resolution images are often indispensable in many applications, such as remote sensing,
surveillance, and medical imaging. Their reconstruction technigues can improve the resolution of image-
acquisition systems like the CCD imaging sensor arrays. The reconstruction of high-resolution images
from multiple low-resolution image frames can be modeled by

g§=Hf+n, 1)
where f is the desired high-resolution imag#,is the blurring kernelg is the observed high-resolution
image formed from the low-resolution images, anid the noise.

The system (1) is ill-posed. Usually it is solved by Tikhonov’s regularization method. The Tikhonov-
regularized solution is defined to be the unique minimizer of

min{ | & f — gl +aR()}, @)

whereR(f) is a regularization functional. The basic idea of regularization is to replace the original ill-
posed problem with a “nearby” well-posed problem, whose solution approximates the required solution.
The regularization parameter provides a tradeoff between fidelity to the measurements and noise
sensitivity.

Much research has been done in the last three decades on the high-resolution image reconstruction
[8-10,12,15,17,18,20]. The model proposed by Bose and Boo in [1] is one of the mathematical models
for reconstructing a high-resolution image from multiple low-resolution, shifted, degraded samples of
a true scene. The model was solved in [1,15,16] using the least-squares approach in (2). Recently, we
studied it from the wavelet point of view [2,3]. The main idea is to view the blurring kdihas a matrix
representation of a low-pass filter that gives a stable refinable function associated with a multiresolution
of £2(R?). Then the wavelet-based high-resolution image reconstruction procedure is essentially to
approximate iteratively the wavelet coefficients folded by the given low-pass filter. The algorithms are
developed through the perfect reconstruction formula of a bi-orthogonal wavelet system with this low-
pass filter as its primary low-pass filter, see [2,3,21]. By incorporating the wavelet analysis viewpoint,
many available techniques developed in the wavelet literature, such as wavelet-based denoising scheme,
can be applied to this problem.

However, there are several difficulties when using the wavelet approach for problems with
displacement errors:

(i) Asis shown in [2], the high-resolution image is represented in the multiresolution generated by the
dual low-pass filter. The corresponding scaling function normally has low regularity, and it affects
the performance of the algorithm. To improve the regularity, one has to use longer dual filters.
However, this increases the complexity of the computation and amplifies the artifacts around the
boundary.
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(i) In image restoration, symmetric boundary conditions usually provide better results, see, for
instance, [16]. For the algorithm in [3], the low-pass and the high-pass filters and their duals are
no longer symmetric. This implies that symmetric boundary conditions cannot be imposed.

(i) The construction of the dual filter depends on the displacement errors. This is particularly
inconvenient when the errors vary with time in some applications such as the extraction of high-
resolution images from video.

In this paper, we invoke the unitary extension principle of [19] to build a wavelet tight-frame system
from the given low-pass filter. The constructed filters (both low and high) will be symmetric with self-
duality. Hence, the symmetric boundary conditions can be imposed. Moreover, the recovered image
is represented in the multiresolution derived from the given low-pass filter. This multiresolution is
more natural and has the same regularity as the scaling function corresponding to the blurring filter.
Furthermore, our analysis will show that the filter design is independent of the displacement errors. This
leads to an algorithm that is independent of the displacement errors. Hence it can be adapted to a wider
range of applications. Finally, the redundant nature of the tight-frame system can extract more features
from the blurred images in the reconstruction of the high-resolution images.

We remark that the least-squares approach used in [1,15,16] also has difficulty when there are
displacement errors. The blurring operator is no longer spatially invariant and hence the matrix does
not have special structure. The Tikhonov system (2) has to be solved by an iterative method such as the
preconditioned conjugate gradient method.

The outline of the paper is as follows. In Section 2, we introduce the model by Bose and Boo [1],
and different boundary conditions. In Section 3, we recall the bi-orthogonal wavelet algorithm developed
in [2,3]. In Section 4, we develop our tight-frame algorithm. Finally, numerical examples are given in
Section 5 to illustrate the effectiveness of the algorithm.

For the rest of the paper, we will use the following notations. Bold-faced characters indicate vectors
and matrices. The numbering of matrix and vector starts from 0. The nidtdenotes the transpose of
the matrixL . The symbold and0 denote the identity and zero matrices, respectively. For a given function
f e LYR), f(w) = fRf(x)e‘-""‘”dx denotes the Fourier transform g¢f. For a given sequence:,

m(w) =", mk)e ¥ denotes the Fourier seriesmaf andm* (or m) denotes the complex conjugate
of m. The Kronecke#$, ; = 1 if k =1 and 0 otherwise.

To describe Toeplitz, circulant, and Hankel matrices, we use the following notations:

ap ax e ady—2 dN-1
by ag -+ ay-3 an—2
Toeplitz(a, b) = : : .. : : with ag = by,
by—2 by_z -+ ag a
by-1 by -+ D1 ap
ap a -+ d4dy-2 d4an-1
ay-1 do -+ dAN-3 dAN-2
Circulania) = : Do, : : ,
az a - ao a

ai a -+ dn-1 ao
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and
ap ax cccroadAy—2 dN-1
ai ar <o an—1 by_2
Hankela, b) = : : . : : withay_1 =by_1.
ay—» ay-1 -~ b by
ay-1 by --- by bo

The matrix pseudoHank@, b) is formed from Hankel, b) by replacing both the first column and the
last column with zero vectors, i.e.,

0 a v ay—2 O
0 a «vv ay-1 O
pseudoHankeh, b) = | : : . : : with ay_1 =by_1.
0 anN—1 - bz 0
0 by --- by O

2. Mathematical model for high-resolution image reconstruction

In this section, we first introduce the mathematical model for high-resolution image reconstruction
and then review three different boundary conditions used in the formulation of the blurring kernel.

2.1. Mathematical model

We follow the high-resolution reconstruction model proposed by Bose and Boo [1]. Consider a sensor
array withL x L sensors in which each sensor gsx N, sensing elements and the size of each sensing
element isTy x T». For simplicity, L will be an even number in the following discussions. Our aim is to
reconstruct an image with resolutid, x M,, whereM, =L x Ny andM, =L x Ns.

In order to have enough information to resolve the high-resolution image, there are subpixel
displacements between the sensors in the sensor arrays. For $éngoy, 0 < £4,4, < L with
(€1, £2) # (0,0, its vertical and horizontal displacements ,, and dg;’ez with respect to thg€0, 0)th
reference sensor are given by

T T:
dgl-lz = (El + Egl,fz)fl and dgllz = (62 + gzlgez)fz'
Heree; , ande; ,, are the vertical and horizontalisplacement errorsrespectively. They can be
obtained by the manufacturers during camera calibration. Fig. 1 shows the case when we hafe a 2
sensor array. We assume that

1 1
‘81):1>k2‘ < E and |8Z1-,k2| < 5
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Fig. 1. Sensors without and with displacement error whea 2 (left and right, respectively).

For sensoK{4, £5), the average intensity registered at(itg, n,)th pixel is modeled by

Tim+1/2)+dy, 4, T2(ﬂ2+1/2)+d21y(2

/ f e, y)dx dy + ney.e,[n1, n2]. (3

T1(n1=1/2)+dy, 4, Tz(n2—1/2)+dg’112

ni, Nyl = ——
8e1.0,[n1, N2l T

Here 0< n1 < N; and 0< np < N, andny, ,[n1, no] is the noise, see [1]. We intersperse all the low-
resolution imagegy, ¢, to form anM; x M, imageg by assigning

glLny+ €1, Lny + €3] = gy, 4,[n1, N2].

The imageg is already a high-resolution image and is called abserved high-resolution imagh is
already a better image than any one of the low-resolution samp)es themselves, c.f. the top two
figures in Fig. 5.

To obtain an even better image tharte.g., the bottom two figures in Fig. 5), one will have to fiAd
from (3). One way is to discretize (3) using the rectangular quadrature rule and then solve the discrete
system forf. Since the right-hand side of (3) involves the valueg afutside the scene (i.e., outside the
domain ofg), the resulting system will have more unknowns than the number of equations, and one has
to impose boundary conditions ghfor points outside the scene, see, e.g., [1]. Then the blurring matrix
corresponding to thé,, £,)th sensor is given by a square matrix of the form

Hel>€2 (8261,62’ ‘951,132) = Hy(‘egi,ﬂz) ® Hx(gzllz)' (4)
The matricedH* (¢}, ,,) andH” (s;,_,,) vary under different boundary conditions and will be given later.
The blurring matrix for the whole sensor array is made up of blurring matrices from each sensor

L-1L-1

H (ex’ ey) = Z Z Del,szfi,ez (Sgl.,@z’ 851,52)’ (5)

£1=0£,=0
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wheree* = [¢} , 177 _o ande’ =[g] , 17 . HereDy,, is the sampling matrix for thety, £2)th
sensor, and is given by
Dfl,eg = sz ® Dela (6)
whereD,, =1y, ® ete]_ with e, the jth unit vector.
Let f and g be the column vectors formed by and g. The Tikhonov-regularization model in (2)
becomes

(H(e", ey)tH (¢*, &) +aR)f =H(e", ey)tg, (7)
whereR is the matrix corresponding to the regularization functioRah (2).

2.2. Boundary conditions

Here we consider three common boundary conditions used in image processing literatures, namely,
the periodic, the half-point symmetric, and the whole-point symmetric conditions.

2.2.1. Periodic boundary condition
The periodic boundary condition assumes that

fEMy, jE+M)=f(G j) forall0<i <M, 0<j <M.
The resultingH* (¢}, ,,) andH” (¢;,_,,) have a circulant structure:

1
H*(},,,) = I Circulan{(a),

where
L/2 ones (L/2) —1 ones !
1 X 1 X
a= 1,...,1,5—861’62,0,...,0,54—8@1’@2, 1,...,1

The matrixH” (s, ,,) can be defined similarly. These matrices are circulant matrices.
When there are no displacement errors, i.e., wkhé&n=¢” = 0, then Hx(egl,gz) = H*(0) and
H>(¢7,4,) =H(0) forall 0< ¢4, ¢, < L. Then (5) reduces to

H(0,0) =HY(0) ® H*(0). (8)

This matrix is a block—circulant—circulant-dak (BCCB) matrixand can always be diagonalized by
the discrete Fourier transform [1]. The resudtilikhonov system (7) i@ BCCB systemwhich can
be inverted easily by fast Fourier trsforms (FFT) providd that the matrix® is chosen suitably (e.g.,
identity matrix or Laplacian matrix with the same boundary condition).

However, when there are displacement errors, the blurring ndtx, ) is a nonsymmetric matrix
with no special structure. The matrix has the same graph(@s0), but the entries are no longer constant
along the diagonals. Hence the matrix cannot be diagonalized by FFT. The Tikhonov system (7) can then
be solved by an iterative method such as the preconditioned conjugate gradient method, see [1]. One
possible choice of preconditioners is the matig0, 0) in (8).

When compared to the symmetric boundary conditions that we are going to discuss next, the periodic
boundary conditions usually give more prominent ringing effects at the boundary of the image unless the
data is close to periodic; see [2,16].
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2.2.2. Half-point symmetric boundary condition (Neumann boundary condition)
We assume that the image outside the scene is a reflection of that inside

i <0,

i> Ml — 1,

j <0,
j>M2—l.

p=—1—1,
p=2M1—1—i,
q:_l_]’
q=2M2—l—j,

fG, py=fp.q) for

The resultingH* (¢}, ,,) andH” (¢}, ,,) have a Toeplitz-plus-Hankel structure

1 1
H* (&}, ,,) = I - Toeplitz(a, b) + I Hankelc, d),

where

["L/2 ones
1 X
1,...,1,5—%&,0,...

L/2 ones

—_— ]
1,...,1,=

9 0 ’
2

b= + 600,000, 0 )

and

T(L/2) — 1 ones !

——
1...

(L/2) — 1 ones
——

1 .
51 ’§+8€1!€2’O"“’0 ) d: l""’l __8£1!€2’O’...’0

2

The matrixH” (s, ,,) can be defined similarly. These matrices are Toeplitz-plus-Hankel matrices.

When there are no displacement errors, then aﬁé’(ragl’ez) = H*(0) and H> (g7, 4,) =HY(0) for all
0< 44, £, < L. We thus haved (0, 0) = HY(0) @ H*(0) again. This matrix is a block Toeplitz-plus-Hankel
matrix with Toeplitz-plus-Hankel blocks. It can always be diagonalized by the discrete cosine transform
[16]. When there are displacement errors, the blurring matfe‘, ) is a nonsymmetric matrix with no
special structure, and cannot be diagonalized by the discrete cosine transform. The Tikhonov system (7)
can then be solved by the preconditioned conjugate gradient method with the correspd(@ifpas a
preconditioner; see [15,16].

Neumann boundary conditions have proved to be an effective model for high-resolution image
reconstruction, both in terms of the computational cost and of minimizing the ringing effects near the
boundary [16].

2.2.3. Whole-point symmetric boundary condition
Here we also assume reflection except for the pixels right at the boundary

p:—l., l<0,
. p=2Mi—i, i>M;—1,
i, j)= , for . )
@ nN=rp.q q=—j i<o,
q=2M2—j, j>M2—1.

The resultingH* (¢}, ,,) andH"* (¢;_,,) have a Toeplitz-plus-pseudoHankel structure

1 1
H*(},,,) = 7 - Toeplitz(a, b) + T pseudoHankét, d),
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wherea andb are given by (9), and

t t

L/2 ones L/2 ones
— e 1 B — | l .
c= 1,...,1,5—1-861,,32,0,...,0 and d= 1,...,1,5—8&,@,0,...,0

The matrixHy(sg’Mz) can be defined similarly. This boundary condition is used in [2], where it produces
good high-resolution images in terms of signal-to-noise ratio and of minimizing the ringing effects near
the boundary.

3. Wavelet-based high-resolution image reconstruction

No matter which boundary condition is imposed on the model, the interior réw 6f;, ,) (similarly
of H¥(g;, ,,)) is given by

L—-1
1 1 ¥ —1 N
Z 0""’0’E—i_g@lsez’l""’l’E_SZLKZ’O""’O

This motivated us in [2] and [3] to consider the blurring matﬂi)'((sgl,ez) ® H* (g7, 4,) as a low-pass filter
acting on the imag¢ . This low-pass filter is a tensor product of the univariate low-pass filter

—_——
- —+81... 1,-—¢ 10
L 2 T ’ ,2 ’ ( )

where the parameter may vary in thex and y directions for each sensor. Using this observation,

a wavelet algorithm based on bi-orthogonal wavelet systems was proposed in [2] for spatially invariant
blurring kernels and in [3] for spatially variant blurring kernels. A detailed review of this algorithm is
given in this section since our new algorithm, based on the tight-frame wavelet system, is an improvement
of this algorithm.

3.1. Bi-orthogonal wavelet systems

We start from a compactly supported scaling funcigoand the corresponding multiresolution with
dilation L. The scaling functiorp satisfies a refinement equation

¢(x) =LY mo(k)p(Lx — k) (11)

keZ

and the normalization conditiap(0) = 1, where the finitely supported sequemegis a refinement mask
(low-pass filter) defined of that satisfies ", _, mo(k) = 1.
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For a given refinement mask,, the corresponding refinable function can be determined in terms of
its Fourier transform. For example, lgt.mq be the filter given in (10), i.e.,

L-1 1
1.0, = —
+ & 5 &

L.eMo =

N~ =
NI

with the index of the filter, .m starting from—L /2 to L /2. The Fourier transform of the corresponding
scaling function, .¢ is

Lef(w) = 1_[ Leo(L™ ),
k=1
where ; .mg is the Fourier series of the sequengemy. It can be proven that .¢ is stable, i.e.,
{¢6(-— j): j € Z} forms a Riesz basis dfy, the closed shift invariant space generateddy — j):
j € Z}. ltis supported if—L/(2(L — 1)), L/(2(L — 1))] c [—1, 1]. Moreover, it was shown in [21] that
L.«¢ is Holder continuous with Holder exponent
Inmax(|1/2 +¢|, [1/2 —¢])
InL ’
For a compactly supported stable scaling functioa £2(R), let V, be the closed shift-invariant space
generated by (- — j): j € ZyandV, :={f(L"-): f € Vo, n € Z}. It is known that whenp € L2(R) is
a compactly supported scaling function, tHéf)} forms a multiresolution. Recall that a multiresolution
is a family of closed subspac¢¥,},.z of L2(R) that satisfies:

(12)

(i) Vi C Viqa,
(i) U, Vuis dense inC%(R), and
(iiiy M), Vu=1{0} (see [5,13)]).

A stable functionp € £2(R) is called a dual function of the stabfec £2(R) if

/¢(x —px —K)de =8¢ Yk K eZ.
R

Often we callp and¢ a dual pair.

To get bi-orthogonal wavelet systems from.¢, one needs to construct its dual scaling function.
This can be done using the method in [21]. This leads to two multiresolutiéfsand{V,}, with the
associated scaling functions.¢ and ; .¢ being a dual pair. It is well known that for a dual pair of

scaling functionsp andé, their corresponding low-pass filtefs, andrig satisfy

L-1
> o + Vg (€ + ) = 1. (13)
t=0

wherev, =2nt/L,t =0,1,...,L — 1. The key step in obtaining the dual wavelet system from the
two dual multiresolutions is to use the matrix extension results of [14,22]. For a given pair of dual
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low-pass filters satisfying (13), the matrix extension method provides a way to congtruasid 11:15,
s=1,...,L —1, sothat

L-1

> g+ g @+ 9) =8y, 0<s.8' <L -1

t=0

The functionsy, andv,, 1< s < L — 1, which are defined by

X o\~ 2 r (o3[
%(w)=ms(z)¢(z) and Ws(w)=ms(z>¢(z>,

are multi-band bi-orthogonal wavelets constructed from the multiresolgtigh and V,. The Fourier
coefficient sequences ok, andm,, 1<s < L — 1, are called wavelet masks or high-pass filters.
A complete analysis of bi-orthogonal wavelets can be found in [4].

The wavelet-based algorithms in [2,3] are based on the existence of a bi-orthogonal wavelet system
with , .mq as one of the low-pass filters. Specifically, the bi-orthogonal wavelet system; wiify as
one of the low-pass filters of the associated analysis was constructed and used in [2,3] for thec8ses
and 4. For arbitrary_, the minimally supported bi-orthogonal wavelet system withn as one of the
low-pass filters is given explicitly in [21].

3.2. Image reconstruction algorithm

Here, we briefly discuss the wavelet approach developed in [2,3){ Let;,, L,gms}f:‘o1 be the bi-
orthogonal filter banks corresponding to a pair of dual scaling functiosand L..# and dual wavelets
L.e¥s and . .¥. Then, they satisfy the perfect reconstruction equation

L-1

A~ 2
Z Lems (@) L mg(w) =1 (14)
s=0
This equation is the starting point of our wavelet-based algorithm for high-resolution image reconstruc-
tion. For the(¢4, £,)th sensor, the matrix representation of the perfect reconstruction of the bi-orthogonal
system (14) in thea-direction is

L-1

~ t
Mf(ggl,ﬁz) Mf(ggl,ﬁz) = IMl’ (15)
s=0

whereM; (¢, ,,) and Mf(%,ez)’ 0< s < L, are the matrix representations of the primary filtenmn,
and the dual filter, .m;, respectively. Similar, in the-direction, we have

L-1

~ 8 t ,
D M), 0,) M(e) 1) =i (16)
s=0

We have two remarks about (15) and (16):

(i) For s =0, Mg(ej, ,,) = H* (¢}, ,,) and Mé(szl_’ez) = Hy(szl,gz), ie., Mé(eﬁl’ez) ® Mj(ef, ) =
Heye, (85, 0,0 €1,.0,), the blurring matrices for each sensor as given in (4).
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(i) If we impose the periodic boundary condition, then (15) and (16) both hold for any displacement
errors including the case® = ¢” = 0. However, if we impose the whole-point symmetric boundary
condition, then (15) and (16) hold only wheti = ¢ = 0. This is one of the shortcomings of the
bi-orthogonal wavelet method, as symmetric boundary conditions usually give better performance
than periodic boundary conditions.

When (15) and (16) both hold, then for th&, £,)th sensor, we have

L-1
~ X t n
Z Mp-,q(ggl,fzz’ 81§1,£2) M4 (Egl,zzzv 851,132) = |y x My (17)
p.q=0
where
Mp>q (‘921,62’ 82;1,@2) = M;(gzl,ez) ® M;(ggl,ez)

and

Mp.g (82‘1,@2, 82;1,@2) = 'V'?;(%,ez) ® M;(ggl,eg)'
In particular, by the first remark abovilo o€}, ,. €7, ¢,) = Hevt2(67, 0,0 €0,.0,)-

In order to introduce the wavelet-based high-resolution image reconstruction algorithm, we first
consider the case without displacement errors. (In this case, both periodic and whole-point symmetric
boundary conditions can be applied.) Then (17) holds for every sensor. For simplicity, in this case we
rewrite (17) as

L-1 _
Z Mtp,qu,q = IMlxMz’ (18)
p.q=0
whereM o = H(0, 0), the blurring matrix for the whole sensor array. Multiplying both sides of (18) by
we have

L-1
7t
Z M: M, f=f.

p-q=0

SinceMgof = H(0, 0)f = g is just the observed high-resolution image, and the olhgrf, (p, q) #
(0, 0), represent the high-frequency components, @fe obtain an iterative algorithm

L-1
fir=Mbog+ > ML M, f (19)
p,q=0
(p.9)#(0,0)

A complete analysis of this algorithm in terms of multiresolution was given in [2]. In fact, it was
pointed out in [2] that the first term in the right-hand side of (19) is the representation of the observed
image in the higher resolution subspace in the multiresolution generated by the dual low-pass filter of the
given low-pass filter. Reconstructing the high-resolution imiaigesquivalent to recovering the wavelet
coefficients of the original image which are not available. In the algorithm, the wavelets coefficients of

f are approximated by those of the previous itefat@xpressed by the rest of the terms in the right-hand
side of (19)).
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Further, a nonlinear denoising scheme can be built into (19) to remove the noise. This leads to the
following algorithm:

L-1
fn+l = Mtoog + Z Mtqu(M PJ]f")‘
p,q=0
(p,q)#(0,0)
Here D is a nonlinear denoising operator and we will discuss it in more detail later, see (38). The

algorithm is generalized to the case with displacement errors in [3]. In this case, as mentioned by
remark (ii), we can only impose periodic boundary conditions.

4. Tight framefor high-resolution image reconstruction

The wavelet approach puts the high-resolution image reconstruction into the multiresolution
framework and provides us with a new way of understanding high-resolution image reconstruction.
The numerical simulations show a significant improvement compared with the least-squares method.
However, as seen in the last section on the description of the algorithms in [2,3], there are three major
issues with the wavelet approach when applied to the case with displacement errors.

() Since the image is represented in the multiresolution generated by the dual low-pass filter (see [2,3,
21)), the regularity of the dual refinable function plays a key role on the performance of the wavelet-
based algorithm. However, the regularity of the refinable functions varies with the displacement
errors, and in some cases, the function can even be discontinuous [21]. Although the regularity can
be improved by increasing the length of the dual low-pass filtefio, it would produce ringing
effects and increase the computational complexity.

(i) Since the filters are not symmetric, we only can impose the periodic boundary conditions. However,
numerical results from both the least squares and the wavelet methods for problems with no
displacement errors show that the symmetric boundary conditions usually provide much better
performance than periodic boundary conditions, see, for instance, [2,3,16].

(i) The design of the filters depends on the displacement errors. This restricts the usage of our method
for applications where the displacement errors vary with time and need to be estimated continuously.
One such example is the extraction of high-resolution images from video where the displacement
errors vary continuously and are estimated numerically.

In this paper, we resolve these issues by using tight-frame systems. To design a tight frame that can
solve the problems, we resort to analyzing the properties of the filier,. The motivation comes from
the splitting of the low-pass filter as follows:

101 Lt 1l B V2 L1
—— —— ——
mo=—|=4¢e1.. . 1l-—¢|==|21..1:> 2¢)-Y<11.0,....0.-1

LeMo= 7| 5+€ AR 2 +(V2) 2L

= [.omo+ (V28) L gm1, (20)
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where
L-1 L-1
_1 l1 11 and —ﬁ 1,0 0,-1
L,OmO— L 27 9 ’ 72 L,Oml_ 2L ’ LEREA ) ’

Let the Fourier series of the filterg omo and , om1 be denoted by,zo and ,t;, respectively.
Observation (20) is crucial in this paper, since all we need nowéenstruct a tight-frame system with

L To as its low-pass filter and r; as one of its high-pass filterSince ;7o and ; 7, are symmetric and
independent of, we can expect the filters in the tight-frame systems to be symmetric and independent
of . We will also see that r; will “collect” the displacement errors at each iterate. Hence, the algorithm

is essentially reduced to the case with no displacement errors. This also means that the reconstructed
image is represented in the multiresolution generated by the blurring low-pass filter with no displacement
errors. As seen in (12), the scaling function generated by the blurring filter with no displacement errors
has higher regularity than those generated by the blurring filters with displacement errors. Altogether,
this provides solutions to the problems mentioned above.

4.1. Wavelet tight frame and filter design

At first look, it seems difficult to design wavelet systems with one pre-given low-pass filter and one
pre-given high-pass filter especially whéns large. Here, we give an explicit construction of this tight
frame by exploiting the specific structure of the filtgerg and ;. r; using the unitary extension principle
of [19].

Given a finite setr C £2(R), thewavelet systergenerated by is defined as

X={L"*y(L" —j): Yy e k, jeZ}. (21)
A systemX C £2(R) with countably many elements igight frameif for all f € £L2(R),

1F12= "] 8"

geX

In particularly, an orthonormal basis is a tight frame. To use the unitary extension principle [19], we start
with a compactly supported scaling functigre £2(R) with refinement mask (low-pass filter) in (11)
and its associated multiresolutidf, n € Z.

For a given compactly supported refinable functiofitR), the construction of tight-frame wavelet
systems is to find a finite s@ in V; such that the wavelet system generatedlbgs defined in (21)
forms a tight frame ofZ?(R). Recall that an arbitrarys € V; can be represented in the Fourier domain
as

V(L) =140

for some Zr-periodic r, (see, e.g., [19]). The unitary extension principle in [19] says that the wavelet
system forms a tight frame i6?(R) provided thatr, together withz,, ¢ € ¥, satisfy the following
conditions:

(@) Ts(@+0,) + Y 1y (@) Ty @+ 0,) =80, (22)
yew



104 R.H. Chan et al. / Appl. Comput. Harmon. Anal. 17 (2004) 91-115

whered, =2np/L, 0< p < L. The sequences of the Fourier coefficients pfas well asr,, itself, are
called wavelet masks or high-pass filters.

Now let us return to our problem. We want to design a tight-frame system pvifh= ;7o as its
low-pass filter and, 71 as one of its high-pass filters. The first question is the existence of such filters
satisfying (22). To answer this question, let us look at the case \Wther. In this case, we do have a
tight-frame system with filters:

1 .1 NZ 1 1 1
==|=,1= =—1[1,0,-1 d ==|-=,1,—-=]. 23
2mo 2[2’ s 2j|’ 2ma 4 [ s Iy ]a an 2ma2 2|: 27 ) 2] ( )
Let ,719, 271, and »1, be the corresponding Fourier series of the above filters. They satisfy
2T0(w) 2To(@ + £7) + 271(w) 2T1(@ + £7) + 272(w) 2T2(w + £r) =840, £€=0, 1 (24)

Hence, it leads to a tight-frame system. In fact, this system is the first example given in a systematic

construction of spline tight-frame wavelet systems by applying the unitary extension principle in [19].
Based on the tight-frame system fb= 2, we can design tight-frame systems for dny 2K, where

K is a positive integer. We note thaty and ; t; can be written in the Fourier domain as

LT0(@) = kho(2w) 2t0(w) and  L11(@) = xho(2w) 211 (w),

where xho = (1/K)[1, ..., 1]. The filter xhg is the refinement mask of the characteristic function on
interval [0, 1] with the dilation K. The scaling functions corresponding to the low-pass filtegs 410,
and 7o are shown in Fig. 2.

There are several ways to construct wavelet masks satisfying (22). We choose the fijtevghich
are related to the DCT IIl matrix of ordes

1
kho=—I[1.1,.... 1],

1 -08 -06 -04 -02 o 02 04 06 08 1 -1 08 -06 -04 -02 o 02 04 06 08

Fig. 2. Scaling functions (from left to right) withzg, 470, and gzg as its low-pass filter, respectively.
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NZ) kw 3kn (2K — Dkn
== — — ), ... —_ <k<K -1
kN X [cos(ﬂ(),cos( oK > ,cos< oK )] 0<k

Since co$(2¢ + Dkm)/(2K) = (—1)* coS(2(K — ¢) — D)km)/(2K) for all 0 < ¢ <K, the filter xh;
(and hence the filtey ;) is symmetric for evet and antisymmetric for odél. Let IShk’ 0<k<K-1,
be the Fourier series of the above filter, then it can be proven (see [11]xthat0 < k < K — 1,
satisfy (22), i.e.,
K-1
N A 2l
> th(Zw)th(Zw—i-T) =80, O0<L<K-1 (25)

q=0

It is, in fact, an orthonormal Haar wavelet corresponding to the multiresolution generated by the
characteristic function of the unit interval with dilatign. In general, we define

LT3p+q ((,()) = K]:;p(za)) 274 (a)), q= O, 17 27 and O< p <K - 1 (26)

Therefore, we get a tight-frame system derived from a multiresolution generated by the blurring low-pass
filter ;1o with the high-pass filteg 7, as one of the wavelet masks once we proved that they satisfy (22).
This is proven in the next theorem.

Theorem 1. LetL =2K and 13,44, p=0,1,..., K — 1,4 =0, 1, 2, be defined by26). Then we have

2 K-1

2t
DD 1T (@) LT3y (w + T) =800, £=0,...,L—1 (27)

q=0 p=0

Proof. Note that for¢ =0,...,L -1
2 K-1

2l
LT3p+q (w) LT3p+g| @ + T
¢=0 p=0

=0 p=0

= 214
= M((a)) Z th(Za)) th <2£0 + 7),

p=0

K—

[N

N N 2! 21!
th(Za)) zrq(a)) th(Zw + 7) 27 (a) + T)

=

where

2l 2l 2l
My(w) = 270(w) 2T0(60 + T) + 211(w) zrl(w + T) + 272(w) 2T2(60 + T)

SinceMo(w) = 1 andM (w) = 0 by (24), and"; o xh,(20) gh,(2w + (27£)/K) = S¢mod. 0 by (25),
(27) follows. O

Let ,.¢ be the Fourier transform of the scaling functigp corresponding to the low-pass filtgtr.
The functions; 3,14, 0< p< K —1,4=0,1,2, and(p, g) # (0, 0) defined by

A N
@) = s (5) 16(5)
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are either symmetric or antisymmetric. Moreover, the system
X = {2293, (LF - —j): 0<S p< K —1,¢=0,12 (p,q) #(0,0); k, j €Z}

is a tight-frame system af?(R) by Theorem 1 and the unitary extension principle of [19]. We note that
for L = 2K, this construction givesB — 1 wavelet functions.

Two most commonly used cases in applicationslate 2 andL = 4. For L = 4, the filters associated
with the tight-frame system are:

e - —ﬁ[looo 1] _irla gt
4m0_4 2’ i ’2 ’ 4ml_ 8 s My My My ’ 4m2_4 2’ 4 » 2 ’

1r1 1 NG, ir 1 1

=-2.10 -1 —= =2711,0,-2,0,1 =-|-2.,1,0,-1,=|.
4m3 4[2, 9 ’ 2}, 4m4 8 [ s My ) My ]a 4m5 4[ 2, s My 72]

We now describe the main ideas of tight-frame algorithm for the high-resolution function reconstruc-
tion. The details of implementation will be given in a matrix form in the next two subsections. For sim-
plicity, we discuss the univariate case with= 2. The more general cases can be discussed in the exactly
same way except with more complicated notations. We start with the blurring filter without displacement
errors. The corresponding tight-frame wavelet filters are already given in (23), and (24) reduces to

270(w) 2To(@) + 2T1(@) 2T1(W) + 2T2(w) 2T2(w) =1, (28)

for a.e.w € R. To simplify the notations, let us just replage (.m;) by t; (m;),i =0, 1, 2.

Let ¢ be the observed function antbe the true function to recover. Letbe the refinable function
corresponding to the low-pass filtery, which generated a multiresolutiovi,, n € Z. Then, as the
analysis of [2] showsf can be approximated be a functionWy, i.e.,

f1=) (fV20@2 —a)W2p(@2- —a):=V2) v(@)p@2- ~a). (29)
oeZ aeZ
The numbers(a), o € Z, are the pixel values of the high-resolution image we are seeking, and they form
the discrete representation gfunder the basis/2¢ (2 - —a), « € Z. The given data sdtng * v)(«) is
the observed high-resolution image. By using the refinability,afne finds thaing * v is the coefficient
sequence of the functiog represented by (- — «/2), @ € Z, in Vo(¢p). We call thisg the observed
functionand it is given by

gi= (mox v)(a)</>(- - %)

a€eZ

The observed function can be obtained fram* v.

When onlym * v is given, to recover, one first finds from mg * v; then, derivesf; using the basis
V2¢(2-—a), a € Z, as in (29). To recoveyf; from g, we need to restore the wavelet coefficientsfof
that contain the high frequency componentsfafHere we provide an iterative algorithm to recover
At step (n + 1) of the algorithm, it improves the wavelet componentsfpfby updating the wavelet
coefficients of the previous step. The algorithm is presented in the Fourier domain where the problem
becomes: for a givemg x v = o0, one needs to find in order to restoref;.

Our tight-frame iterative algorithm starts from (28). Suppose that at stepe have thenth
approximationv,. Then (28) gives

%toﬁn + ﬁ.flﬁn + 1’_2'[2611 = an
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Assume that there is no displacement error. Sigde= g = v is available, we replaceyd, by g v
(i.e., Tov) to improve the approximation. By this, we define

~ _ ju— ~ j— ~
U1 = ToMo * U + T1T10, + T2T20,. (30)

It can further be shown via a method similar to that used in [2], that the sequence of functions
corresponding to the high-resolution images at each iteration converges tb?-norm in the absence
of noise. Hence we obtaify, by (29).

Wheng contains noise, then, has noise brought in from the previous iteration. To build a denoising
procedure into the algorithm, we further decompose the high-frequency compeyigrdaadr,v, via the
standard tight-frame wavelet decomposition algorithm. This gives a wavelet frame packet decomposition
of v,. Then, applying a wavelet denoising algorithm to this decomposition and reconstragijngnd
720, back via the standard reconstruction algorithm leads to a denoising proceduye for

For the case with displacement errors, the blurred fungtibas error from the displacement. In order
to take into the consideration the displacement errors and use our algorithm (30), we recall our earlier
observation (20) that the coefficients of blurring images obtained fromv by passingv through the
filter 7o + +/2¢71. Noting that

70(@) (to(@) + V2 11(0) — V26 11()) + T1(@)T1(0) + T2(@)T2(0) = 1,
and the fact thatro(w) + v/2¢71(w)) is available, we obtain the following modified algorithm:
ﬁn+1 = ‘E)((TO + \/58771)ﬁ - «/581'113,1) + ﬁflﬁn + T_ZTZﬁn- (31)

Essentially, this algorithm usesd, to estimate the displacement eregb in (1o ++/2¢71)9, which is the
available data. The teriity + v/2e11)9 — /25710, can be viewed as the approximation of the observed
image without displacement errors. By this, we reduce the problem of reconstruction of high-resolution
image with the displacement errors to that of the one with no displacement errors. This allows us to
use the set of filters derived from the case with no displacement errors. Those filters are symmetric and
independent of.

4.2. The matrix representation

We now give the matrix representation of the tight-frame system explained in Section 4.1. Both the
periodic and the whole-point symmetric boundary conditions are considered. We assume that all the
filters ;m, go from —K to K, whereL =2K andp =0, ...,3K — 1. As we will see in this section,
the blurring matrix with displacement errors can be expressed as the sum of the blurring matrix with no
displacement errors together with the matrices generated from thefilter

For periodic boundary condition, the matrix representation ©fis

Tf, = Circulanta),
where
a=[1my(0),..., tmy(K),0,...,0, tmp(=K),..., zm,(=D)]'

is of dimensionM; for all 0 < p < 3K. The matrix representation Qft, is ('T';‘,)t, which in this case is

equal to(T’;)t. Similarly, we can defing, andﬂ, and they are equal too.
For the whole-point symmetric boundary condition,
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T’; = Toeplitz(a, b) + pseudoHankéb, a),

= _ | T, whenpiseven,
P Toeplltz(a b) + pseudoHankgkb, —a), whenp is odd.

Here
a=[.m,0),..., ;m,(K),0,...,0]' and b=[,m,(0),..., ;m,(=K),0,...,0]"

Similarly, we can defind), andT),.
For both boundary conditions, Theorem 1 ensures that
3K-1 3K-1
~ o\t ~ o\t
(M) Tr=ly, and > (T2)'T)=lu,
p=0 p=0
It leads to
3K-1
> T Toa = axasss (32)
p.q=0
whereT, , =T, ® T and T, , = T; ® H¥. Obviously, Too=Too=H(0, 0).
Using our tight-frame system, the blurring matrix with displacement errors can now be expressed as
the sum of the blurring matrix with no displacement errors together with the matrices generated from the
filter ; ;. More precisely, we have

Proposition 1. Let T and T}, i = 0, 1, be the matrix representation of the filtefso and ,7; under
either the periodic or the whole-point symmetric boundary conditions. Then for each sensor, the following
statements hold

H*(ef,.0,) = To + V27, T, (33)
HY (e}, ) = To + V287, Th. (34)
H0>0(82€1,€2’ 851,52) = TO,O + \/EEZ,(ZTLO + “/Eggl’gz-rosl + 28261,628;1,62-“,1' (35)

Proof. The first two equations follow straightforwardly from (20). For (35), we have, by (4), (33), and
(34),

HO;O(EZ,@’ 851,62) =H’ (‘951,@2) ® Hx(ggl,zzz) = (Tg + \/EggMZTy) (TS + \/E% & )
= To)o =+ \/EEZJZTLO + ﬁsﬁ’l’ezTo,l =+ 28261)628£1!£2T1)1. O

By Eg. (6), Zel OZZ ! Dy,.¢, = | mysm,. Therefore, from Proposition 1, we get

Theorem 2. With the same notations as in Propositibywe have
H (é‘x, Ey) = To’o + N/ES(é‘x)Tl,O + \/ES(é‘y)TO,l + ZS(é‘xy)Tl)]_, (36)

whereH (e*, &) is given in(5), e = [}, &), 1t 1o andS(e) = Y1 4 36 o€, - Doyt
Multiplying f to both sides 0{36) leads to

H(e*, &)f = Toof + v2S(e*) Toof + v/25(e”) Toaf + 25(*) Ty 4f.
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This equation says that the observed high-resolution ingagél (¢*, ¢”)f is the sum ofT o of (which
equals toH (0, 0)f, the observed high-resolution image without any displacement errors), and three
high-frequency images. Conversely, the observed image in the case with no displacement errors can
be represented by the observed images with displacement errors
H(0, 0)f = Toof = H(e", &)f — [v2S(e") T1of + v/2S(e?) To1f + 25(™) T14f]. (37)

Thus with the matrice$ o, To.1, andT 1 1, we can always approximaké(0, 0)f once all the displacement
errorse* ande” are known. In other words, unlike the work in [3], the tight system we used is fixed and
can be used for all displacement errors.

4.3. The algorithm

To obtain our algorithm in matrix form, we follow the discussions at the end of Section 4.1, namely,
Egs. (30) and (31). We first multiply both sides of (32) bhyRecall thatH (¢*, ¢”)f is the observed
high-resolution imageg. Hence by (37), we have

3K-1
f=Tholo— (V2S(e")Tro+ v2S(e*) Tor +2S(e) Tra)f] + Y. TL T,,f
(p Y00
Thus our tight-frame-based iterative algorithm is
3K-1
furr=Thol0— (V2S(6") Tro+ vV2S(e”) Toa +25(e™) Toa)fu ]+ D T4 Thfa.
(200
The key step for denoising is to apply thresholding to the wavelet coefficients at each level. For this

we define Donoho's thresholding operator [7]. For a gikelet

(@1, X, )Y = (k1) - (3D, )

where the thresholding functiap is either

() t.(x) = xxx=2, referred to as thbard threshold or
(i) . (x) =sgnx) max|x| — A, 0), thesoft threshold

Altogether, the denoising scheme for two-dimensional image can be simply written as

0-1 2
D(f) = (WB,o)Q(Wo,o)Qf + Z(Wto,o)q Z W T (W s WG o) (38)
q=0 r,s=0

(r,5)#(0,0)

Here the matrice®V, ; andVNV,,S correspond to the matrices in (32) wikh= 1, Q is the number of levels
used in the decomposition, afiglis the thresholding operator defined in [6,7] witk= o /2 log(M1M5),
whereo is the variance of the Gaussian noise in sigredtimated numerically by the method given in [7].
Below we give the complete algorithm.
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Algorithm 1. (1) Choose an initial guesfy.
(2) Iterate onn until convergence

for1= (fo,o)t[g - (\/ES(EX)T]__Q + \/ES(S}')TO,]_ + ZS(EX}')Tl’l)fn]
3K-1

+ ) (TP, .
p-q=0
(p.q)#(0,0)

Some remarks about the algorithm:

e This algorithm uses the previous iterate to correct the displacement errors of the observed image,
as is shown by the terms in the bracket. This allows us to use the same set of filters regardless of
the values of the displacement errors. In particular, the symmetric boundary conditions can always
be used. This leads to a significant improvement of the reconstructed images as is shown in our
numerical simulations in Section 5. The key factor of this algorithm is the special filter design by
using the unitary extension principle of [19].

e Since the low-pass filter of our tight frame is given by the blurring kernel with no displacement
errors, and since the tight frame is self-dual, images are analyzed and reconstructed with the same
set of filters and in the same multiresolution. In contrast, the bi-orthogonal wavelet approach uses
different sets of filters in the analysis and the reconstruction and the images are represented in the
multiresolution generated by the dual low-pass filter of the blurring kernel. The scaling function
corresponding to the dual filter has lower regularity if we require that the dual filter had the same
length as the blurring filter. Although it can be avoided by using orthogonal wavelets, there exists
no orthonormal wavelet system for the given blurring kernels here. This again shows the flexibilities
given by the tight-frame system.

e For the algorithm in [3], a block-Gauss—Seidel-like approach is used, namely, in each iteration, the
iteration is carried out on only one sensor while keeping the information on the other sensors fixed.
Here, all sensors are updated simultaneously.

e When there are no displacement errors, e&€5 ¢’ = 0, Step 2 reduces to

3K-1

1:nJrl = (TO,O)tg + Z (-T—p,q)tD(Tp,qfn)-
p-q=0
(p.9)#(0,0)
In this case, numerical simulations show that the tight-frame method is comparable with the wavelet
method.

5. Numerical experiments

In this section, we compare the Tikhonov least-squares method (LS) with the wavelet-based algorithm
(WA) (see [2,3]) and the tight-frame-based algorithm (TF) (i.e., Algorithm 1 above). We evaluate the
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Fig. 3. Original “boat” image (left); original “bridge” image (right).

methods using the relative error (RE) and the peak signal-to-noise ratio (PSNR) which compare the
reconstructed imagie with the original imagéd. They are defined by

f—f 255 MM

Re="""l2 nd psNR 10Ioglo&,
Ifll2 If—fell2

where the size of the restored imageds x M, = 256 x 256. We use the “bridge” and “boat” images
of size 260x 260 as the original images in our numerical tests, see Fig. 3. For both WA and TF, we use
the hard thresholding operat@; andQ = 1 in (38).

5.1. The case without displacement errors

In this case, the high-resolution image reconstruction is equivalent to deblurring a blurred image,
which is the convolution of the original image with the two-dimensional fiILeéLro. For LS, the
regularization functionaR is chosen to be the identity and we use the half-point boundary condition
in formulating the blurring matrix (0, 0). The resulting system can be solved by three two-dimensional
fast cosine transforms [16]. For both WA and TF, the whole-point boundary condition is used to formulate
the blurring matrixH (0, 0). The iterate process stops when the highest PSNR is achieved. Tables 1 and 2
show that WA and TF give a significantly improvement over LS for the “boat” image and a comparable
result for the “bridge” image. The restored images are shown in Fig. 4 for thé densor array at SNR
of 30 dB.

Table 1
The results for the % 2 sensor array
Image SNR LS WA TF
PSNR RE B* PSNR RE Ite PSNR RE Ite
Boat 20 3062 00544 002425 3351 00390 10 37 00374 38
30 3258 00434 001698 3520 00321 18 31 00313 62
40 3391 00372 001335 3617 00287 24 3627 00284 84
Bridge 20 2849 00832 001981 2905 00780 16 284 00791 81
30 2955 00736 001214 2957 00735 26 2x1 00758 107

40 3022 00682 000850 2978 00717 32 294 00746 97
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Table 2
The results for the & 4 sensor array
Image SNR LS WA TF
PSNR RE B* PSNR RE Ite PSNR RE Ite
Boat 20 2844 00699 001918 2980 00597 33 299 00619 70
30 2946 00621 001233 3086 00529 59 3068 00546 142
40 3016 00573 000890 3157 00487 93 3126 00505 177
Bridge 20 2539 01189 001266 2576 01139 75 2576 01140 140
30 2603 01105 000695 2608 01098 118 2615 01090 180
40 2648 01049 000451 2619 01084 143 2628 01074 180
Table 3
The results with displacement error for thex2 and 4x 4 sensor arrays with WA and TF
Image SNR 2 2 sensor array 4 4 sensor array
WA TF WA TF
PSNR RE lter PSNR RE lte PSNR RE lter PSNR RE Iter

3387 00374 33 2716 00810
3%1 00313 56 2720 00806
326 00284 74 2721 00805

2889 00795 65 239 01398
2922 00765 68 24001 01395
2937 00752 88 24001 01393

2935 00629 66
3038 00558 130
3106 00517 180

256 01152 134
2605 01102 180
2619 01084 180

Boat 20 3045 00559
30 3080 005324
40 3085 005234

Bridge 20 2766 00916
30 2792 00889
40 2800 00881

AOD PN
AR D DN

5.2. The case with displacement error

For the 2x 2 sensor array, the displacement errors

« | —0.2810 01789 0.4347 Q0194
&= | —0.4530 0Q1793]° —0.1165 03310

y —

are used in our simulation. For thex44 sensor array, we use

[ —0.2810 04347 -0.4654 —0.4923
x —0.4530 —-0.1165 -0.4465 -0.1166

&= 0.1789 00194 00297 —-0.4332 |’
| 01793 03310 01711 -0.0825
[0.1868 00269 02012 —0.4525

&) — 0.0890 —-0.4080 04103 02361

0.4304 01539 02622 -0.1718
| 0.3462 —-0.0840-0.2375 01326

The numerical results are shown in Table 3, where the maximum number of iteration is 180. We remark
that the tight-frame-based algorithm is not sensitive't@r ¢”. The reconstructed “boat” and “bridge”
images are shown in Figs. 5 and 6, respectively.
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Fig. 4. 4x 4 sensor array without displacement error at SNR ofdB0 The images (from top to bottom) are: observed
high-resolution image, results with LS, WA, and TF, respectively.
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Fig. 5. 4x 4 sensor array with displacement error at SNR of 30fdB"boat” image. A low-resolution image from the
(0,0) sensor (top-left); observed high-resolution images (top-right); reconstructed images with WA (bottom-left); and TF
(bottom-right).

Fig. 6. 4x 4 sensor array with displacement error at SNR of 30 dB for “bridge” image. A low-resolution image from the
(0,0) sensor (top-left); observed high-resolution images (top-right); reconstructed images with WA (bottom-left); and TF
(bottom-right).
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