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Abstract

High-resolution image reconstruction arise in many applications, such as remote sensing, surveillan
medical imaging. The model proposed by Bose and Boo [Int. J. Imaging Syst. Technol. 9 (1998) 294–304
viewed as passing the high-resolution image through a blurring kernel, which is the tensor product of a un
low-pass filter of the form[1/2+ε,1, . . . ,1,1/2−ε], whereε is the displacement error. Using a wavelet approach
bi-orthogonal wavelet systems from this low-pass filter were constructed in [R. Chan et al., SIAM J. Sci. C
24 (4) (2003) 1408–1432; R. Chan et al., Linear Algebra Appl. 366 (2003) 139–155] to build an algorithm
algorithm is very efficient for the case without displacement errors, i.e., when allε = 0. However, there are sever
drawbacks when someε �= 0. First, the scaling function associated with the dual low-pass filter has low regu
Second, only periodicboundary conditions can be imposed, and third, the wavelet filters so constructed chan
when someε change. In this paper, we design tight-frame symmetric wavelet filters by using the unitary ext
principle of [A. Ron, Z. Shen, J. Funct. Anal. 148 (1997) 408–447]. The wavelet filters do not depend onε, and
hence our algorithm essentially reduces to that of the case whereε = 0. This greatly simplifies the algorithm an
resolves the drawbacks of the bi-orthogonal approach.
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1. Introduction

High-resolution images are often indispensable in many applications, such as remote s
surveillance, and medical imaging. Their reconstruction techniques can improve the resolution of
acquisition systems like the CCD imaging sensor arrays. The reconstruction of high-resolution
from multiple low-resolution image frames can be modeled by

g = Hf + η, (1)

wheref is the desired high-resolution image,H is the blurring kernel,g is the observed high-resolutio
image formed from the low-resolution images, andη is the noise.

The system (1) is ill-posed. Usually it is solved by Tikhonov’s regularization method. The Tikho
regularized solution is defined to be the unique minimizer of

min
f

{‖Hf − g‖2 + αR(f )
}
, (2)

whereR(f ) is a regularization functional. The basic idea of regularization is to replace the origin
posed problem with a “nearby” well-posed problem, whose solution approximates the required s
The regularization parameterα provides a tradeoff between fidelity to the measurements and
sensitivity.

Much research has been done in the last three decades on the high-resolution image recon
[8–10,12,15,17,18,20]. The model proposed by Bose and Boo in [1] is one of the mathematical
for reconstructing a high-resolution image from multiple low-resolution, shifted, degraded samp
a true scene. The model was solved in [1,15,16] using the least-squares approach in (2). Rece
studied it from the wavelet point of view [2,3]. The main idea is to view the blurring kernelH as a matrix
representation of a low-pass filter that gives a stable refinable function associated with a multires
of L2(R2). Then the wavelet-based high-resolution image reconstruction procedure is essent
approximate iteratively the wavelet coefficients folded by the given low-pass filter. The algorithm
developed through the perfect reconstruction formula of a bi-orthogonal wavelet system with th
pass filter as its primary low-pass filter, see [2,3,21]. By incorporating the wavelet analysis view
many available techniques developed in the wavelet literature, such as wavelet-based denoising
can be applied to this problem.

However, there are several difficulties when using the wavelet approach for problems
displacement errors:

(i) As is shown in [2], the high-resolution image is represented in the multiresolution generated
dual low-pass filter. The corresponding scaling function normally has low regularity, and it a
the performance of the algorithm. To improve the regularity, one has to use longer dual
However, this increases the complexity of the computation and amplifies the artifacts arou
boundary.
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(ii) In image restoration, symmetric boundary conditions usually provide better results, se
instance, [16]. For the algorithm in [3], the low-pass and the high-pass filters and their du
no longer symmetric. This implies that symmetric boundary conditions cannot be imposed.

(iii) The construction of the dual filter depends on the displacement errors. This is partic
inconvenient when the errors vary with time in some applications such as the extraction o
resolution images from video.

In this paper, we invoke the unitary extension principle of [19] to build a wavelet tight-frame sy
from the given low-pass filter. The constructed filters (both low and high) will be symmetric with
duality. Hence, the symmetric boundary conditions can be imposed. Moreover, the recovered
is represented in the multiresolution derived from the given low-pass filter. This multiresolut
more natural and has the same regularity as the scaling function corresponding to the blurrin
Furthermore, our analysis will show that the filter design is independent of the displacement erro
leads to an algorithm that is independent of the displacement errors. Hence it can be adapted to
range of applications. Finally, the redundant nature of the tight-frame system can extract more
from the blurred images in the reconstruction of the high-resolution images.

We remark that the least-squares approach used in [1,15,16] also has difficulty when th
displacement errors. The blurring operator is no longer spatially invariant and hence the matr
not have special structure. The Tikhonov system (2) has to be solved by an iterative method suc
preconditioned conjugate gradient method.

The outline of the paper is as follows. In Section 2, we introduce the model by Bose and Bo
and different boundary conditions. In Section 3, we recall the bi-orthogonal wavelet algorithm dev
in [2,3]. In Section 4, we develop our tight-frame algorithm. Finally, numerical examples are giv
Section 5 to illustrate the effectiveness of the algorithm.

For the rest of the paper, we will use the following notations. Bold-faced characters indicate v
and matrices. The numbering of matrix and vector starts from 0. The matrixLt denotes the transpose
the matrixL. The symbolsI and0 denote the identity and zero matrices, respectively. For a given fun
f ∈ L1(R), f̂ (ω) = ∫

R
f (x)e−jxω dx denotes the Fourier transform off . For a given sequencem,

m̂(ω) =∑k∈Z
m(k)e−jkω denotes the Fourier series ofm, andm̂∗ (or m̂) denotes the complex conjuga

of m̂. The Kroneckerδk,l = 1 if k = l and 0 otherwise.
To describe Toeplitz, circulant, and Hankel matrices, we use the following notations:

Toeplitz(a,b) =




a0 a1 · · · aN−2 aN−1

b1 a0 · · · aN−3 aN−2
...

...
. . .

...
...

bN−2 bN−3 · · · a0 a1

bN−1 bN−2 · · · b1 a0


 with a0 = b0,

Circulant(a) =




a0 a1 · · · aN−2 aN−1

aN−1 a0 · · · aN−3 aN−2
...

...
. . .

...
...

a2 a3 · · · a0 a1

a a · · · a a


 ,
1 2 N−1 0
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Hankel(a,b) =




a0 a1 · · · aN−2 aN−1

a1 a2 · · · aN−1 bN−2
...

...
. . .

...
...

aN−2 aN−1 · · · b2 b1

aN−1 bN−2 · · · b1 b0


 with aN−1 = bN−1.

The matrix pseudoHankel(a,b) is formed from Hankel(a,b) by replacing both the first column and th
last column with zero vectors, i.e.,

pseudoHankel(a,b) =




0 a1 · · · aN−2 0
0 a2 · · · aN−1 0
...

...
. . .

...
...

0 aN−1 · · · b2 0
0 bN−2 · · · b1 0


 with aN−1 = bN−1.

2. Mathematical model for high-resolution image reconstruction

In this section, we first introduce the mathematical model for high-resolution image reconstr
and then review three different boundary conditions used in the formulation of the blurring kernel

2.1. Mathematical model

We follow the high-resolution reconstruction model proposed by Bose and Boo [1]. Consider a
array withL×L sensors in which each sensor hasN1 ×N2 sensing elements and the size of each sen
element isT1 × T2. For simplicity,L will be an even number in the following discussions. Our aim i
reconstruct an image with resolutionM1 × M2, whereM1 = L × N1 andM2 = L × N2.

In order to have enough information to resolve the high-resolution image, there are su
displacements between the sensors in the sensor arrays. For sensor(�1, �2), 0 � �1, �2 < L with
(�1, �2) �= (0,0), its vertical and horizontal displacementsdx

�1,�2
andd

y

�1,�2
with respect to the(0,0)th

reference sensor are given by

dx
�1,�2

= (�1 + εx
�1,�2

)T1

L
and d

y

�1,�2
= (�2 + ε

y

�1,�2

)T2

L
.

Here εx
�1,�2

and ε
y

�1,�2
are the vertical and horizontaldisplacement errors, respectively. They can b

obtained by the manufacturers during camera calibration. Fig. 1 shows the case when we have× 2
sensor array. We assume that

∣∣εx
k1,k2

∣∣< 1

2
and

∣∣εy

k1,k2

∣∣< 1

2
.
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Fig. 1. Sensors without and with displacement error whenL = 2 (left and right, respectively).

For sensor(�1, �2), the average intensity registered at its(n1, n2)th pixel is modeled by

g�1,�2[n1, n2] = 1

T1T2

T1(n1+1/2)+dx
�1,�2∫

T1(n1−1/2)+dx
�1,�2

T2(n2+1/2)+d
y
�1,�2∫

T2(n2−1/2)+d
y

�1,�2

f (x, y)dx dy + η�1,�2[n1, n2]. (3)

Here 0� n1 < N1 and 0� n2 < N2 andη�1,�2[n1, n2] is the noise, see [1]. We intersperse all the lo
resolution imagesg�1,�2 to form anM1 × M2 imageg by assigning

g[Ln1 + �1,Ln2 + �2] = g�1,�2[n1, n2].
The imageg is already a high-resolution image and is called theobserved high-resolution image. It is
already a better image than any one of the low-resolution samplesg�1,�2 themselves, c.f. the top tw
figures in Fig. 5.

To obtain an even better image thang (e.g., the bottom two figures in Fig. 5), one will have to findf

from (3). One way is to discretize (3) using the rectangular quadrature rule and then solve the
system forf . Since the right-hand side of (3) involves the values off outside the scene (i.e., outside t
domain ofg), the resulting system will have more unknowns than the number of equations, and o
to impose boundary conditions onf for points outside the scene, see, e.g., [1]. Then the blurring m
corresponding to the(�1, �2)th sensor is given by a square matrix of the form

H�1,�2

(
εx
�1,�2

, ε
y

�1,�2

)= Hy
(
ε

y

�1,�2

)⊗ Hx
(
εx
�1,�2

)
. (4)

The matricesHx(εx
�1,�2

) andHy(ε
y

�1,�2
) vary under different boundary conditions and will be given lat

The blurring matrix for the whole sensor array is made up of blurring matrices from each senso

H
(
εx,εy

)= L−1∑ L−1∑
D�1,�2H�1,�2

(
εx
�1,�2

, ε
y

�1,�2

)
, (5)
�1=0 �2=0
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whereεx = [εx
�1,�2

]L−1
�1,�2=0 andεy = [εy

�1,�2
]L−1
�1,�2=0. HereD�1,�2 is the sampling matrix for the(�1, �2)th

sensor, and is given by

D�1,�2 = D�2 ⊗ D�1, (6)

whereD�j
= INj

⊗ et
�j

with e�j
thej th unit vector.

Let f and g be the column vectors formed byf and g. The Tikhonov-regularization model in (2
becomes(

H
(
εx,εy

)t
H
(
εx,εy

)+ αR
)
f = H

(
εx,εy

)t
g, (7)

whereR is the matrix corresponding to the regularization functionalR in (2).

2.2. Boundary conditions

Here we consider three common boundary conditions used in image processing literatures,
the periodic, the half-point symmetric, and the whole-point symmetric conditions.

2.2.1. Periodic boundary condition
The periodic boundary condition assumes that

f (i ± M1, j ± M2) = f (i, j) for all 0� i < M1, 0 � j < M2.

The resultingHx(εx
�1,�2

) andHy(ε
y

�1,�2
) have a circulant structure:

Hx
(
εx
�1,�2

)= 1

L
· Circulant(a),

where

a =



L/2 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
− εx

�1,�2
,0, . . . ,0,

1

2
+ εx

�1,�2
,

(L/2) − 1 ones︷ ︸︸ ︷
1, . . . ,1




t

.

The matrixHy(ε
y

�1,�2
) can be defined similarly. These matrices are circulant matrices.

When there are no displacement errors, i.e., whenεx = εy = 0, then Hx(εx
�1,�2

) = Hx(0) and
Hy(εx

�1,�2
) = Hy(0) for all 0� �1, �2 < L. Then (5) reduces to

H(0,0) = Hy(0) ⊗ Hx(0). (8)

This matrix is a block–circulant–circulant–block (BCCB) matrixand can always be diagonalized
the discrete Fourier transform [1]. The resulting Tikhonov system (7) isa BCCB system, which can
be inverted easily by fast Fourier transforms (FFT) provided that the matrixR is chosen suitably (e.g
identity matrix or Laplacian matrix with the same boundary condition).

However, when there are displacement errors, the blurring matrixH(εx,εy) is a nonsymmetric matrix
with no special structure. The matrix has the same graph asH(0,0), but the entries are no longer consta
along the diagonals. Hence the matrix cannot be diagonalized by FFT. The Tikhonov system (7) c
be solved by an iterative method such as the preconditioned conjugate gradient method, see
possible choice of preconditioners is the matrixH(0,0) in (8).

When compared to the symmetric boundary conditions that we are going to discuss next, the p
boundary conditions usually give more prominent ringing effects at the boundary of the image un
data is close to periodic; see [2,16].
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2.2.2. Half-point symmetric boundary condition (Neumann boundary condition)
We assume that the image outside the scene is a reflection of that inside

f (i, j) = f (p, q) for




p = −1− i, i < 0,

p = 2M1 − 1− i, i > M1 − 1,

q = −1− j, j < 0,

q = 2M2 − 1− j, j > M2 − 1.

The resultingHx(εx
�1,�2

) andHy(ε
y

�1,�2
) have a Toeplitz-plus-Hankel structure

Hx
(
εx
�1,�2

)= 1

L
· Toeplitz(a,b) + 1

L
· Hankel(c,d),

where

a =



L/2 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
− εx

�1,�2
,0, . . . ,0




t

, b =



L/2 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
+ εx

�1,�2
,0, . . . ,0




t

(9)

and

c =



(L/2) − 1 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
+ εx

�1,�2
,0, . . . ,0




t

, d =



(L/2) − 1 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
− εx

�1,�2
,0, . . . ,0




t

.

The matrixHy(ε
y

�1,�2
) can be defined similarly. These matrices are Toeplitz-plus-Hankel matrices.

When there are no displacement errors, then againHx(εx
�1,�2

) = Hx(0) andHy(εx
�1,�2

) = Hy(0) for all
0 � �1, �2 < L. We thus haveH(0,0) = Hy(0)⊗Hx(0) again. This matrix is a block Toeplitz-plus-Hank
matrix with Toeplitz-plus-Hankel blocks. It can always be diagonalized by the discrete cosine tran
[16]. When there are displacement errors, the blurring matrixH(εx,εy) is a nonsymmetric matrix with n
special structure, and cannot be diagonalized by the discrete cosine transform. The Tikhonov sy
can then be solved by the preconditioned conjugate gradient method with the correspondingH(0,0) as a
preconditioner; see [15,16].

Neumann boundary conditions have proved to be an effective model for high-resolution
reconstruction, both in terms of the computational cost and of minimizing the ringing effects ne
boundary [16].

2.2.3. Whole-point symmetric boundary condition
Here we also assume reflection except for the pixels right at the boundary

f (i, j) = f (p, q) for




p = −i, i < 0,

p = 2M1 − i, i > M1 − 1,

q = −j, j < 0,

q = 2M2 − j, j > M2 − 1.

The resultingHx(εx
�1,�2

) andHy(ε
y

�1,�2
) have a Toeplitz-plus-pseudoHankel structure

Hx
(
εx
�1,�2

)= 1 · Toeplitz(a,b) + 1 · pseudoHankel(c,d),

L L
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wherea andb are given by (9), and

c =



L/2 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
+ εx

�1,�2
,0, . . . ,0




t

and d =



L/2 ones︷ ︸︸ ︷
1, . . . ,1 ,

1

2
− εx

�1,�2
,0, . . . ,0




t

.

The matrixHy(ε
y

�1,�2
) can be defined similarly. This boundary condition is used in [2], where it prod

good high-resolution images in terms of signal-to-noise ratio and of minimizing the ringing effect
the boundary.

3. Wavelet-based high-resolution image reconstruction

No matter which boundary condition is imposed on the model, the interior row ofHx(εx
�1,�2

) (similarly
of Hy(ε

y

�1,�2
)) is given by

1

L


0, . . . ,0,

1

2
+ εx

�1,�2
,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2
− εx

�1,�2
,0, . . . ,0


 .

This motivated us in [2] and [3] to consider the blurring matrixHy(ε
y

�1,�2
)⊗ Hx(εx

�1,�2
) as a low-pass filte

acting on the imagef . This low-pass filter is a tensor product of the univariate low-pass filter

1

L


1

2
+ ε,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2
− ε


 , (10)

where the parameterε may vary in thex and y directions for each sensor. Using this observat
a wavelet algorithm based on bi-orthogonal wavelet systems was proposed in [2] for spatially in
blurring kernels and in [3] for spatially variant blurring kernels. A detailed review of this algorith
given in this section since our new algorithm, based on the tight-frame wavelet system, is an impro
of this algorithm.

3.1. Bi-orthogonal wavelet systems

We start from a compactly supported scaling functionφ and the corresponding multiresolution w
dilation L. The scaling functionφ satisfies a refinement equation

φ(x) = L
∑
k∈Z

m0(k)φ(Lx − k) (11)

and the normalization condition̂φ(0) = 1, where the finitely supported sequencem0 is a refinement mas
(low-pass filter) defined onZ that satisfies

∑
m0(k) = 1.
k∈Z
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For a given refinement maskm0, the corresponding refinable function can be determined in term
its Fourier transform. For example, letL,εm0 be the filter given in (10), i.e.,

L,εm0 = 1

L


1

2
+ ε,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2
− ε




with the index of the filterL,εm0 starting from−L/2 toL/2. The Fourier transform of the correspondi
scaling functionL,εφ is

L,εφ̂(ω) =
∞∏

k=1

L,εm̂0
(
L−kω

)
,

where L,εm̂0 is the Fourier series of the sequenceL,εm0. It can be proven thatL,εφ is stable, i.e.,
{φ(· − j): j ∈ Z} forms a Riesz basis ofV0, the closed shift invariant space generated by{φ(· − j):
j ∈ Z}. It is supported in[−L/(2(L − 1)),L/(2(L − 1))] ⊂ [−1,1]. Moreover, it was shown in [21] tha
L,εφ is Hölder continuous with Hölder exponent

− lnmax(|1/2+ ε|, |1/2− ε|)
lnL

. (12)

For a compactly supported stable scaling functionφ ∈ L2(R), let V0 be the closed shift-invariant spa
generated by{φ(· − j): j ∈ Z} andVn := {f (Ln·): f ∈ V0, n ∈ Z}. It is known that whenφ ∈ L2(R) is
a compactly supported scaling function, then{Vn} forms a multiresolution. Recall that a multiresoluti
is a family of closed subspaces{Vn}n∈Z of L2(R) that satisfies:

(i) Vn ⊂ Vn+1,
(ii)
⋃

n Vn is dense inL2(R), and
(iii)

⋂
n Vn = {0} (see [5,13]).

A stable functionφ̃ ∈ L2(R) is called a dual function of the stableφ ∈L2(R) if∫
R

φ(x − k)φ̃(x − k′)dx = δk,k′ ∀ k, k′ ∈ Z.

Often we callφ andφ̃ a dual pair.
To get bi-orthogonal wavelet systems fromL,εφ, one needs to construct its dual scaling functi

This can be done using the method in [21]. This leads to two multiresolutions,{Vn} and{Ṽn}, with the
associated scaling functionsL,εφ and L,εφ̃ being a dual pair. It is well known that for a dual pair
scaling functionsφ andφ̃, their corresponding low-pass filterŝm0 and ˆ̃m0 satisfy

L−1∑
t=0

m̂0(ξ + ϑt) ˆ̃m∗
0(ξ + ϑt) = 1, (13)

whereϑt = 2πt/L, t = 0,1, . . . ,L − 1. The key step in obtaining the dual wavelet system from
two dual multiresolutions is to use the matrix extension results of [14,22]. For a given pair o
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low-pass filters satisfying (13), the matrix extension method provides a way to constructm̂s and ˆ̃ms ,
s = 1, . . . ,L − 1, so that

L−1∑
t=0

m̂s(ω + ϑt) ˆ̃m∗
s ′(ω + ϑt) = δs,s ′, 0� s, s′ � L − 1.

The functionsψs andψ̃s , 1� s � L − 1, which are defined by

ψ̂s(ω) = m̂s

(
ω

L

)
φ̂

(
ω

L

)
and ˆ̃

ψs(ω) = ˆ̃ms

(
ω

L

)
ˆ̃
φ

(
ω

L

)
,

are multi-band bi-orthogonal wavelets constructed from the multiresolution{Vn} and Ṽn. The Fourier
coefficient sequences of̂ms and ˆ̃ms , 1 � s � L − 1, are called wavelet masks or high-pass filte
A complete analysis of bi-orthogonal wavelets can be found in [4].

The wavelet-based algorithms in [2,3] are based on the existence of a bi-orthogonal wavelet
with L,εm0 as one of the low-pass filters. Specifically, the bi-orthogonal wavelet system withL,εm0 as
one of the low-pass filters of the associated analysis was constructed and used in [2,3] for the casL = 2
and 4. For arbitraryL, the minimally supported bi-orthogonal wavelet system withL,εm0 as one of the
low-pass filters is given explicitly in [21].

3.2. Image reconstruction algorithm

Here, we briefly discuss the wavelet approach developed in [2,3]. Let{ L,εms, L,εm̃s}L−1
s=0 be the bi-

orthogonal filter banks corresponding to a pair of dual scaling functionsL,εφ and L,εφ̃ and dual wavelets
L,εψs and L,εψ̃ . Then, they satisfy the perfect reconstruction equation

L−1∑
s=0

L,εm̂s(ω) L,ε
ˆ̃m∗

s (ω) = 1. (14)

This equation is the starting point of our wavelet-based algorithm for high-resolution image reco
tion. For the(�1, �2)th sensor, the matrix representation of the perfect reconstruction of the bi-ortho
system (14) in thex-direction is

L−1∑
s=0

M̃x
s

(
εx
�1,�2

)t
Mx

s

(
εx
�1,�2

)= IM1, (15)

whereMx
s (ε

x
�1,�2

) andM̃x
s (ε

x
�1,�2

), 0 � s � L, are the matrix representations of the primary filterL,εms

and the dual filterL,εm̃s , respectively. Similar, in they-direction, we have

L−1∑
s=0

M̃y
s

(
ε

y

�1,�2

)t
My

s

(
ε

y

�1,�2

)= IM2. (16)

We have two remarks about (15) and (16):

(i) For s = 0, Mx
0(ε

x
�1,�2

) = Hx(εx
�1,�2

) and My

0(ε
y

�1,�2
) = Hy(ε

y

�1,�2
), i.e., My

0(ε
y

�1,�2
) ⊗ Mx

0(ε
x
�1,�2

) =
H�1,�2(ε

x , ε
y

), the blurring matrices for each sensor as given in (4).
�1,�2 �1,�2
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(ii) If we impose the periodic boundary condition, then (15) and (16) both hold for any displace
errors including the caseεx = εy = 0. However, if we impose the whole-point symmetric bound
condition, then (15) and (16) hold only whenεx = εy = 0. This is one of the shortcomings of th
bi-orthogonal wavelet method, as symmetric boundary conditions usually give better perfor
than periodic boundary conditions.

When (15) and (16) both hold, then for the(�1, �2)th sensor, we have

L−1∑
p,q=0

M̃p,q

(
εx
�1,�2

, ε
y

�1,�2

)t
Mp,q

(
εx
�1,�2

, ε
y

�1,�2

)= IM1×M2, (17)

where

Mp,q

(
εx
�1,�2

, ε
y

�1,�2

)= My
q

(
ε

y

�1,�2

)⊗ Mx
p

(
εx
�1,�2

)
and

M̃p,q

(
εx
�1,�2

, ε
y

�1,�2

)= M̃y
q

(
ε

y

�1,�2

)⊗ M̃x
p

(
εx
�1,�2

)
.

In particular, by the first remark above,M0,0(ε
x
�1,�2

, ε
y

�1,�2
) = H�1,�2(ε

x
�1,�2

, ε
y

�1,�2
).

In order to introduce the wavelet-based high-resolution image reconstruction algorithm, w
consider the case without displacement errors. (In this case, both periodic and whole-point sym
boundary conditions can be applied.) Then (17) holds for every sensor. For simplicity, in this ca
rewrite (17) as

L−1∑
p,q=0

M̃t
p,qMp,q = IM1×M2, (18)

whereM0,0 = H(0,0), the blurring matrix for the whole sensor array. Multiplying both sides of (18) bf,
we have

L−1∑
p,q=0

M̃t
p,qMp,qf = f.

SinceM0,0f = H(0,0)f = g is just the observed high-resolution image, and the otherMp,qf, (p, q) �=
(0,0), represent the high-frequency components off, we obtain an iterative algorithm

fn+1 = M̃t
0,0g +

L−1∑
p,q=0

(p,q) �=(0,0)

M̃t
p,qMp,qfn. (19)

A complete analysis of this algorithm in terms of multiresolution was given in [2]. In fact, it
pointed out in [2] that the first term in the right-hand side of (19) is the representation of the ob
image in the higher resolution subspace in the multiresolution generated by the dual low-pass filte
given low-pass filter. Reconstructing the high-resolution imagef is equivalent to recovering the wavel
coefficients of the original imagef, which are not available. In the algorithm, the wavelets coefficien
f are approximated by those of the previous iteratefn (expressed by the rest of the terms in the right-h
side of (19)).
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Further, a nonlinear denoising scheme can be built into (19) to remove the noise. This lead
following algorithm:

fn+1 = M̃t
0,0g +

L−1∑
p,q=0

(p,q) �=(0,0)

M̃t
p,qD(Mp,qfn).

Here D is a nonlinear denoising operator and we will discuss it in more detail later, see (38
algorithm is generalized to the case with displacement errors in [3]. In this case, as mentio
remark (ii), we can only impose periodic boundary conditions.

4. Tight frame for high-resolution image reconstruction

The wavelet approach puts the high-resolution image reconstruction into the multireso
framework and provides us with a new way of understanding high-resolution image reconstr
The numerical simulations show a significant improvement compared with the least-squares m
However, as seen in the last section on the description of the algorithms in [2,3], there are thre
issues with the wavelet approach when applied to the case with displacement errors.

(i) Since the image is represented in the multiresolution generated by the dual low-pass filter (s
21]), the regularity of the dual refinable function plays a key role on the performance of the wa
based algorithm. However, the regularity of the refinable functions varies with the displac
errors, and in some cases, the function can even be discontinuous [21]. Although the regula
be improved by increasing the length of the dual low-pass filterL,εm̃0, it would produce ringing
effects and increase the computational complexity.

(ii) Since the filters are not symmetric, we only can impose the periodic boundary conditions. Ho
numerical results from both the least squares and the wavelet methods for problems w
displacement errors show that the symmetric boundary conditions usually provide much
performance than periodic boundary conditions, see, for instance, [2,3,16].

(iii) The design of the filters depends on the displacement errors. This restricts the usage of our
for applications where the displacement errors vary with time and need to be estimated contin
One such example is the extraction of high-resolution images from video where the displac
errors vary continuously and are estimated numerically.

In this paper, we resolve these issues by using tight-frame systems. To design a tight frame
solve the problems, we resort to analyzing the properties of the filterL,εm0. The motivation comes from
the splitting of the low-pass filter as follows:

L,εm0 = 1

L


1

2
+ ε,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2
− ε


= 1

L


1

2
,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2


+ (

√
2ε) ·

√
2

2L


1,

L − 1︷ ︸︸ ︷
0, . . . ,0,−1




= L,0m0 + (
√

2ε) L,0m1, (20)
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where

L,0m0 = 1

L


1

2
,

L − 1︷ ︸︸ ︷
1, . . . ,1,

1

2


 and L,0m1 =

√
2

2L


1,

L − 1︷ ︸︸ ︷
0, . . . ,0,−1


 .

Let the Fourier series of the filtersL,0m0 and L,0m1 be denoted byLτ0 and Lτ1, respectively.
Observation (20) is crucial in this paper, since all we need now is toconstruct a tight-frame system wi
Lτ0 as its low-pass filter andLτ1 as one of its high-pass filters.Since Lτ0 and Lτ1 are symmetric and
independent ofε, we can expect the filters in the tight-frame systems to be symmetric and indepe
of ε. We will also see thatLτ1 will “collect” the displacement errors at each iterate. Hence, the algor
is essentially reduced to the case with no displacement errors. This also means that the recon
image is represented in the multiresolution generated by the blurring low-pass filter with no displa
errors. As seen in (12), the scaling function generated by the blurring filter with no displacement
has higher regularity than those generated by the blurring filters with displacement errors. Alto
this provides solutions to the problems mentioned above.

4.1. Wavelet tight frame and filter design

At first look, it seems difficult to design wavelet systems with one pre-given low-pass filter an
pre-given high-pass filter especially whenL is large. Here, we give an explicit construction of this tig
frame by exploiting the specific structure of the filtersLτ0 and Lτ1 using the unitary extension princip
of [19].

Given a finite setΨ ⊂ L2(R), thewavelet systemgenerated byΨ is defined as

X = {Lk/2ψ
(
Lk · −j

)
: ψ ∈ Ψ, k, j ∈ Z

}
. (21)

A systemX ⊂L2(R) with countably many elements is atight frameif for all f ∈L2(R),

‖f ‖2 =
∑
g∈X

∣∣〈f,g〉∣∣2.
In particularly, an orthonormal basis is a tight frame. To use the unitary extension principle [19], w
with a compactly supported scaling functionφ ∈L2(R) with refinement mask (low-pass filter)τφ in (11)
and its associated multiresolutionVn, n ∈ Z.

For a given compactly supported refinable function inL2(R), the construction of tight-frame wavel
systems is to find a finite setΨ in V1 such that the wavelet system generated byΨ as defined in (21
forms a tight frame ofL2(R). Recall that an arbitraryψ ∈ V1 can be represented in the Fourier dom
as

ψ̂(L·) = τψ φ̂

for some 2π -periodicτψ (see, e.g., [19]). The unitary extension principle in [19] says that the wa
system forms a tight frame inL2(R) provided thatτφ together withτψ , ψ ∈ Ψ , satisfy the following
conditions:

τφ(ω)τφ(ω + ϑp) +
∑

τψ(ω)τψ(ω + ϑp) = δp,0, (22)

ψ∈Ψ
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whereϑp = 2πp/L, 0� p < L. The sequences of the Fourier coefficients ofτψ , as well asτψ itself, are
called wavelet masks or high-pass filters.

Now let us return to our problem. We want to design a tight-frame system withLτφ = Lτ0 as its
low-pass filter andLτ1 as one of its high-pass filters. The first question is the existence of such
satisfying (22). To answer this question, let us look at the case whenL = 2. In this case, we do have
tight-frame system with filters:

2m0 = 1

2

[
1

2
,1,

1

2

]
, 2m1 =

√
2

4
[1,0,−1], and 2m2 = 1

2

[
−1

2
,1,−1

2

]
. (23)

Let 2τ0, 2τ1, and 2τ2 be the corresponding Fourier series of the above filters. They satisfy

2τ0(ω) 2τ0(ω + �π) + 2τ1(ω) 2τ1(ω + �π) + 2τ2(ω) 2τ2(ω + �π) = δ�,0, � = 0,1. (24)

Hence, it leads to a tight-frame system. In fact, this system is the first example given in a sys
construction of spline tight-frame wavelet systems by applying the unitary extension principle in [

Based on the tight-frame system forL = 2, we can design tight-frame systems for anyL = 2K , where
K is a positive integer. We note thatLτ0 and Lτ1 can be written in the Fourier domain as

Lτ0(ω) = Kĥ0(2ω) 2τ0(ω) and Lτ1(ω) = Kĥ0(2ω) 2τ1(ω),

where Kh0 = (1/K)[1, . . . ,1]. The filter Kh0 is the refinement mask of the characteristic function
interval [0,1] with the dilationK . The scaling functions corresponding to the low-pass filters2τ0, 4τ0,
and 6τ0 are shown in Fig. 2.

There are several ways to construct wavelet masks satisfying (22). We choose the filtersKhk, which
are related to the DCT III matrix of orderK

Kh0 = 1

K
[1,1, . . . ,1],

Fig. 2. Scaling functions (from left to right) with2τ0, 4τ0, and 6τ0 as its low-pass filter, respectively.
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w-pass
(22).
Khk =
√

2

K

[
cos

(
kπ

2K

)
,cos

(
3kπ

2K

)
, . . . ,cos

(
(2K − 1)kπ

2K

)]
, 0� k � K − 1.

Since cos((2� + 1)kπ)/(2K) = (−1)k cos((2(K − �) − 1)kπ)/(2K) for all 0 � � < K , the filter Khk

(and hence the filterLτk) is symmetric for evenk and antisymmetric for oddk. Let Kĥk, 0� k � K − 1,
be the Fourier series of the above filter, then it can be proven (see [11]) thatKĥk, 0 � k � K − 1,
satisfy (22), i.e.,

K−1∑
q=0

Kĥq(2ω) Kĥq

(
2ω + 2π�

K

)
= δ�,0, 0 � � � K − 1. (25)

It is, in fact, an orthonormal Haar wavelet corresponding to the multiresolution generated
characteristic function of the unit interval with dilationK . In general, we define

Lτ3p+q(ω) = Kĥp(2ω) 2τq(ω), q = 0,1,2, and 0� p � K − 1. (26)

Therefore, we get a tight-frame system derived from a multiresolution generated by the blurring lo
filter Lτ0 with the high-pass filterLτ1 as one of the wavelet masks once we proved that they satisfy
This is proven in the next theorem.

Theorem 1. LetL = 2K and Lτ3p+q , p = 0,1, . . . ,K − 1, q = 0,1,2, be defined by(26). Then we have

2∑
q=0

K−1∑
p=0

Lτ3p+q(ω) Lτ3p+q

(
ω + 2π�

L

)
= δ�,0, � = 0, . . . ,L − 1. (27)

Proof. Note that for� = 0, . . . ,L − 1
2∑

q=0

K−1∑
p=0

Lτ3p+q(ω) Lτ3p+q

(
ω + 2π�

L

)

=
2∑

q=0

K−1∑
p=0

Kĥp(2ω) 2τq(ω) Kĥp

(
2ω + 2π�

K

)
2τq

(
ω + 2π�

L

)

= M�(ω)

K−1∑
p=0

Kĥp(2ω) Kĥp

(
2ω + 2π�

K

)
,

where

M�(ω) = 2τ0(ω) 2τ0

(
ω + 2π�

L

)
+ 2τ1(ω) 2τ1

(
ω + 2π�

L

)
+ 2τ2(ω) 2τ2

(
ω + 2π�

L

)
.

SinceM0(ω) = 1 andMK(ω) = 0 by (24), and
∑K−1

p=0 Kĥp(2ω) Kĥp(2ω + (2π�)/K) = δ�modK,0 by (25),
(27) follows. �

Let Lφ̂ be the Fourier transform of the scaling functionLφ corresponding to the low-pass filterLτ0.
The functionsLψ3p+q , 0� p � K − 1, q = 0,1,2, and(p, q) �= (0,0) defined by

Lψ̂3p+q(ω) = Lτ3p+q

(
ω
)

Lφ̂

(
ω
)

2 2
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are either symmetric or antisymmetric. Moreover, the system

X = {2L/2ψ3p+q

(
Lk · −j

)
: 0� p � K − 1, q = 0,1,2, (p, q) �= (0,0); k, j ∈ Z

}
is a tight-frame system ofL2(R) by Theorem 1 and the unitary extension principle of [19]. We note
for L = 2K , this construction gives 3K − 1 wavelet functions.

Two most commonly used cases in applications areL = 2 andL = 4. ForL = 4, the filters associate
with the tight-frame system are:

4m0 = 1

4

[
1

2
,1,1,1,

1

2

]
, 4m1 =

√
2

8
[1,0,0,0,−1], 4m2 = 1

4

[
−1

2
,1,−1,1,−1

2

]
,

4m3 = 1

4

[
1

2
,1,0,−1,−1

2

]
, 4m4 =

√
2

8
[1,0,−2,0,1], 4m5 = 1

4

[
−1

2
,1,0,−1,

1

2

]
.

We now describe the main ideas of tight-frame algorithm for the high-resolution function recon
tion. The details of implementation will be given in a matrix form in the next two subsections. Fo
plicity, we discuss the univariate case withL = 2. The more general cases can be discussed in the ex
same way except with more complicated notations. We start with the blurring filter without displac
errors. The corresponding tight-frame wavelet filters are already given in (23), and (24) reduces t

2τ0(ω) 2τ0(ω) + 2τ1(ω) 2τ1(ω) + 2τ2(ω) 2τ2(ω) = 1, (28)

for a.e.ω ∈ R. To simplify the notations, let us just replace2τi ( 2mi ) by τi (mi ), i = 0,1,2.
Let g be the observed function andf be the true function to recover. Letφ be the refinable function

corresponding to the low-pass filterm0, which generated a multiresolutionVn, n ∈ Z. Then, as the
analysis of [2] shows,f can be approximated be a function inV1, i.e.,

f1 =
∑
α∈Z

〈
f,

√
2φ(2 · −α)

〉√
2φ(2 · −α) := √

2
∑
α∈Z

v(α)φ(2 · −α). (29)

The numbersv(α), α ∈ Z, are the pixel values of the high-resolution image we are seeking, and they
the discrete representation off under the basis

√
2φ(2 · −α), α ∈ Z. The given data set(m0 ∗ v)(α) is

the observed high-resolution image. By using the refinability ofφ, one finds thatm0 ∗ v is the coefficient
sequence of the functiong represented byφ(· − α/2), α ∈ Z, in V0(φ). We call thisg the observed
functionand it is given by

g :=
∑
α∈Z

(m0 ∗ v)(α)φ

(
· − α

2

)
.

The observed function can be obtained fromm0 ∗ v.
When onlym0 ∗ v is given, to recoverf1, one first findsv from m0 ∗ v; then, derivesf1 using the basis√
2φ(2 · −α), α ∈ Z, as in (29). To recoverf1 from g, we need to restore the wavelet coefficients off1

that contain the high frequency components off1. Here we provide an iterative algorithm to recoverv.
At step (n + 1) of the algorithm, it improves the wavelet components off1 by updating the wavele
coefficients of the previous step. The algorithm is presented in the Fourier domain where the p
becomes: for a given̂m0 ∗ v = τ0v̂, one needs to find̂v in order to restoref1.

Our tight-frame iterative algorithm starts from (28). Suppose that at stepn, we have thenth
approximationv̂n. Then (28) gives

τ0τ0v̂n + τ1τ1v̂n + τ2τ2v̂n = v̂n.
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Assume that there is no displacement error. Sinceτ0v̂ = m̂0 ∗ v is available, we replaceτ0v̂n by m̂0 ∗ v

(i.e.,τ0v̂) to improve the approximation. By this, we define

v̂n+1 = τ0m̂0 ∗ v + τ1τ1v̂n + τ2τ2v̂n. (30)

It can further be shown via a method similar to that used in [2], that the sequence of fun
corresponding to the high-resolution images at each iteration converges tov̂ in L2-norm in the absenc
of noise. Hence we obtainf1 by (29).

Wheng contains noise, thenvn has noise brought in from the previous iteration. To build a denoi
procedure into the algorithm, we further decompose the high-frequency componentsτ1v̂n andτ2v̂n via the
standard tight-frame wavelet decomposition algorithm. This gives a wavelet frame packet decomp
of vn. Then, applying a wavelet denoising algorithm to this decomposition and reconstructingτ1v̂n and
τ2v̂n back via the standard reconstruction algorithm leads to a denoising procedure forv̂n.

For the case with displacement errors, the blurred functiong has error from the displacement. In ord
to take into the consideration the displacement errors and use our algorithm (30), we recall our
observation (20) that the coefficients of blurring imageg is obtained fromv by passingv through the
filter τ0 + √

2ετ1. Noting that

τ0(ω)
(
τ0(ω) + √

2ετ1(ω) − √
2ετ1(ω)

)+ τ1(ω)τ1(ω) + τ2(ω)τ2(ω) = 1,

and the fact that(τ0(ω) + √
2ετ1(ω))v̂ is available, we obtain the following modified algorithm:

v̂n+1 = τ0
(
(τ0 + √

2ετ1)v̂ − √
2ετ1v̂n

)+ τ1τ1v̂n + τ2τ2v̂n. (31)

Essentially, this algorithm usesτ1v̂n to estimate the displacement errorτ1v̂ in (τ0+√
2ετ1)v̂, which is the

available data. The term(τ0 + √
2ετ1)v̂ − √

2ετ1v̂n can be viewed as the approximation of the obser
image without displacement errors. By this, we reduce the problem of reconstruction of high-res
image with the displacement errors to that of the one with no displacement errors. This allow
use the set of filters derived from the case with no displacement errors. Those filters are symme
independent ofε.

4.2. The matrix representation

We now give the matrix representation of the tight-frame system explained in Section 4.1. Bo
periodic and the whole-point symmetric boundary conditions are considered. We assume tha
filters Lmp go from −K to K , whereL = 2K andp = 0, . . . ,3K − 1. As we will see in this section
the blurring matrix with displacement errors can be expressed as the sum of the blurring matrix
displacement errors together with the matrices generated from the filterLτ1.

For periodic boundary condition, the matrix representation ofLτp is

Tx
p = Circulant(a),

where

a = [Lmp(0), . . . , Lmp(K),0, . . . ,0, Lmp(−K), . . . , Lmp(−1)
]t

is of dimensionM1 for all 0 � p < 3K . The matrix representation ofLτp is (T̃x
p)t, which in this case is

equal to(Tx
p)t. Similarly, we can defineTy

p andT̃y
p and they are equal too.

For the whole-point symmetric boundary condition,
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and
Tx
p = Toeplitz(a,b) + pseudoHankel(b,a),

T̃x
p =
{

Tx
p, whenp is even,

Toeplitz(a,b) + pseudoHankel(−b,−a), whenp is odd.

Here

a = [Lmp(0), . . . , Lmp(K),0, . . . ,0
]t

and b = [ Lmp(0), . . . , Lmp(−K),0, . . . ,0
]t
.

Similarly, we can defineTy
p andT̃y

p.
For both boundary conditions, Theorem 1 ensures that

3K−1∑
p=0

(
T̃x

p

)t
Tx

p = IM1 and
3K−1∑
p=0

(
T̃y

p

)t
Ty

p = IM2.

It leads to
3K−1∑
p,q=0

T̃t
p,qTp,q = IM1×M2, (32)

whereTp,q = Ty
q ⊗ Tx

p andT̃p,q = T̃y
q ⊗ H̃x

p. Obviously,T0,0 = T̃0,0 = H(0,0).
Using our tight-frame system, the blurring matrix with displacement errors can now be expres

the sum of the blurring matrix with no displacement errors together with the matrices generated fr
filter Lτ1. More precisely, we have

Proposition 1. Let Tx
i and Ty

i , i = 0,1, be the matrix representation of the filtersLτ0 and Lτ1 under
either the periodic or the whole-point symmetric boundary conditions. Then for each sensor, the fo
statements hold:

Hx
(
εx
�1,�2

)= Tx
0 + √

2εx
�1,�2

Tx
1, (33)

Hy
(
ε

y

�1,�2

)= Ty

0 + √
2ε

y

�1,�2
Ty

1, (34)

H0,0
(
εx
�1,�2

, ε
y

�1,�2

)= T0,0 + √
2εx

�1,�2
T1,0 + √

2ε
y

�1,�2
T0,1 + 2εx

�1,�2
ε

y

�1,�2
T1,1. (35)

Proof. The first two equations follow straightforwardly from (20). For (35), we have, by (4), (33),
(34),

H0,0
(
εx
�1,�2

, ε
y

�1,�2

)= Hy
(
ε

y

�1,�2

)⊗ Hx
(
εx
�1,�2

)= (Ty

0 + √
2ε

y

�1,�2
Ty

1

)⊗ (Tx
0 + √

2εx
�1,�2

Tx
1

)
= T0,0 + √

2εx
�1,�2

T1,0 + √
2ε

y

�1,�2
T0,1 + 2εx

�1,�2
ε

y

�1,�2
T1,1. �

By Eq. (6),
∑L−1

�1=0

∑L−1
�2=0 D�1,�2 = IM1×M2. Therefore, from Proposition 1, we get

Theorem 2. With the same notations as in Proposition1, we have

H
(
εx,εy

)= T0,0 + √
2S
(
εx
)
T1,0 + √

2S
(
εy
)
T0,1 + 2S

(
εxy
)
T1,1, (36)

whereH(εx,εy) is given in(5), εxy = [εx
�1,�2

· εy

�1,�2
]L−1
�1,�2=0, andS(ε) =∑L−1

�1=0

∑L−1
�2=0 ε�1,�2 · D�1,�2.

Multiplying f to both sides of(36) leads to

H
(
εx,εy

)
f = T0,0f + √

2S
(
εx
)
T1,0f + √

2S
(
εy
)
T0,1f + 2S

(
εxy
)
T1,1f.
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7].
This equation says that the observed high-resolution imageg = H(εx,εy)f is the sum ofT0,0f (which
equals toH(0,0)f, the observed high-resolution image without any displacement errors), and
high-frequency images. Conversely, the observed image in the case with no displacement er
be represented by the observed images with displacement errors

H(0,0)f = T0,0f = H
(
εx,εy

)
f − [√2S

(
εx
)
T1,0f + √

2S
(
εy
)
T0,1f + 2S

(
εxy
)
T1,1f

]
. (37)

Thus with the matricesT1,0, T0,1, andT1,1, we can always approximateH(0,0)f once all the displacemen
errorsεx andεy are known. In other words, unlike the work in [3], the tight system we used is fixed
can be used for all displacement errors.

4.3. The algorithm

To obtain our algorithm in matrix form, we follow the discussions at the end of Section 4.1, na
Eqs. (30) and (31). We first multiply both sides of (32) byf. Recall thatH(εx,εy)f is the observed
high-resolution imageg. Hence by (37), we have

f = T̃t
0,0

[
g − (√2S

(
εx
)
T1,0 + √

2S
(
εy
)
T0,1 + 2S

(
εxy
)
T1,1
)
f
]+ 3K−1∑

p,q=0
(p,q) �=(0,0)

T̃t
p,qTp,qf.

Thus our tight-frame-based iterative algorithm is

fn+1 = T̃t
0,0

[
g − (√2S

(
εx
)
T1,0 + √

2S
(
εy
)
T0,1 + 2S

(
εxy
)
T1,1
)
fn
]+ 3K−1∑

p,q=0
(p,q) �=(0,0)

T̃t
p,qTp,qfn.

The key step for denoising is to apply thresholding to the wavelet coefficients at each level. F
we define Donoho’s thresholding operator [7]. For a givenλ, let

Tλ

(
(x1, . . . , xl, . . .)

t)= (tλ(x1), . . . , tλ(xl), . . .
)t
,

where the thresholding functiontλ is either

(i) tλ(x) = xχ|x|>λ, referred to as thehard threshold, or
(ii) tλ(x) = sgn(x)max(|x| − λ,0), thesoft threshold.

Altogether, the denoising scheme for two-dimensional image can be simply written as

D(f) = (W̃t
0,0

)Q
(W0,0)

Qf +
Q−1∑
q=0

(
W̃t

0,0

)q 2∑
r,s=0

(r,s) �=(0,0)

W̃t
r,sTλ

(
Wr,sW

q

0,0f
)
. (38)

Here the matricesWr,s andW̃r,s correspond to the matrices in (32) withK = 1,Q is the number of levels
used in the decomposition, andTλ is the thresholding operator defined in [6,7] withλ = σ

√
2 log(M1M2),

whereσ is the variance of the Gaussian noise in signalf estimated numerically by the method given in [
Below we give the complete algorithm.



110 R.H. Chan et al. / Appl. Comput. Harmon. Anal. 17 (2004) 91–115

image,
dless of
always

in our
gn by

ment
e same
h uses
d in the
ction
same
exists
bilities

on, the
s fixed.

avelet

gorithm
te the
Algorithm 1. (1) Choose an initial guessf0.
(2) Iterate onn until convergence

fn+1 = (T̃0,0)
t[g − (√2S

(
εx
)
T1,0 + √

2S
(
εy
)
T0,1 + 2S

(
εxy
)
T1,1
)
fn
]

+
3K−1∑
p,q=0

(p,q) �=(0,0)

(T̃p,q)
tD(Tp,qfn).

Some remarks about the algorithm:

• This algorithm uses the previous iterate to correct the displacement errors of the observed
as is shown by the terms in the bracket. This allows us to use the same set of filters regar
the values of the displacement errors. In particular, the symmetric boundary conditions can
be used. This leads to a significant improvement of the reconstructed images as is shown
numerical simulations in Section 5. The key factor of this algorithm is the special filter desi
using the unitary extension principle of [19].

• Since the low-pass filter of our tight frame is given by the blurring kernel with no displace
errors, and since the tight frame is self-dual, images are analyzed and reconstructed with th
set of filters and in the same multiresolution. In contrast, the bi-orthogonal wavelet approac
different sets of filters in the analysis and the reconstruction and the images are represente
multiresolution generated by the dual low-pass filter of the blurring kernel. The scaling fun
corresponding to the dual filter has lower regularity if we require that the dual filter had the
length as the blurring filter. Although it can be avoided by using orthogonal wavelets, there
no orthonormal wavelet system for the given blurring kernels here. This again shows the flexi
given by the tight-frame system.

• For the algorithm in [3], a block-Gauss–Seidel-like approach is used, namely, in each iterati
iteration is carried out on only one sensor while keeping the information on the other sensor
Here, all sensors are updated simultaneously.

• When there are no displacement errors, i.e.,εx = εy = 0, Step 2 reduces to

fn+1 = (T̃0,0)
tg +

3K−1∑
p,q=0

(p,q) �=(0,0)

(T̃p,q)
tD(Tp,qfn).

In this case, numerical simulations show that the tight-frame method is comparable with the w
method.

5. Numerical experiments

In this section, we compare the Tikhonov least-squares method (LS) with the wavelet-based al
(WA) (see [2,3]) and the tight-frame-based algorithm (TF) (i.e., Algorithm 1 above). We evalua
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Fig. 3. Original “boat” image (left); original “bridge” image (right).

methods using the relative error (RE) and the peak signal-to-noise ratio (PSNR) which comp
reconstructed imagefc with the original imagef. They are defined by

RE= ‖f − fc‖2

‖f‖2
and PSNR= 10 log10

2552M1M2

‖f − fc‖2
2

,

where the size of the restored images isM1 × M2 = 256× 256. We use the “bridge” and “boat” imag
of size 260× 260 as the original images in our numerical tests, see Fig. 3. For both WA and TF, w
the hard thresholding operatorTλ andQ = 1 in (38).

5.1. The case without displacement errors

In this case, the high-resolution image reconstruction is equivalent to deblurring a blurred
which is the convolution of the original image with the two-dimensional filterLτ t

0 Lτ0. For LS, the
regularization functionalR is chosen to be the identity and we use the half-point boundary cond
in formulating the blurring matrixH(0,0). The resulting system can be solved by three two-dimensi
fast cosine transforms [16]. For both WA and TF, the whole-point boundary condition is used to for
the blurring matrixH(0,0). The iterate process stops when the highest PSNR is achieved. Tables 1
show that WA and TF give a significantly improvement over LS for the “boat” image and a compa
result for the “bridge” image. The restored images are shown in Fig. 4 for the 4× 4 sensor array at SNR
of 30 dB.

Table 1
The results for the 2× 2 sensor array

Image SNR LS WA TF

PSNR RE β∗ PSNR RE Ite PSNR RE Ite

Boat 20 30.62 0.0544 0.02425 33.51 0.0390 10 33.87 0.0374 38
30 32.58 0.0434 0.01698 35.20 0.0321 18 35.41 0.0313 62
40 33.91 0.0372 0.01335 36.17 0.0287 24 36.27 0.0284 84

Bridge 20 28.49 0.0832 0.01981 29.05 0.0780 16 28.94 0.0791 81
30 29.55 0.0736 0.01214 29.57 0.0735 26 29.31 0.0758 107
40 30.22 0.0682 0.00850 29.78 0.0717 32 29.44 0.0746 97
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Table 2
The results for the 4× 4 sensor array

Image SNR LS WA TF

PSNR RE β∗ PSNR RE Ite PSNR RE Ite

Boat 20 28.44 0.0699 0.01918 29.80 0.0597 33 29.49 0.0619 70
30 29.46 0.0621 0.01233 30.86 0.0529 59 30.58 0.0546 142
40 30.16 0.0573 0.00890 31.57 0.0487 93 31.26 0.0505 177

Bridge 20 25.39 0.1189 0.01266 25.76 0.1139 75 25.76 0.1140 140
30 26.03 0.1105 0.00695 26.08 0.1098 118 26.15 0.1090 180
40 26.48 0.1049 0.00451 26.19 0.1084 143 26.28 0.1074 180

Table 3
The results with displacement error for the 2× 2 and 4× 4 sensor arrays with WA and TF

Image SNR 2× 2 sensor array 4× 4 sensor array

WA TF WA TF

PSNR RE Iter PSNR RE Ite PSNR RE Iter PSNR RE It

Boat 20 30.45 0.0559 1 33.87 0.0374 33 27.16 0.0810 2 29.35 0.0629 66
30 30.80 0.05324 2 35.41 0.0313 56 27.20 0.0806 2 30.38 0.0558 130
40 30.85 0.05234 2 36.26 0.0284 74 27.21 0.0805 2 31.06 0.0517 180

Bridge 20 27.66 0.0916 4 28.89 0.0795 65 23.99 0.1398 4 25.66 0.1152 134
30 27.92 0.0889 5 29.22 0.0765 68 24.01 0.1395 4 26.05 0.1102 180
40 28.00 0.0881 4 29.37 0.0752 88 24.01 0.1393 4 26.19 0.1084 180

5.2. The case with displacement error

For the 2× 2 sensor array, the displacement errors

εx =
[−0.2810 0.1789

−0.4530 0.1793

]
, εy =

[
0.4347 0.0194

−0.1165 0.3310

]

are used in our simulation. For the 4× 4 sensor array, we use

εx =




−0.2810 0.4347 −0.4654 −0.4923
−0.4530 −0.1165 −0.4465 −0.1166

0.1789 0.0194 0.0297 −0.4332
0.1793 0.3310 0.1711 −0.0825


 ,

εy =




0.1868 0.0269 0.2012 −0.4525
0.0890 −0.4080 0.4103 0.2361
0.4304 0.1539 0.2622 −0.1718
0.3462 −0.0840 −0.2375 0.1326


 .

The numerical results are shown in Table 3, where the maximum number of iteration is 180. We
that the tight-frame-based algorithm is not sensitive toεx or εy . The reconstructed “boat” and “bridge
images are shown in Figs. 5 and 6, respectively.
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Fig. 4. 4× 4 sensor array without displacement error at SNR of 30dB. The images (from top to bottom) are: observ
high-resolution image, results with LS, WA, and TF, respectively.
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Fig. 5. 4× 4 sensor array with displacement error at SNR of 30 dBfor “boat” image. A low-resolution image from th
(0,0) sensor (top-left); observed high-resolution images (top-right); reconstructed images with WA (bottom-left); a
(bottom-right).

Fig. 6. 4× 4 sensor array with displacement error at SNR of 30 dB for “bridge” image. A low-resolution image fro
(0,0) sensor (top-left); observed high-resolution images (top-right); reconstructed images with WA (bottom-left); a
(bottom-right).



R.H. Chan et al. / Appl. Comput. Harmon. Anal. 17 (2004) 91–115 115

.
J. Sci.

image

166.

easured

s. Image

r Vision

) 723–

ar

i.

Trans.

re

.
s. 5 (June

rocess.

ress on
References

[1] N. Bose, K. Boo, High-resolution image reconstruction with multisensors, Int. J. Imaging Syst. Technol. 9 (1998) 294–304
[2] R. Chan, T. Chan, L. Shen, Z. Shen, Wavelet algorithms for high-resolution image reconstruction, SIAM

Comput. 24 (4) (2003) 1408–1432.
[3] R. Chan, T. Chan, L. Shen, Z. Shen, Wavelet deblurring algorithms for spatially varying blur from high-resolution

reconstruction, Linear Algebra Appl. 366 (2003) 139–155.
[4] I. Daubechies, Ten Lectures on Wavelets, in: CBMS Conf. Ser. Appl. Math., vol. 61, SIAM, Philadelphia, 1992.
[5] C. de Boor, R. DeVore, A. Ron, On the construction of multivariate (pre)-wavelets, Constr. Approx. 9 (1993) 123–
[6] D. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory 41 (1995) 613–627.
[7] D. Donoho, I. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 81 (1994) 425–455.
[8] M. Elad, A. Feuer, Restoration of a single superresolution image from several blurred, noisy and undersampled m

images, IEEE Trans. Image Process. 6 (Dec. 1997) 1646–1658.
[9] M. Elad, A. Feuer, Superresolution restoration of an image sequence: adaptive filtering approach, IEEE Tran

Process. 8 (3) (Mar. 1999) 387–395.
[10] J.C. Gillete, T.M. Stadtmiller, R.C.Hardie, Aliasing reduction in starting infrared images utilizing subpixel techniques,

Optical Engrg. 34 (11) (Nov. 1995) 3130.
[11] P. Heller, RankM wavelets withN vanishing moments, SIAM J. Matrix Anal. Appl. 16 (1995) 502–519.
[12] T. Huang, R. Tsay, Multiple frame image restoration and registration, in: T.S. Huang (Ed.), Advances in Compute

and Image Processing, vol. 1, JAI, Greenwich, CT, 1984, pp. 317–339.
[13] R. Jia, Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994) 271–300.
[14] W. Lawton, S. Lee, Z. Shen, An algorithm for matrix extension and wavelet construction, Math. Comput. 65 (1996

737.
[15] M. Ng, R. Chan, T. Chan, A. Yip, Cosine transform preconditioners for high resolution image reconstruction, Line

Algebra Appl. 316 (2000) 89–104.
[16] M. Ng, R. Chan, W. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sc

Comput. 21 (2000) 851–866.
[17] M.K. Ng, N. Bose, Analysis of displacement errors in high-resolution image reconstruction with multisensors, IEEE

Circuits Systems I Fund. Theory Appl. 49 (6) (2002) 806–813.
[18] A. Patti, M. Sezan, A. Tekalp, Superresolution video reconstruction with arbitrary sampling lattices and nonzero apertu

time, IEEE Trans. Image Process. 6 (Aug. 1997) 1064–1076.
[19] A. Ron, Z. Shen, Affine system inL2(Rd): the analysis of the analysis operator, J. Funct. Anal. 148 (1997) 408–447
[20] R. Schultz, R. Stevenson, Extraction of high-resolution frames from video sequences, IEEE Trans. Image Proces

1996) 996–1011.
[21] L. Shen, Q. Sun, Bi-orthogonal wavelet system for high-resolution image reconstruction, IEEE Trans. Signal P

(2003), submitted for publication.
[22] Z. Shen, Extension of matrices with Laurent polynomial entries, in: Proceedings of the 15th IMACS World Cong

Scientific Computation Modeling and Applied Mathematics, vol. 1, 1997, pp. 57–61.


