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Abstract

Least squares estimations have been used extensively in many applications, e.g.
system identification and signal prediction. When the stochastic process is station-
ary, the least squares estimators can be found by solving a Toeplitz or near-Toeplitz
matrix system depending on the knowledge of the data statistics. In this paper, we
employ the preconditioned conjugate gradient method with circulant precondition-
ers to solve such systems. Our proposed circulant preconditioners are derived from
the spectral property of the given stationary process. In the case where the spectral
density function s(@) of the process is known, we prove that if s(f) is a positive
continuous function, then the spectrum of the preconditioned system will be clus-
tered around 1 and the method converges superlinearly. However, if the statistics of
the process is unknown, then we prove that with probability 1, the spectrum of the
preconditioned system is still clustered around 1 provided that large data samples
are taken. For finite impulse response (FIR) system identification problems, our
numerical results show that an n-th order least squares estimators can usually be
obtained in O(nlogn) operations when O(n) data samples are used.
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1 Introduction

1.1 Background

Least squares estimations have been used extensively in a wide variety of scientific appli-
cations, for instance equalizations [13, p.139], system identifications [22], adaptive signal
processing [1, p.87] and speech processing [13, p.343]. In these applications, we usually
need to estimate the transmitted signal from a sequence of received signal samples or to
model an unknown system by using a linear system model.

To present the problem properly, let us introduce some terminologies used in signal
processing. Let z; be a discrete-time stationary zero-mean complex-valued process (see
Fuller [12, pp.10-11] for definition). A linear predictor of order n is of the form

n
T; = E bei—
=1

where #; is the predicted value of z; based on the data {z}, " | and {b;}7_, are the
predictor coefficients. The difference between the actual value z; of the process and the
predicted value z; is called the prediction error of order n. Since we are interested in
predicting the current value of the process based on the previous measurements, the
predictor coefficients {b;}!_; should be chosen to make the prediction error as small as
possible.

Usually the predictor coefficients are determined by minimizing the mean square error,
i.e. minimizing the prediction error in the least squares sense. The optimal least squares
predictor coefficients are then given by the solution of the linear system of equations

R,b=r, (1)

see Giordano and Hsu [13, pp.41-43]. Here R, is an n-by-n Hermitian Toeplitz matrix
given by

[ To T cer Tpog Tho 1
T To T " Th—2
Rn = 1 To . )
Tn—2 - - . T
| "n—1 Tn—2 - r o |
and b and r are vectors of the form [by, by, -, b,]" and [ry,79,--+,7,]". The entries r;

are the autocovariances of the discrete-time stationary process and are given by
rj = EriTi )
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where £ is the expectation operator.

The matrix R, is called the covariance matrix of the stationary process and the
Toeplitz system (1) is commonly called the Yule-Walker equation, see Yule [36]. We
note that if the second-order statistics of the process is known, i.e. the autocovariances r;
of the stationary process are given, then the predictor coefficients {b}}_, can be found
by solving (1). Several direct methods [20, 3] have been derived to solve such systems
and their complexities vary from O(n?) to O(nlog®n) operations.

We note that in practical cases, no prior knowledge is usually available on the auto-
covariances of the process. If M data samples have been taken, then all the information
we have is contained in the finite number of data points {z;}+.,. In this case, we can
still formulate a well-defined least squares prediction problem by estimating the autoco-
variances from the data samples {z; })2, with various types of windowing methods; such
as the correlation, covariance, pre-windowed and post-windowed methods, see for instance
Giordano and Hsu [13, pp.65-66]. The least squares estimators can then be found by
solving the n-vector b in

min ||Tb — y|>. (2)

Here y is an M-vector, || - ||2 denotes the usual Euclidean norm and 7T is an M-by-n
complex Toeplitz matrix with full column rank n, obtained by applying various types of
windowing methods on the data samples {z;}L,.

The solution b of (2) can be obtained by solving the normal equation

(T*T)b = T*y. (3)

We note that if the correlation method is employed, the normal matrix 7*7T" is Toeplitz.
The other three windowing methods will lead to non-Toeplitz normal matrix 7*7T". How-
ever, by exploiting the structure of T*T', some recursive algorithms of complexity O(M?)
have been developed, see Marple [22]. In addition to normal equation approach, orthogo-

nalization schemes of complexity O(Mn) have also been proposed, see for instance Itakura
and Saito [17], Lee et. al. [21], Cybenko [10] and Qiao [27].

1.2 Iterative Methods For Toeplitz Systems

More recently, the use of preconditioned conjugate gradient method as an iterative method
for solving Toeplitz systems A,u = z has been gaining attentions. The idea is to use
circulant matrices S,, to precondition Toeplitz systems so as to speed up the convergence
rate of the method, see Strang [31]. That means, instead of solving the original Toeplitz
system, we solve the preconditioned system

StAu=S,"z



by the conjugate gradient method.

Since circulant matrices can always be diagonalized by the Fourier matrix, see Davis
[11, p.74], the matrix-vector multiplication S, v can be computed easily by the Fast Fourier
Transforms (FFTs) in O(nlogn) operations. For A, v, it can also be computed by FFTs in
O(nlogn) operations by first embedding A,, into a 2n-by-2n circulant matrix, see Strang
[31]. It follows that the operations per iteration is of order O(nlogn). The convergence
rate of the method has been analyzed by Chan and Strang [5]. They proved that if the
diagonals of the Toeplitz matrix A, are Fourier coefficients of a positive function in the
Wiener class, then the spectrum of the preconditioned system S 'A, will be clustered
around 1 for large n and the method will converge superlinearly. More precisely, for all
€ > 0, there exists a constant c(e) > 0 such that the error vector e; of the preconditioned
conjugate gradient method at the jth iteration satisfies

||ej||s;1/2AnS,jl/2 < C(G)€j||e0| |S;1/2Ansgl/2

—1/2 —1/2
g = v Syt A, Sn /2y Hence the com-
nYn

plexity of solving a large class of Toeplitz systems can be reduced to O(nlogn) operations.

We remark that circulant approximations to Toeplitz matrices have been considered
and used for some time in image processing (e.g. [2]), signal processing (e.g. [24] and
[30, pp.75-86]) and time series analysis (e.g. [4, pp.130-131] and [29]). Besides Strang’s
circulant preconditioner S,,, several other successful circulant preconditioners have been
proposed and analyzed, see [9, 16, 19, 32, 33]. Recently, the use of circulant preconditioners
for Toeplitz least squares problems was considered by Plemmons and Nagy [23] and Chan,
Nagy and Plemmons [8]. They established formal convergence results for the least squares
problems and derived some applications in image processing. We remark however that
our circulant preconditioner is different from that presented in [23, 8].

when n is sufficiently large. Here ||v||§_1/2
n

1.3 Outline

In this paper, we use the preconditioned conjugate gradient method with circulant precon-
ditioners to solve the systems (1) and (3). For the case of known statistics, our proposed
circulant preconditioners are constructed from the spectral density functions of the given
discrete-time stationary processes. Using results in [6, 7] straightforwardly, we show that
the spectrum of the preconditioned matrix is clustered around 1. Hence if our method is
used to solve the Yule-Walker equation (1), then the convergence rate will be superlinear.

For the case of unknown statistics, only a finite number of data measurements from the
random process are provided and the convergence analysis must therefore be considered
probabilistically. The first thing we do then is to estimate the autocovariances of the
given process. Four different windowing methods for estimating these autocovariances



are introduced. Our circulant preconditioner C), is constructed from these estimates and
can be generated in O(M logn) operations where M is the number of data measurements
taken. We prove that if the underlying spectral density function of the stationary process is
positive and in the Wiener class, then our circulant preconditioner will be positive definite
and its smallest eigenvalue will be uniformly bounded away from zero with probability
1, provided that sufficiently large number of data samples are taken. Under the same
assumptions, we also prove that the spectrum of the preconditioned matrix C, }(T*T) is
clustered around 1 with probability 1. Thus, when we applied conjugate gradient method
to the preconditioned system, the method converges superlinearly with probability 1.

As for the cost of our method, since the data matrices 7" is an M-by-n rectangular
Toeplitz matrix, the normal equation and the circulant preconditioner can be formed in
O(M logn) operations. Once they are formed, the cost per iteration of the preconditioned
conjugate gradient method will be O(nlogn) operations. Therefore the total work of
obtaining the predictor coefficients to a given accuracy is of order O((M + n)logn).

The outline of the paper is as follows. In §2, we recall some useful results in iterative
method for solving Toeplitz systems and apply them to the case where the second-order
statistics are known. In §3, we consider processes with unknown statistics. We first
formulate the problem for finding the predictor coefficients as a least squares problem.
Then we introduce our circulant preconditioner and analyze the convergence rate of our
method probabilistically. In §4, numerical experiments are performed for processes with
known and unknown statistics. Specifically, we test the performance of our method for
the finite impulse response (FIR) system identification. Finally, concluding remarks are
given in §5.

2 Results For Known Statistics

In this section, we consider discrete-time stationary process with known second-order
statistics, i.e. known autocovariances. In this deterministic case, we can solve the Toeplitz
system (1) to obtain the predictor coefficients {b; }7_,. The convergence rate of the method
can be analyzed straightforwardly as in [6, 7] as we will now show.

To begin with, let the n-by-n Toeplitz matrices R,, in (1) be generated by a 2m-
periodic continuous function f defined on [—7, 7], i.e. the (7, ¢)th entry of R, is given by
the (j — ¢)th Fourier coefficient of f:

1 [7 ”
rie= oo /_ £(0)eli=9%qp.

The function f is called the generating function of R,. For simplicity, we will denote an
n-by-n Toeplitz matrix generated by a function f by the symbol A4,[f]. We note that if



f is real-valued, then A,[f] is Hermitian and the spectrum o(A,[f]) of A,[f] satisfies

U(An[f]) g [fmina fmax]a VTL Z ]-; (4)

where fimin and firax are the minimum and maximum values of f respectively, see Grenan-
der and Szegd [15, pp.63-65]. In particular, if f is positive, then A,[f] is positive definite.

For Toeplitz matrices generated from a function, there are many different choices of
circulant preconditioners that can be constructed from its generating function, see Chan
and Yeung [7]. In this paper, we only focus on T. Chan’s circulant preconditioner C,|[f]
which is defined to be the minimizer of ||Q, — A,[f]||# over all circulant matrices @, see
[9]. Here || - || denotes the Frobenius norm. The (j, ¢)th entry of C,[f] is given by ¢;_g

where _ _
(TL - ])7”]' + JTj—n
Cj =

0<y<n,

n
Chan and Yeung [7] showed that C,,[f] is closely related to the Fejér kernel F,, (see Walker
(34, p.76] for definition of Fejér kernel). Indeed, the eigenvalues \;(C,[f]) of C,[f] are

given by -
N (Calf) = (Fax HED), 0<j<n, )

where

Fr D)0 = 5= [ Fi0- 600

One of the interesting spectral property of C,[f] is that if A,[f] is positive definite,
then C),[f] is also positive definite. In fact, we have

)\mm(An[f]) S )\mm(Cn[f]) S Amax(on[f]) S )\max(An[f]) (6)

where Apin(+) and Apax(+) denote the minimum and maximum eigenvalues respectively,
see Tyrtyshnikov [33]. Combining (6) with (4), we see that if the function f is positive,
then [|C![f]|]2 is uniformly bounded. We remark that most of the other circulant pre-
conditioners do not satisfy (6), see Chan and Yeung [7]. As for the performance of C,,[f]
as a preconditioner to A,[f], we have the following theorem.

Theorem 1 (Chan and Yeung [6, Theorem 1,Corollary 3]) Let f be a positive 2r-
periodic continuous function. Then for all € > 0, there exist positive integers K and N
such that for all n > K, at most N eigenvalues of Cy,[f] — An[f] and of C, [ f]A.[f] — I
have absolute value greater than €.



Thus the spectrum of C,1[f]A,[f] is clustered around 1 and therefore the conjugate
gradient method, when applied to the preconditioned system C '[f]A,[f]lu = z, will
converge superlinearly, see Chan and Yeung [6].

We now apply the result above to the solution of (1). We begin by noting that for
a discrete-time stationary process, if the autocovariances of the process are absolutely
summable, i.e. Y27 |ry| < oo, then ry, can be expressed in the form

rk:/ s(0)e™*’do

where s(0), called the spectral density function of the stationary process, is given by

o0

1 .
s(0) = or > e,

k=—00

see [4, p.118]. We note that the covariance matrix R, is a Toeplitz matrix generated by
s(0). As examples, we consider the following stationary processes:

1. Purely random process (White Noise) [26, p.233]: The process simply consists of a
sequence of uncorrelated random variables {v;} and the autocovariances are given

by
7, k=0,
T =
0, otherwise,

where 72 is the variance of the random variable v,. The corresponding spectral
density function s(#) is given by

s(0) = 77_7r’ Vo € [—m, 7). (7)
Thus, the covariance matrix is a constant multiple of the identity matrix.
2. First order auto-regressive process AR(1) [26, p.238]: The process is given by
Ty = PTy—1 + Uy,

where {v;} is a white noise process with variance n?. The autocovariances of the

process are given by
i
Tp = , k=0,4+1,4£2,---, (8)
1—p?

where |p| < 1. The corresponding spectral density function s(f) is given by

2

_ N _
5(6) = 27 (1 — 2pcos + p?)’ vo € [=m i,
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and the covariance matrix is a scalar multiple of the Kar-Murdock Szegdé matrix,
see Kac and Murdock [18].

3. Second order auto-regressive process AR(2) [26, p.241]: The process is given by
Ty + Til—1 + Ty = Vg,

where {v;} is a white noise process with variance . The autocovariances of the
process are given by

(1= 3)5"™ — (1= D)oy "2
(81 — 82) (1 = 6109)[(1 — 6102)2 — (01 + 62)?]

e = k=0,4£1,£2,---, ()
where 71 = —(0; + d2) and 7, = 10 such that |§;| < 1 and |dy| < 1. The spectral
density function is given by

2

Ui
0= V0 € [—n, 7).
S( ) 27'('[(]_ —|— T2)2 —|— 7-12 _ 27—1(1 _ 7_2) COSG . 47_2 C082 9]7 € [ 7T, '/T]

4. First order moving-average process MA(1) [4, p.121]: The process is given by
Ty = U + XUt-1,

where |x| < 1 and {v;} is a white noise process with variance n?. The autocovari-
ances of the process are given by

7(1+x%), k=0,
Ty = 772X7 k= 17
0, otherwise.

We see that the covariance matrix is a tridiagonal Toeplitz matrix A,[s] with

2
s(0) = ;Y_T(l +2xcosf +x?%), VO € [-m, 7]

If we assume that the spectral density function of the stationary process exists and
satisfies the hypothesis of Theorem 1, then the Yule-Walker equation (1) can be solved
in O(nlogn) operations by using the preconditioned conjugate gradient method with
circulant preconditioner C,,[f]. More precisely, we have the following direct consequence
of Theorem 1.



Corollary 1 Let the spectral density function s(0) of a discrete-time stationary process
be a positive 2m-periodic continuous function. Then for all € > 0, there exist positive
integers K and N such that for n > K, at most N eigenvalues of I,, — C,'[s]An[s] have
absolute value greater than e.

We remark that all the above results are derived deterministically. In the least squares
estimation algorithms discussed below, we deal with data samples from random processes
and the convergence rate will be considered in a probabilistic way.

3 Least Square Solutions With Unknown Statistics

In this section, we consider the more practical case where no prior knowledge on the
autocovariances of the discrete-time stationary process is available. In this case, the
autocovariances are estimated from the finite number of data samples {xy, z, ..., 25}
The usual approach is to formulate the prediction problem as a least square problem
by using various types of windowing methods. In §3.1, we will consider four of these
windowing methods. The construction of our circulant preconditioner will be given in
§3.2 and the convergence rate will be analyzed in §3.3.

3.1 Windowing Methods

Let {x1, -+, 2z} be the set of data samples taken. By minimizing the mean square error
over the available data, the least squares estimation of the predictor coefficients {b;} can
be found by solving the least squares problem

min ||T,b — y||2- (10)

Here y is a known M-vector and T, is a data matrix, see Giordano and Hsu [13, pp.
65-66]. The exact form of T,, depends on the assumptions we make to the data outside
our observation.

(W1) Correlation method assumes that data prior to k& = 0 and after & = M are zero.
The corresponding data matrix is an (M +n — 1)-by-n rectangular Toeplitz matrix of the



form

0
xn .- .. ... xl
T1:
xM .« .. PP xM*TL*I
0 .
L 0 0 Tas i

(W2) Covariance method makes no assumptions about the data when &k = 0 or k = M.
The corresponding data matrix is an (M — n + 1)-by-n rectangular Toeplitz matrix given
by

xn .- . ... xl
TQZ
Tn
-:UM .- . ... 'ZUMf’rL‘}*l i

(W3) Pre-windowed method assumes that data prior to & = 0 are zero but makes no
assumptions about data after k = M. The (M + 1)-by-n data matrix T3 is given by

"L‘n .. e 1‘1
:UM ... .. 'ZUMf’rL‘}*l
T3 - .
0
L 0 [ 0 ]

(W4) Post-windowed method assumes that data after k¥ = M are zero but makes no

10



assumptions about data prior to & = 0. Thus the (M + 1)-by-n data matrix T} is given
by

T 0 0 .
Xy
T4 — 0
"L‘n ) " e 1‘1
LIZym - o TM-n+l

In all four cases, the least squares solutions to (10) can be obtained by solving the
scaled normal equations

1
—(T;Ty)b=—Try, w=1,2,34. (11)

We note that when employing method (W1), the normal matrix --(777}) is a Hermi-
tian Toeplitz matrix and can be written in the form

]' *
—(IYT) = A, (12)
where B
g0)= Y e V€ [-m,7] (13)
k=—(n—1)
and
1 M—|k|
j=1

In statistics literature, 7 is called an estimator of the autocovariance r; of the process.
When using the other windowing methods (W2), (W3) and (W4), the normal matrices
can be written in the following forms:

For covariance method (W2):

1

77 (2 T2) = Aulg] = AylplAulp] — Anlg]Anld]; (15)

11



For pre-windowed method (W3):

%(Tg‘Tg) = Aulg] — A [p)Anlpl; (16)

For post-windowed method (W4):

M(TIT4) = An[g] - A;[Q]An[Q] (17)
Here B
T
0) = ]*”9, Vo € |—m, m|,
W0 =Y e 7]
and

n—1
TM—j+1 _ijo
q(0) = ———e Vo € |—m, 7).
O =Y, B, weona]

We note that A,[p] and A,[¢] are lower and upper triangular Toeplitz matrices re-
spectively. As the product of a lower triangular Toeplitz matrix and an upper triangular
Toeplitz matrix is not Toeplitz in general, the normal matrices in these cases are non-
Toeplitz.

3.2 Construction of Circulant Preconditioner

Let us now generate our circulant preconditioner from the normal matrices --(T5T,)
where w = 1,2,3 and 4. As we can always pad zeros to the bottom rows of the data
matrices T,,, we assume here without loss of generality that we can partition 7, as

T, = o (18)
Tiw,m)

where each T{, ;) is an n-by-n Toeplitz matrix and m is the number of blocks of n-by-n
Toeplitz matrices. Our preconditioner Cy,[g| is taken to be the circulant approximation
of the Toeplitz part A,[g] of the normal matrix —(T;T,,), see (12), (15)-(17).

Recall that by using FFTs, the cost of matrix-vector multiplications involving the
matrix T,,, w = 1,2,3,4, can be done in O(M logn) operations whereas those involving
A,[p] and A,[g] can be performed in O(nlogn) operations. Hence the Toeplitz matrix
A,lg] can be found in O(M logn) operations whereas Cy[g] can be found in O(nlogn)

12



operations. Once the first column of A,[g] has been computed and stored, the cost for each
iteration of the preconditioned conjugate gradient method will be of O(nlogn) operations.
As for the storage, we need an M-vector to store the set of data samples {z,}} , and
five n-vectors in the conjugate gradient method. The diagonals of A,[g] and the first
column of C,[g] will require another two n-vectors. If the diagonals of A,[p] and A, [q]
are needed, extra two n-vectors will be required. Thus the overall storage requirement is
about O(M + n).

We remark that our circulant preconditioner is different from that recently proposed
by Chan, Nagy and Plemmons for Toeplitz least squares problems [8]. They basically take
the circulant approximation of each Toeplitz block T{, ;) in (18) and then combine them
together to form a circulant preconditioner. The motivation behind our preconditioner is
that the Toeplitz matrix A,[g] is the sample covariance matrix which intuitively should
be a good estimation to the covariance matrix R,, of the discrete-time stationary process,
provided that sufficiently large number of data samples are taken. Hence we choose to
approximate A,[g] instead of T(, ;) by circulant preconditioners.

The analysis of the performance of C,[g] will be given later. We first explain why we
choose the T. Chan circulant preconditioners C},[g] instead of the others. We recall that
the eigenvalues of C),[g] are given by (F x g)(27j/n), see (5). In the deterministic case,
Cy[f] is a good preconditioner for A, [f] because F, * f is a good approximation of f, see
Chan and Yeung [7]. In the current stochastic case, the following Lemma can serve as a
motivation for choosing C,[g].

Lemma 1 (Grenander and Rosenblatt [14, pp.262-263]) Let the spectral density
function s(0) of the discrete-time stationary process be real-valued with bounded second
derivative and g(0) be given by (13). Then for any given € > 0, there ezists a positive
integer N such that for n > N,

Pr{||Fn* g — $|lo <€} >1—¢,

provided that the data samples size M is sufficiently large enough (M > n). Here || - ||
is the supremum norm.

The Lemma basically states that the convolution product F, % g converges to the
spectral density function s(f) in probability. Therefore, we expect C,lg] to be a good
preconditioner for A,[g].

3.3 Probabilistic Analysis of the Convergence Rate

As we deal with data samples from random processes, the convergence rate will be con-
sidered in a probabilistic way which is different from the deterministic case discussed in

13



§2. We first make the following assumption (A) on the discrete-time stationary process
so that results of the convergence rate can be derived.

(A1) The underlying spectral density function s() of the process is positive and in the
Wiener class, i.e. the autocovariances of the process are absolutely summable:

oo

Z 6] < a < o0. (19)

k=—00

(A2) The variances of the estimators 7 given in (14) are bounded by

Var(#4) k=0,+1,42,--, (20)

S Ma
where (3 is a constant.

(A3) The stationary process has zero-mean, i.e. £(x;) = p =0 for all i.

Some remarks on the assumptions:

1. In time-series analysis, assumption (A1) is often valid. For example, the spectral
density functions of autoregressive-moving average (ARMA) processes are rational
functions [4, p.121]. The positiveness of the spectral density function can be guar-
anteed by the causality of the process [4, p.85] whereas the absolutely summability
of the autocovariances can be assured by the invertibility of the process [4, p.86].

2. Assumption (A2) is satisfied when the stationary process is Gaussian (see Priestley
[26, p.113] for definition). In fact, in this case, the variances of the estimators 7
are given by

1 M—k—1 | | + ]{,‘
Var(in) = — . (1= ]7)(7«]2. S riarok), ko= 0,12
j=—(M—k)+k

As the autocovariances of the process are absolutely summable, inequality (20) is

satisfied.

3. If the mean of the stationary process is not equal to zero, then we can consider the
stationary process {x; — u} instead. Even if y is unknown, we can estimate it by
the sample mean.

14



4. Under assumption (A3), we have

see Priestley [26, p.323]. Although the formula of £(7y) is slightly different when
i is unknown, they are almost the same when a large number of data samples are
taken, see [26, p.323].

The following Lemma will be useful later in the analysis of the convergence rate of the
method.

Lemma 2 Let the discrete-time stationary process satisfy assumption (20). Then for any

€>0,
Var(fk) < ﬁ

Pr(fi — £(7)| > e} £ = < —.

Proof: The first inequality comes from Chebyshev’s inequality, see Fuller [12, p.185] and
the second inequality is obtained by applying (20).

Before going into the convergence analysis, we define the function gg(#) which is an
approximation to the function g(f) in (13):

gp(0) = i E(rp)e ™, VO € [~ 7). (22)
k=—(n—1)

The following Lemma gives an estimate of the difference between gz and ¢ in the supre-
mum norm.

Lemma 3 Let g and gg be given by (13) and (22) respectively. Then

84n3
Me?’
Proof: By using a Lemma in Fuller [12, p.182], we have

Pr{|lg — gulls > €} <

n—1
Pr{llg = gulleo > e} = Pr{ll D [ —EF)le™ |l > €}
k=—(n-1)
n—1 p
< Pr{|r, — E(7r)| > .
< ;) o{Jin = E(F0)| > 5

The result now follows by using Lemma 2.

15



3.3.1 Correlation Windowing Method

In this subsection, we analyze the spectrum of the preconditioned matrix C '[g]A,[g]
when the correlation windowing method (W1) is used. We first prove that the smallest
eigenvalue of A,[g] is uniformly bounded away from zero with probability 1.

Theorem 2 Let the discrete-time stationary process satisfy assumption (A). Then for
any given € > 0, there exists a positive integer N such that for n > N,

Pr {\uin(An[g]) is uniformly bounded away from zero} > 1 — e,

provided that M = O(n*™) with v > 0.
Proof: We first write

Anlgl = {Anlg] = Anlge]} + {Anlge] — Anlsl} + Ans].

By (A1) and (4), we have
)\min(An[S]) Z Smin > 07 (23)

where sy, is the minimum value of s. Therefore, it suffices to estimate ||A,[g] — Anlg9r]||2
and ||A,[gr] — An[s]|]2 respectively.
For the probabilistic part, i.e. the matrix A,[g] — A,[gr], we note by (4) that

Pr(lly - gulle < 5} < Pr{llAulg] — Aulgalllo < 5} < L. (24)

On the other hand, by Lemma 2,

326n3

€
Pr{|lg — gpllo < =} >1— 222
S e

for sufficiently small € > 0. Thus, it follows from (24) that
€
Pr{ll4alg] = Anlgr]ll: < 5} > 1 —¢ (25)
provided that M = O(n**") with v > 0.

For the deterministic part, i.e. the matrix A,[gr] — A,[s], we note by (4), (21) and
(22) that

n—1
I
14alg8] = Auls]ll2 < llgp = sllo < D VA > Il (26)
k=—(n-1) |k|>n

16



Using (19), it follows that for any given e > 0, there exist positive integers N; and

M; > Ny such that
€
Z el < 3 (27)

|k|>N1
and
1 plint €
— k < —. 28
T2 Ilnl < (28)
k=—(N1—1)

Hence for all M > n > M, by (27) and (28), we have

n—1 Ni—1 n—1
k| 1 k| 3¢
E M|7”k|<—M1 E |k|re] + E M|7“k|<§-
k:—(n—l) k):—(Nl—l) |k)‘>N1

Putting this bound and (27) back into (26), we get
€

||An[9E] - An[S]HZ < 5

(29)

The lemma now follows by combining (23), (25), (29) and using simple probability argu-
ments.

Combining Theorem 2 with (6), we immediately have the following corollary on the
smallest eigenvalue of C),|[g].

Corollary 2 Let the discrete-time stationary process satisfy assumption (A). Then for
any given € > 0, there exists a positive integer N such that for n > N,

Pr{Amin(Cplg]) is uniformly bounded away from zero} > 1 —,

provided that M = O(n*™) with v > 0.
Next we prove the clustering property of the preconditioned matrices C, ' [g]A4,[g]-

Theorem 3 Let the discrete-time stationary process satisfy assumption (A). Then for
all € > 0, there exist positive integers K and N such that for n > N,

Pr {at most K eigenvalues of Cy[g] — Anlg] have absolute value greater than €} > 1 — e,

provided that M = O(n*™) with v > 0.
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Proof: We write

Cnlgl = Anlgl = {Culg] — Culs]} + {Cnls] — Anls]} + {Anls] — An[g]}-

In view of Theorem 1, the eigenvalues of C,,[s] —T,,[s] will be clustered around zero. Hence
by applying Cauchy’s interlace theorem (see Wilkinson [35, p.103]), it suffices to prove
that ||Cylg] — Cyls]||2 and ||An[s] — Anlg]|]2 are very small with probability 1. For the
difference A, [s] — A,lg], we first write it as

Apls] = Anlg) = {Anls] — Anlge]} + {Anlge] — Anlg]}

Then by using arguments similar to those used in Theorem 2, we can prove that
Pr{||A.[s] — An[g]ll2 < €} > 1 —¢,

provided that M = O(n*™") with v > 0. By (6), if ||A,[s] — 4.[g]|]2 < €, then we have
||Cnls] — Chlglll2 < €. Now the theorem follows by using simple probability arguments.

O

Combining Corollary 2 and Theorem 3, we have the following main theorem about
the spectra of the preconditioned system.

Theorem 4 Let the discrete-time stationary process satisfy assumption (A). Then for
any given € > 0, there exist positive integers K and N such that forn > N,

Pr {at most K eigenvalues of I,, — C; ' [g]|A,]g] have absolute value greater than ¢}
>1—¢,

provided that M = O(n*™) with v > 0.

Proof: Let us define the following events:

E; = {at most K eigenvalues of C,[g] — A,[g] have absolute value greater than €},

Ey = {\nin(Crlg]) is uniformly bounded away from zero}, and

E3 = {at most K eigenvalues of I, — C~'[g]A,[g] have absolute value greater than ¢}.
By Theorem 3 and Corollary 2, we see that

Pr{E; and Ey} = Pr{E,} + Pr{Ey} — Pr{EjorEs} > 1 — 2e.
Since events F; and FE, together imply Ej3, the theorem follows.

Using Theorem 4, we can easily show that the conjugate gradient method, when ap-
plied to the preconditioned system C, [g]A,[g], converges superlinearly with probability
1 provided that M = O(n*™) with v > 0. For details of the proof of the superlinearly
convergence rate, see Chan and Strang [5].
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3.3.2 Other Windowing Methods

To derive the convergence rate for other windowing methods, we first note the following
result:

Lemma 4 Let the variance of the discrete-time stationary process be equal to €2, i.e.
ro = 2. Then for any given € > 0, there exists a positive integer N such that for n > N,

Pr{|[Au[p]ll2 < €} > 1 —¢,
provided that M = O(n?*™) with v > 0.
Proof: By (4), |[4x[p]ll2 < 2[|p||oc. Thus
Pr{{[p|lec < €} < Pr{||An[p][l2 <€} < 1.
As the variance of z; is equal to &2, it follows by the Lemma in Fuller [12, p.182] and
Chebyshev’s inequality [12, p.185] that

X

3¢2
i s fy o8
\/ﬁ¥|__ n} >

Me2”

n—1 n—1
Pr{[pllc > €} = Pr{|| Y | —=e"’||c > €} < Y " Pr{|
~ VM p

Hence, the result follows.

Following the arguments in Lemma 4, we can establish similar results for the upper
triangular Toeplitz matrix A,[¢]. Thus, combining with Theorem 3 and using Cauchy’s
interlace theorem, we can prove that the spectra of the matrices

(i) Culg] — Anlg] — AL lp]Anlp] — AL lq)Anlg] (covariance method (W2)),
(i) C,lg] — Anlg] — AL [p|Anlp] (pre-windowed method (W3)) and

(iii) Culg] — Anlg] — ALlglAnlq] (post-windowed method (W4))

are clustered around zero with probability 1 provided that M = O(n*™) with v > 0. To
sum up, we have the following main result.

Theorem 5 Let the discrete-time stationary process satisfy assumption (A). Then for
all € > 0 and for each w = 1,2, 3,4, there exist positive integers K and N such that for
n > N, the probability that at most K eigenvalues of

1
I, — C (=TT,
ol o)
have absolute value greater than € is greater than 1 — €, provided that M = O(n3™") with
v > 0.

According to Theorem 5, the preconditioned conjugate gradient method with circulant
preconditioner Cy[g] is an efficient algorithm for solving Toeplitz least-square equations
derived from different kinds of windowing methods.
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4 Numerical Experiments

In this section, numerical experiments are performed to test the convergence performance
of the algorithm. Stationary processes with known or unknown second-order statistics (i.e.
autocovariances) are considered. All the computations are done by Matlab on a Sparc II
workstation at UCLA. In the numerical tests, we use the zero vector as our initial guess
and the stopping criterion is ||e;||2/||€ol|2 < 1077, where e; is the residual vector after j
iterations. In the tables below, I,, denotes no preconditioner was used whereas C), signifies
T. Chan circulant preconditioner was used.

4.1 Known Statistics

We test our method for first and second order autoregressive processes, i.e. AR(1) and
AR(2) processes. Their autocovariances are given by (8) and (9) respectively. We solve
the corresponding Yule-Walker equation (1). For each process, two sets of parameters
were tried. We note that the spectral density functions s(#) of the processes are positive
and in the Wiener class. Table 1 gives the number of iterations required to solve (1).
From the table, we see that the number of iterations increases for the original matrices as
n increases. However, it stays almost the same for the preconditioned systems.

AR(1) process AR(2) process
p=03 | p=09 ||0,=01,0,=05]0,=009,0,=05
n L |G| L |G| I, | Cy L, | G,
8 8 6 9 5 8 6 9 8
16 12 6 16 6 15 7 21 11
32 14 5 25 6 21 6 38 12
64 14 4 40 7 27 5 68 11
128 14 4 61 6 29 Y 121 9
256 | 14 4 85 6 29 4 198 9

Table 1. Number of iterations for AR(1) and AR(2) process with known statistics.

4.2 Unknown Statistics

We illustrate the convergence rate of our method by using finite impulse response (FIR)
system identification as an example. FIR system identification has wide applications in
engineering [22, 28]. Figure 1 is a block diagram of an FIR system identification model.
The input signal x; drives the unknown system to produce the output sequence y,. We
model the unknown system as an FIR filter. If the unknown system is actually an FIR
system, then the model is exact.
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In the tests, we formulate a well-defined least squares prediction problem by estimating
the autocovariances from the data samples with correlation and covariance windowing
methods. By solving the normal equations as discussed in §3.1, the FIR system coefficients
can be found. We remark that if the autocovariances and the cross-covariances of the input
process {zy} and the output process {yx} are known beforehand, then we are just simply
solving a system of equations similar to (1), see Marple [22].

Unknown System

]

FIR System {by}}_, ;

€k

Figure 1. FIR System Identification Model

In the numerical tests, we used Gaussian white noise (purely random process) and
colored noise (AR(1) and AR(2) processes) with variance n? equal to 1 as input processes.
The reference (unknown) system is an n-th order linear phase FIR filter with uncorrelated
Gaussian white noise added. The finite impulse response {hy}7_, we used for the reference
system is

b =1.1— M

n—1
We note that the shape of the FIR filter is triangular. Different variances of noise level
are used to test the performance of the preconditioned conjugate gradient algorithm. In
signal processing, the effect of the background noise to the signal is measured by the
signal-to-noise ratio (SNR) which is defined as

variance of the reference system output {yk}>

SNR =101
©810 < variance of the additive noise

In the tables below, m = M/n is the number of blocks of n-by-n Toeplitz matrices
in the matrix 7, (c.f. (18)). In Table 2, we first use white noise as input process and
employ correlation windowing method to formulate the least square prediction problems.
Table 2 shows the average number of iterations (rounded to the nearest integer) of the
normal systems and of the preconditioned systems over 100 runs of the algorithm. From
the numerical results, we see that the preconditioned systems converge very fast and the
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number of iterations required for convergence are less than that of the normal systems.
However, the reduction of the number of iterations is not significant when m is large. This
is because the spectral density function of the white noise process is a constant function,
see (7). Hence the number of iterations are almost the same for white noise input process
when m is large.

SNR=50 SNR=30
n | 16 32 64 128 16 32 64 128
m [ 1 [ Co [ 1 [Co [ 1 [Co [ 1 [Co | 1. [Co | I [Co | I [ G | 1 | Ca
2 [12] 1117|1428 1436|1612 9 20| 15[ 27] 15| 34] 16
A1t 9 12 o6l1z23]12(11] 9 |[16] 122214 |20 14
8 [11| 7 119 12 9 [[17| 1110 8 |[13] 9 |[14] 1L |17 11
1696108108 |[3[10]9]7 109 12]10]13]10
320916 9|7 9809 7] 78898 ]12]09
6465 |8 |7 717019 77]6]86]7]7]|10]s8

Table 2. Average number of iterations for white noise input process when correlation
windowing method is employed.

Tables 3-4 and 5-6 show the average number of iterations over 100 runs of the algo-
rithms when AR(1) (with p = 0.9) and AR(2) (with ; = 0.9 and 0, = 0.5) are used as
the input processes respectively. We see that the preconditioned systems also converge
very fast and the reduction in number of iterations is much greater than in the case of
white noise input process.

In the proof of Lemma 4, we need M to be sufficiently large in order to make the ¢,
norm of the matrices A,[p] or A,[q] as small as possible. The fact can be seen from the
numerical results in Tables 4 and 6 where the number of iterations of the preconditioned
systems are greater than the non-preconditioned one when m = 2. However, when m > 2,
the number of iterations of the preconditioned systems reduces significantly. Finally, we
note that although the superlinear convergence rate is proved under the assumption that
M = O(n*), the numerical results show that the method indeed converges very fast
even when the number of data samples M is just of the order O(n).
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Variance of noise=0.0025 Variance of noise=0.025

n 16 32 64 128 16 32 64 128

n [ L1 LG LG LG LG T G| T [Ca | T | C
2 114|100 |26 12 || 38 | 15|48 |16 |17 9 || 25| 13 || 42| 15| 65| 15
4 |18 10| 22|11 |32 12 || 48|13 |16 | 10| 25| 12 || 41| 11 || 53| 13
8 |15 9 || 18|10 (|32 10 || 37|11 || 13| 9 ||24| 10| 34| 11 | 42| 12
16 (|13 8 |19 9 (128 9 ||37]10 |14 | 8 (|20 9 | 28| 9 (|39 10
3212 8 |17 8 [[26] 8 |36 9 (13| 8 |20 8 (|27 9 ||39] 9
64 || 13| 7 (|17 8 || 24| 8 ||32| 8 (|12| 7 ||19| 7 ||26| &8 || 37| 8

Table 3. Average number of iterations for AR(1) input process when correlation
windowing method is employed.

Variance of noise=0.0025 Variance of noise=0.025

n 16 32 64 128 16 32 64 128

m | L G LG LG L Gl LG LTG5 CL]C.
2 12021 |25 22 (38|52 |57 |74 (19|19 | 32|19 (|50 | 21 || 57| 46
4 |18 1121|2316 (|35 |14 || 49| 18 || 16| 15 || 28 | 17 || 34| 16 || 53 | 19
8 |18 | 11 (22|10 || 31|13 || 38| 13 || 15| 11 | 23| 10 || 32| 11 ||40| 14
16 |14 8 120 9 || 26| 10 (|37 10 || 14|10 | 21| 9 ||29| 9 | 40| 11
3214 8 |20 9 [[26] 9 |36 9 (13| 8 |20 9 (|29 9 | 37| 10
64 | 12| 7 (|19 8 [ 23] 8 |33 9 (13| 8 |19 8 (|29 9 ||37] 9

Table 4. Average number of iterations for AR(1) process when covariance windowing
method is employed.

Variance of noise=0.0025

Variance of noise=0.025

n 16 32 64 128 16 32 64 128

m | LG LG LG LG G LG LG L C.
2 1911 (|28 12 || 54| 17 |95 |16 | 17| 9 24 | 11 || 51 | 22 || 110 | 21
4 |18 1] 9 26 | 14 || 41| 12 || 76 | 15 || 17| 12 || 31| 15 | 46 | 14 91 | 16
8|15 8 26| 13 |46 | 14 | 72 | 14 || 15| 10 || 26| 12 | 46 | 13 90 | 15
16 |18 | 9 24 1 13 || 41| 13 60| 12 || 15| 8 24 |1 10 || 38 | 10 81 | 12
321171 9 24112 |41 12 || 55| 10 || 16| 10 || 23| 12 || 38 | 11 63 | 12
64 | 15| 10 || 23|10 || 37| 10 || 47| 10 || 16| 9 23 1 12 | 40 | 12 60 | 10

Table 5. Average number of iterations for AR(2) process when correlation windowing
method is employed.
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Variance of noise=0.0025

Variance of noise=0.025

16 32 64 128 16 32 64 128

LG |L]c LG |L]c|L[C|L]C | L]C |1 C,
20| 19 [[35| 2L [ 56| 21 [ 69] 75 [ 21| 15 || 34 | 40 || 51 ] 112 || 110 | 192
18 [ 18 |31 | 17 41|18 |78 19|19 13 [ 33| 16 || 45| 16 | 111 | 22

16 | 13 |30 | 15 |37 | 14 || 72| 14 || 18 | 12 || 26 | 13 || 45| 14 || 91 | 15
1419 |24 |13 (|39 12 || 61|13 (16| 9 ||25 |12 |43 | 13 || 71 | 13
14110 |25 | 13 |37 | 12 || 52| 12 || 17| 10 || 26 | 12 || 44 | 12 || 68 | 11
64 | 14 | 11 || 22 | 12 || 36| 12 |53 | 11 || 16 | 10 || 26 | 12 || 37 | 12 || 59 | 11

SN B

Table 6. Average number of iterations for AR(2) process when covariance windowing
method is employed.

5 Concluding Remarks

Recently, Plemmons [25] proposed to use circulant preconditioner for the recursive (adap-
tive) least squares problems. We note that our algorithm is also suitable for such problems.
For a real-time application of identification and recursive least squares computations, our
algorithm can be executed on a parallel machine with multiprocessors. We assign each
step of the algorithm to different group of processors. The first group of processors is
responsible for the initialization of the data samples (i.e. to generate the right hand side
vector of the normal equations and the first column of the Toeplitz matrices A,[g], A,[p],
A,lq] and Cylg]). The conjugate gradient iterations can be implemented on the second
group of processors.
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