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Abstract— Image reconstruction is a mathematically ill-
posed problem and regularization methods are often used
to obtain a reasonable solution. Recently, the total vari-
ation (TV) regularization, proposed by Rudin, Osher and
Fatemi (1992), has become very popular for this purpose.
In a typical iterative solution of the nonlinear regularization
problem, such as the fixed point iteration of Vogel or New-
ton’s method, one has to invert linear operators consisting
of the sum of two distinct parts. One part corresponds to
the blurring operator and is often a convolution; the other
part corresponds to the TV regularization and resembles an
elliptic operator with highly varying coefficients. In this pa-
per, we present a preconditioner for operators of this kind
which can be used in conjunction with the conjugate gra-
dient method. It is derived from combining fast transform
(e.g. cosine-transform based) preconditioners which the au-
thors had earlier proposed for Toeplitz matrices and for
elliptic operators separately. Some numerical results will
be presented. In particular, we will compare our precondi-
tioner with a variant of the product preconditioner proposed
by Vogel and Oman [28].

I. INTRODUCTION
In this paper, we apply conjugate gradient precondition-
ers to the iterative solution of some large-scale image pro-
cessing problems. The quality of the recorded image is
usually degraded by blurring and noise. The recorded im-
age z and the original image u are often related by the
equation,

z(z,y) = Hu(z,y) +n(z,y)

/h(w — s,y —tu(s,t) dt ds + n(z,y),
Q

(1)
see [12]. Here H denotes the blurring operator for the blur-
ring function h, and 7 denotes the noise function. The
image restoration problem is to obtain a reasonable ap-
proximation of the original image.

Note that the problem Hu = z is ill-posed and the dis-
cretization matrix of H is usually ill-condition and hence
the problem is extremely sensitive to noise. Thus, we can-

not neglect the effect of noise and simply solve Hu = z. To
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remedy this ill-conditioning, several approaches of regular-
ization are used.

The Total Variation (TV) regularization method of
Rudin, Osher and Fatemi [25], [24] is extremely effective ap-
proach for restoring edges of the original image. They con-
sider solving the following constrained minimization prob-
lem:

min/ |Vu| dor dy subject to [[Hu—z||p2q) =0 (2)
voJo

where | - | denotes the Euclidean norm and o is the noise
level. The quantity [, |Vu| dz dy is called the total varia-
tional norm of w.

Instead of solving the constrained problem, Vogel consid-
ered the following closely-related regularization problem:

1
min f(u) = min §||’Hu - z||%2(9) + a/ |Vu| dz dy, (3)
u u Q

see [1], [27]. Here « is a positive parameter which measures
the trade off between a good fit and an oscillatory solution.
At a stationary point of (3), the gradient of f vanishes,
giving:

g(u) =H* (Hu —z) —aV - (%) =0, (z,y)eQ, 4
% =0, (x,y) € oN.

The second term in g is obtained by taking the gradient
of a [, |Vu| de dy and then applying integration by parts
from which Neumann boundary condition results. We re-
mark that the Euler-Lagrange equation for (2) also has a
form similar to (4).

Due to the term 1/|Vu|, (4) is a degenerate nonlinear
second order diffusion equation. The degeneracy can be
removed by adding a positive parameter 3 to |Vul; see
[27]. More precisely, if we let

1

Kp(u) = 7/|VU|T5’

Lyv==V"-(kg(u)Vv) (5)

and
Auv = (H*H + aLy)v,

then (4) becomes the following non-degenerate system

Awu=H"z, (z,y) €Q, (6)
with % =0, (x,y) € oN.

A recent survey of related PDE approach to image analysis
can be found in [2].



In [27], Vogel introduced the “lagged diffusivity fixed
point iteration” , which we denote by FP, to solve the sys-
tem (6). If Ay, H and L, denote respectively the dis-
cretization matrices of A,», H and L, then the FP it-
eration will produce a sequence of discrete approximations
{u*} to the solution u and can be expressed as

Apurtt = (H*H+aLyg)uft = H*z, k=0,1,.... (7)

Note that obtaining u**! from the solution of u* requires
solving a linear system with coefficient matrix H*H+aL,x.

For the image restoration problem in (1), H corresponds
to a discretization of the convolution operator, and often
H will be a Toeplitz matrix. Thus, the coefficient matrix
in (7) corresponds to a sum of a convolution operator and
an elliptic operator. We emphasize that it is not easy to
devise fast iterative algorithms to solve this linear system.
For example, the technique of applying multigrid method
to solve such linear system is not yet well developed, see
[9]. Vogel and Oman [28] has recently proposed using a
“product” preconditioner for (7) which allows the deblur-
ring part H*H and the PDE part L, to be preconditioned
separately. An alternative approach to solving the gradient
equation (7) is to directly solve the minimization problem
(3) by non-smooth optimization techniques; see for exam-
ple [21], [22].

In this work, we apply the preconditioned conjugate gra-
dient (PCG) method to solve (7) and we concentrate on
finding a good preconditioner for (7). Given a matrix A,
there are two criteria for choosing a preconditioner for A;
see [18]. First, a preconditioner should be a “good” ap-
proximation to A. Secondly, it must be easily invertible.
Recall that A, corresponds to a sum of a convolution op-
erator and an elliptic operator. For matrices arising from
elliptic boundary value problem, a “good” preconditioner
must retain the boundary condition of the given operator
[23]. Based on this idea, optimal sine transform precon-
ditioners were constructed [15] for elliptic problems with
Dirichlet boundary condition. If the boundary is rectangu-
lar, it was proved [15], [29] that the convergence rate of the
PCG method with this preconditioner is independent of
the grid size. In our present problem, Neumann boundary
condition is imposed, see (4). Since the discrete Laplacian
on a unit square with Neumann boundary conditions can
be diagonalized by the discrete cosine transform matrix,
this motivates us to use the optimal cosine transform ap-
proximation [11] to L, as a preconditioner for the elliptic
part in (7).

In addition, R. Chan, Ng and Wong [14] applied the sine
transform approximation to construct preconditioners for
Toeplitz systems. It gives rise to fast convergence of the
PCG method. It has been shown in [20] that the PCG
method with the optimal cosine transform approximation
can also produce the same good convergence result.

By combining the results mentioned in the previous two
paragraphs, we here propose a preconditioner for the sys-
tem (7) by taking the sum of the cosine transform approx-
imations to the matrices H*H and L.~ separately. The
resulting approximation can still be diagonalized by the

discrete cosine transform matrix and therefore easily in-
vertible. This preconditioner was originally proposed in
[10] where preliminary results and numerical experiments
were given. In this paper, we will give a detailed discussion
and analysis of the preconditioner, including a comparison
of our preconditioner with the product preconditioner pro-
posed by Vogel and Oman [28].

The outline of the paper is as follows. In the next section,
we will define and construct the optimal cosine transform
approximation for a general matrix. In Section III, we will
use the approximation to construct a preconditioner for
the system (7). In Section IV, we will introduce Vogel and
Oman’s product preconditioner and some of its possible
variants. In the final section, numerical performance of the
preconditioner will be presented.

II. OrpTIMAL DISCRETE COSINE TRANSFORM
PRECONDITIONER

The concept of optimal transform approximation was
first introduced by T. Chan [16]. Since preconditioners
can be viewed as approximations to the given matrix A,
it is reasonable to consider preconditioners which minimize
|| Br, — Ay|| over all B,, belonging to some class of matrices
and for some matrix norm ||-||. T. Chan [16] proposed op-
timal circulant preconditioner that is the minimizer of the
Frobenius norm ||B,, — A,||r over the class of all circulant
matrices B,,. These preconditioners have been proved to be
very efficient preconditioners for solving Toeplitz systems
with the PCG method; see [5].

Analogously, R. Chan, Ng and Wong [14] defined the op-
timal sine transform preconditioner to be the minimizer of
||Bn — Anl|lF over all matrices B;,, which can be diagonal-
ized by the discrete sine transform. They proved that for
a large class of Toeplitz system, the PCG method with the
sine transform preconditioner converges at the same rate
as the optimal circulant one. Following the same approach,
we will construct in Section IT-A the optimal cosine trans-
form preconditioner for general matrices. We remark that
although the derivation is almost the same as that of the
sine transform preconditioner, we present it here for the
seek of charity. An alternative derivation using displace-
ment structure can be found in [20]. The preconditioner
will be applied to precondition both H*H and L, in (7)
separately. For a survey on fast transform type precondi-
tioners, we refer the reader to [8].

A. Construction of One-dimensional Preconditioner

Let us denote C,, to be the n-by-n discrete cosine trans-
form matrix. If §;; is the Kronecker delta, then the (i, j)th
entry of C,, is given by

2—0p <(2i ~1)(j-Dr

> , 1<i4,5<n,

n 2n

see Sorensen and Burrus [26, p.557]. We note that the
C,’s are orthogonal, i.e. C,C! = I,. Also, for any n-
vector v, the matrices-vector multiplication C,v and Ctv
can be computed in O(nlogn) real operations; see [30].



A, cost of constructing c¢(A,,)
general O(n?)
Toeplitz O(n)
banded O((by + by)n)
TABLE 1

CosT OF CONSTRUCTING ¢(Ap).

Let B, xn be the vector space containing all matrices that
can be diagonalized by C,,. More precisely,

{ChA,CL | Ay is an n—by—n
real diagonal matrix}.

ann =

For an n-by-n matrix A,, we choose our preconditioner
¢(A,,) to be the minimizer of ||B,, — A,||r in the Frobenius
norm in the space By x,. Following the terminology used
in T. Chan, the approximation is called the optimal cosine
transform preconditioner for A,, and denoted by c(A4,). It
can be shown that ¢(A,) is linear and preserves positive
definiteness; see [19].

We will show in Appendix A that ¢(4,) can be ob-
tained optimally in O(n?) operations for general matrices.
The cost can be reduced to O(n) operations when A, is a
banded matrix or a Toeplitz matrix. This is the same cost
as that for constructing the optimal circulant precondition-
ers. We recall that in our case, L+ and H are banded ma-
trix and Toeplitz matrix respectively. We summarize the
construction cost of ¢(4,) in Table I. In Table I, we denote
b; and b, the lower and upper band width of A,,.

B. Construction of Two-dimensional Preconditioner

For 2D n x n images, the matrices H*H and L, in (7)
are block matrices of the following form:

Al,l A1,2 Al,n

A2,1 A2,2 A2,n
Ann = . . .

An,l An,2 An,n

Here A; ; are square matrices of order n.

n [17], T. Chan and Olkin proposed the Level-1 and
Level-2 circulant preconditioners for such block matrices.
Following their approach, we define the Level-1 and Level-2
cosine transform preconditioners for A,,. The idea of the
Level-1 and Level-2 preconditioners is to approximate the
matrix A,, in one direction and two directions respectively.
Specifically, the Level-1 preconditioner ¢ (A,;,) is defined

by
)
c1(Ann) = : .
(An1) (Anz) o c(Ann)

To define the Level-2 cosine transform preconditioner, let
us first give some notations. For any n2-by-n? block matrix

Apn, we denote (Apy)ijikg to be the (i,7)th entry of the
(k, l)th block of A,,,,. Let R be a permutation matrix which
simply reorders A,,, in another coordinate direction. More
precisely, R satisfies
(RtAnnR)i,j;k,l = (Ann)k,l;i,j; 1 S i;j S n, 1 S k?,l S n.
Then the Level-2 cosine transform preconditioner ca( Ay, )
for A, is defined by

Cy (Ann) = RCl (thl (Ann)R)Rt .

It is easy to show that the preconditioner co(A4,y,) can
be diagonalized by C,, ® C,,:

ca(Ann) = (C,,®C,) diag((Cr,@C,,) Apn(C,@Cy)) (Cr,@C,,)".

Hence, c2(A,,) can be inverted easily. Note that in the
construction of our preconditioner, we will use the Level-
2 approximation instead of the Level-1. It is because the
Level-1 preconditioner has a relatively expensive initializa-
tion cost for block Toeplitz matrices with Toeplitz block,
see [7].

For elliptic problem, it can be proved that the Level-2 op-
timal cosine transform preconditioner ca(Ay,) is a “good”
preconditioner.

Theorem 1: Let A,, be the 5-point centered discretiza-
tion matrix of

—(a(z,y)uz)z — (b(@,y)uy)y +wu = f(z,y) on [0,1]?
with homogeneous Neumann boundary condition. Assume
w > 0 and the mesh is uniform with size 1/n. Then we
have

R(ea(Ann) T Apn) < (S0
Cmin
where 0 < cmin < a(z,9),b(z,y) < Cmax-
Proof: We refer the reader to Appendix B. |

Optimal cosine transform preconditioner can also be
shown to be good for solving Toeplitz system. For one-
dimensional cases, i.e. point-Toeplitz matrix systems, the
convergence proof has been established in [20]. For 2-
dimensional cases, we can prove the following result.

Theorem 2: Let A,, be a block Toeplitz matrix with
Toeplitz blocks. Assume the underlying generating se-
quence a,(j ) of A, is absolutely summable, i.e.,

o0 o0 .
ZZ|G,I(CJ)| <G <

7=0 k=0
and

a,(f) = (Ann)(G—1)n+k1 for 1<j,k<n.

If Amin(Ann) > 6 > 0 where ¢ is independence on n, then
for all € > 0, there exists N > 0 such that for all n > N, at
most O(n) of the eigenvalue values of the preconditioned
matrix ¢; ' (Apn)An, have absolute values larger than e.
Thus the PCG method converges in at most O(n) steps.



Proof: The proof is similar to that of Corollary 1 in
[7] and will be omitted. ]
We remark that the numerical results in [7] for the Level-2
optimal circulant preconditioner is better than the theoret-
ical result and the numbers of iterations do not grow with
n. With Theorems 1 and 2, it seems reasonable to use the
Level-2 cosine approximation to construct preconditioners
for the linear system (7).

III. CosINE TRANSFORM PRECONDITIONER FOR TV
DENOISING AND DEBLURRING

A straightforward preconditioner for A« is
co(Ayr) =co(H*H + aLyx) = co(H*H) + aco(Lyx).

However, computing co(H*H) according to the formula in
Corollary 1 in Appendix A, requires computing all the en-
tries of H*H and is costly. Another way is to approximate
co(H*H) by co(H)*c2(H). More precisely, a preconditioner
for Ay in (7) can be defined as

M =co(H)*ca(H) + aca(Lyx). (8)

One problem with the preconditioner M is that it does
not capture the possibly large variation in the coefficient
of the elliptic operator in (7) caused by the vanishing of
|Vu| in (4). To cure this problem, we apply the technique
of diagonal scaling. More precisely, if we denote p(-) to be
the spectral radius of a matrix and we define

A=p(H*"H)I + « diag(Lyx)
then we consider solving the equivalent system
Auk ﬂk+1 = INJ*Z

where A, = H*H + aLy, H = HA Y2, L, =
A=Y2L A=Y/? and 4% = A'/2uF. In summary, the Level-
2 cosine preconditioner with diagonal scaling is given by

Mp = H*H + acy (L) (9)

where H = ¢ (H)cy(A™"/?). We note further that if Ay, A,
and Az are respectively the eigenvalue matrices of ¢y (H),
ca(A™'/?) and ¢y(L,«), then the preconditioner can be ex-
pressed as

Mp = (Cp © Cp) (AAIAZAs + ads) (Cp @ Cy)t.

Hence, the preconditioner can be easily invertible.

Finally, we comment on the cost of constructing Mp and
of each PCG iteration. We note that L« is a sparse matrix
with only five nonzero bands. Also since H corresponds to
a discretization of the convolution operator (1), H often
is a block Toeplitz matrix with Toeplitz blocks. By using
Table I, the construction cost of c2(H) and co(L,x) can be
shown to be O(n?logn) operations; see [7], [17]. The cost
of one PCG iteration is bounded by the cost of the matrix
vector multiplication A v = A~Y2(H*H + aLu)A~%y
and the cost of solving the system Mpy = b. The matrix

vector multiplication A~'/2y can be computed in O(n?)
operations because A~'/? is a diagonal matrix. Since L
is banded, L,xv can also be done in O(n?) operations.
For H being a block Toeplitz matrix with Toeplitz blocks,
Hv can be calculated in O(n?logn) operations; see [7].
Therefore, the matrix vector multiplication can be done
in O(n?logn) operations. The system Mpy = b can be
solved in O(n?logn) operations by exploiting the Fast Co-
sine Transform. Therefore, the total cost of each PCG
iteration is bounded by of O(n?logn).

IV. THE PRODUCT PRECONDITIONER OF VOGEL AND
OMAN

In this section, we introduce the product preconditioner
proposed in Vogel and Oman in [28] and discuss some of
its possible variants. The product preconditioner for the
system (7) is defined as

.1
P = ;(H*H + D) 2 (aLyx +~yI)(H*H +~I)Y?. (10)

Here, 7 is a parameter and will be chosen to be /& as
suggested in [28]. Note that computing P~'v in each PCG
iteration requires solving a convolution problem (H*H +
yI)~'/%y and an elliptic problem (aL,« +~I) ‘v which are
not straightforward. To make the product preconditioner
P more practical, Vogel and Oman assumed that the blur-
ring function h is periodic and hence (H*H + vI)~'/%v
can be computed by the FFT. Moreover, when solving
(aLyx+~vI)"tv, it requires an inner PCG iteration in which
a multigrid preconditioner is used, see [28]. More precisely,
there are three nested iterations in their method: the out-
ermost FP iterations, the inner PCG iterations with pre-
conditioner P and the innermost PCG iterations to invert
(aLyv +~I).

Since we do not make any assumptions on h and it would
not be fair to compare only the inner PCG iteration num-
bers and ignore the work required in the innermost PCG
iterations (i.e. the work on solving (aL,x + vI) v which
is substantial), this makes the comparison between the two
preconditioners difficult. In the experiments below, we will
instead use the following preconditioner for comparison:

P= %(CQ(H)*CQ(H) + D)2

(11)

(aca(Lyr) + 1) - (e2(H)*eo(H) + D)2,
where v is again set to \/a. This preconditioner is ob-
tained by taking cosine transform approximations of the
three factors in P. The resulting preconditioner P can be
diagonalized by the 2-D cosine transform and hence solving
P~y at each PCG step requires just about the same cost
as our preconditioner M. Moreover, there is no need for
the innermost PCG iterations.

We note that there is a connection between the product
preconditioner P and the preconditioner M given in (8).
First, note that the product preconditioner P in (11) can
be viewed as an operator-splitted approximation of our pre-
conditioner M in (8). Since the three factors in the right



hand side of (11) are commutative, we have

P—M= %CQ(H)*CQ(H)@(LM) + 1.
The right hand side matrix will be called the splitting error
of P. If we again take v = \/a, the splitting error becomes

Val(ea(H) es(H)es (Lys) +1).

Now, let us investigate the contribution from this split-
ting operator by using Fourier analysis. Denote H(f) and
L(f) to be the spectrum of the blurring function h and the
differential operator L£,. respectively. Then the splitting
error in (12) will have spectrum

Va((H(f)PL(f) +1),

where f denotes the frequency variable.

In general, the second order differential operator L, has
L(f) proportional to f2. In fact L.k, being a high pass
filter, has large eigenvalues corresponding to the large fre-
quency modes and small eigenvalues corresponding to the
low frequency modes (c.f. the case when L, is the Lapla-
cian operator). On the other hand, the blurring operator H
being a low pass filter has the large eigenvalues correspond-
ing to the low frequency modes and the small eigenvalues
corresponding to the high frequency modes. Hence, we ex-
pect that the large eigenvalues of the differential operator
will be damped by the small eigenvalues of the blurring
operator when they are multiplied together as in (13). In
particular, we expect co(H)*co(H)ca(Lyx) to be a bounded
operator (Note that the cosine transform approximation
¢a(+) only changes the boundary condition of the operators,
and in general will not change the ordering of the eigenval-
ues). Thus, for small «, the splitting error in (12) will be
small and hence the performance of P and M should be
about the same.

However, since L(f) is proportional to f2, when the spec-
trum of the blurring function H (f) decays slowly, L(f) may
not be sufficiently damped. As a result, the splitting error
in (12) will be large. Therefore, in this case, we expect
M to outperform P for a’s that are not very small. In
particular, let us consider the limiting case, the denoising
problem with H(f) =1 (i.e. h(z,y) is the delta function).
In this case,

(12)

(13)

M = acy (L) + 1,

P = HTV(O@(LM) +9I) = (1 + Vo) (Vaea(Lyr) + 1),

and hence
P =M = Va(es(Ly) + 1),

which is not small. We remark that even in this denoising
case, P # M. The reason is due to the choice of v = /a.
Of course, when v = 1, the performance of the precondi-
tioners P and M are exactly the same (since P = 2M).
However, v = y/a is the best choice over a wide range of
problems, see [28].

In conclusion, our preconditioner M is good and robust
for solving deblurring problems and we expect it to out-
perform the product preconditioner P especially when the

splitting error in (12) is large. That is the case when h
is not a very significant blur or when h tends to the delta
function (i.e., H tends to I). This will be demonstrated in
Section V-B when we compare the performance of P and
M for various blurring functions h and a’s.

As in the case for the preconditioner M, we can apply
a diagonal scaling to the matrix P to capture the possible
large variation in the coefficient matrix. One possible way
is to define it analogous to (9), i.e.

L i o
Pp = ;(H*H+7I)1/2(ac2(Luk) + D) (H*H +~41)"?.

Similarly, we have
PD — MD = gI;[*I;[CZ(IN/u") +7I7
Y

which will be called the splitting error of Pp.

V. NUMERICAL RESULTS

In this section, we compare the numerical performance
of different preconditioners in solving the linear system (7)
for different images.

A. Test Problem 1

In this test, the original image is given by

u(z,y) = X[1/5,2/5]x[1/4,3/4] t X[3/5,4/5]x[1/4,3/4]

where (z,y) € [0,1] x[0,1] and X1, denotes the character-
istics function for the interval [a,b]. The blurring function
h in (1) is chosen to be a truncated Gaussian, given by

_ [ e @ g,y < 1/4

Tw,y) = { 0 otherwise - (19
Here 7 is a parameter which controls the severity of the
blurring. More precisely, the smaller 7 is, the more signif-
icant the blurring will be. In this experiment, we choose
7 = 200 so that h is a moderate blurring function. The
noise function n has normal distribution and is scaled such
that the noise-to-signal ratio (NSR), ||n||r2/||Hul|r2, is 0.5.
The true image and the observed image are shown in Figure
3.

We will perform the FP iterations, starting with u® = z,
until the gradient g in (4) satisfies ||g(u®)||l2/ |lg(u®)|l2 <
1073, We will apply the CG method to solve the linear
system (7) and the initial guess for the CG method in the
kth FP iteration is chosen to be the (k — 1)th FP iter-
ate. The iteration is stopped when the residual vector ry
of the linear system (7) at the kth CG iteration satisfies
lIrkll2/]|roll2 < 1073, In our numerical experiment, we will
focus on the performance of different choices of precondi-
tioners for various of parameters n, o and 3. Here n is the
number of pixels in one direction, i.e. the matrix A« is of
size n2-by-n2.

Tables II and III show the number of iterations required
for convergence of the FP iteration and the CG iteration for
different choices of preconditioners and parameters. Note



that the CG iteration numbers shown in Tables IT and III
are the average number of CG iterations per FP step. The
symbol “#” denotes the number of iterations for FP. The
notations I, A denote respectively no preconditioner and
the diagonal scaling preconditioner. Some of the data are
plotted in Figures 1 and 2.

We observe from Figure 1 that the Mp and Pp precon-
ditioners require significantly fewer iterations than other
preconditioners for all values of 8 and a. Moreover, we can
observe that the smaller 3 is, the more ill-conditioned the
system is.

From Figure 2, we observe that the number of iterations
corresponding to I grows like O(n%?), which from standard
convergence theory for CG implies that r(A,x) ~ O(n'?).
If the preconditioner Mp or Pp is used, the number of iter-
ations grows like O(n®??) which implies that (M ;" Ax)
~ O(n**). However, the preconditioners A, M and P
reduce the growth of the number of iterations only to
O(n%87), O(n°®®) and O(n®5%) respectively. Therefore,
Mp and Pp as preconditioners are much more effective
than other three preconditioners.

From Table III, we observe that the performance of the
preconditioners M and P (resp. Mp and Pp) are almost
the same. This is in agreement with our observation in
Section IV that for a smooth kernal function h (as in our
case, the Gaussian function in (14)), the splitting error
P — M will be small for small « (e.g. < 10~2) and hence
we expect the performance of the preconditioners M and
P to be close.

In Figure 4, we show the recovered images for various
(. The smaller § is, the closer the recovered image is to
the true image. Figure 5 shows how the recovered images
depend on the value of a. In this case, the FP method
produces the best image when o = 1073.

B. Test Problem 2

We will now perform two experiments to illustrate that
there are situations where our preconditioner M is better
and more robust than the product preconditioner P. In
this test problem, we will basically repeat the experiment
in Section V-A with two different type of blurring functions.

In the first experiment, we will choose the Gaussian blur-
ring function in (14) with several parameters 7, see Figure
6. We remark that the larger the 7 is, the less significant
is the blurring (see Figure 7), and we expect that our pre-
conditioner to give a better performance than the product
preconditioner P. The parameter n is fixed to 63, 8 to 0.1
and NSR=0.5. We report the number of PCG iterations
required for various preconditioners and «’s in Table IV.

We observe from Table IV that when 7 = 200, the per-
formance of M and P are almost identical, as expected.
When 7 is increased to 2000, the number of PCG itera-
tions required by P are much more than that by M for
a € [1072,107*]. As we mentioned in Section IV, when
the blurring is not very significant (i.e., when h is close
to the delta function), the splitting error in (12) becomes
large unless « is very small (e.g. 107° when 7 = 2000). We
remark that the performance of Mp and Pp is still close

n=15
8 # I A M P
1073 [ 93 44 26 43 52 24 27
1072 |70 27 16 25 32 15 18
10-1 149 16 11 15 20 10 12
100 |27 10 8 9 13 7 10

n =31

8 # I A M P Mp Pp
112 108 42 72 77 23 21
101 62 26 41 44 16 14
10071 20 36 18 24 25 11 10
100 52 21 13 13 14 8 8

n =63
16} # I A M P Mp Pp
1073 [ 266 197 59 112 114 25 24
10-2 | 211 113 42 64 65 18 16
1071 | 164 64 29 35 36 13 11
100 | 115 37 21 18 18 10 8
n =127
B # I A M P Mp Pp
1073 | 420 >400 99 169 169 32 29
10~2 | 340 213 67 93 94 22 19
101 | 257 118 47 49 50 15 13
100 | 177 69 34 25 25 9 8
TABLE II
a=10"3

soid=M_D, o=P  dash=P_D

log(no. of cg iterations)
/
.
B
O XJ
5
o x

Fig. 1. Observation (top figure): the smaller the § is, the more
ill-condition of A . Here n = 127 and a = 10~3. Observation
(bottom figure): For various «, preconditioners Mp and Pp re-
quires significantly less PCG iterations compared to the others
preconditioners. Here n = 127 and 8 = 0.1.
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solid=M_D,  o=P

dash=P_D

) . n=15
. a« |# I AN M P Mp Pp
' ’ ’ 10213 25 10 14 20 10 10
éi . ; ) 1072 | 49 16 11 15 20 10 12
a 10432 37 36 21 22 19 22
107 | 20 123 125 15 17 15 17
4 I w i ) 3 22 n =31
a |# I A M P M, P
voh xcoet oM, sldemD.  ocp  dashepD 1072 | 76 52 31 20 25 13 12
’ ) 1073 |8 36 18 24 25 11 10
2 107% ] 92 48 36 35 40 27 30
+ 10594 183 183 78 79 74 76
: n =63
' : « # I A M P Mp Pp
1. : 1072 [ 137 98 48 29 30 16 17
wo i ’ 1073164 64 29 35 36 13 11
] < _— - 10=% | 104 64 38 35 36 21 20
T e 1075 | 214 115 102 72 73 60 60
Fig. 2. We plot the no. of PCG iterations versus n in log scale for n =127
various preconditioners and 8. Here a = 1073 is fixed. Top :
B = 0.01, slopes of I, A, M, P, Mp, Pp are 0.88, 0.67, 0.58, o # I A M P Mp Pp
0.54, 0.22, 0.22 respectively. Bottom: # = 0.1, slopes of I, A, 10-2 | 211 189 73 37 37 17 22
M, P, MD, Pp are 0..84.1, Q.GS, 0.51, 0.49, 0.22, 0..19 respectively. 1073 | 257 118 47 49 50 15 13
e o o P s et ot s w0 36 50 0 a0 17
have the smallest slope and therefore PCG has faster convergence 107° | 136 107 75 54 55 35 33
rate. TABLE 111
3=0.1

Fig. 3. True image (left) and the blurred noisy image, NSR=0.5
(right).
Fig. 5. Deblurred images for various a: 10~% (top left), 10~* (top
right), 1072 (bottom left), 102 (bottom right). In this exper-
iment, 8 = 0.1, n = 31. Observation: when « is too small (e.g
T e Tl Sl T e e 10~4), the recovered images do not get enough regularization
and become irregular. When « is large (e.g. 1072), edges in the
Fig. 4. Deblurred images for various 3: 0.01 (left top), 0.1 (right recovered images seem to be smooth out. In this case, the FP

top), 1 (bottom left), 10 (bottom right). In this experiment, iteration produces the best image when a = 1073.
a = 1073, n = 31. Observation: the smaller the 8 is, the shaper

the recovered image is .



T = 200 7=0.1
. EES S
10°3 | 164 35 36 13 11 1070l 2829 16 17
D 1073 | 146 36 36 13 12
10 104 35 36 21 20 10-* | 90 38 38 924 923
-5
10 214 72 73 60 60 1075 ] 90 118 110 100 99
MT ZPZOO?W . =005
10012 1?1 31 42 1§) 1§ = v M L Ao Ib
. 10-2[126 32 35 18 19
10 61 31 47 17 14 10°3| 8 35 37 14 12
107*] 136 46 55 29 30 10741101 56 66 34 34
—5
10 82 96 92 8 80 1075 | 44 78 80 69 72
T = 20000 T =0.01
T B L o |# M P Mp P
- 10231 26 34 19 19
10 19 14 36 9 12 10331 18 35 13 15
—4
10 6 5 22 4 10 04|10 7 23 5 17
-5
10 3 2 13 2 6 0-°|5 3 14 3 13
TABLE IV

TABLE V
OUT OF FOCUS BLUR, n = 63 AND 8 = 0.1

h(z, y) = 1/(71-7-2) 24y’ <r Fig. 7. Blurred images when 7 = 200, 2000, 20000 (left to right).
0 elsewhere '

GAUSSIAN BLUR, n = 63 AND § = 0.1

in this case. When we further increase 7 to 20000, both
preconditioners M and Mp outperform P and Pp for a
wide range of a (e.g. [1072,1079]).

In the second experiment, we choose the out of focus
blurring functions. More precisely,

In this case, the smaller 7 is, the less significant is the
blurring, see Figures 9 and 10. From Table V, we can make
the same observation as for the Gaussian blurring function.
Namely, when the blurring is very significant (e.g. when
7 = 0.1), the performance of M and P are almost the same.
However when the sev‘e%"lty of blur decreases (e.g. 7 =0.05 Fig. 8. Blurred and noisy images (observed images) when 7 =
or 0.01), our preconditioners M and Mp perform better. 200, 2000, 20000 (left to right) .

In conclusion, the cosine transform preconditioners M and

Mp are more robust than the product preconditioners P
Fig. 9. Out of focus PSF’s when 7 = 0.1,0.05,0.01 (left to right).

and Pp over a wide range of blurring functions.

Fig. 10. Blurred images when 7 = 0.1,0.05,0.01 (left to right).

Fig. 6. Gaussian PSF’s when 7 = 200, 2000, 20000 (left to right).

C. Test Problem 3

We consider a 2D image restoration problem arising in
ground-based atmospheric imaging. In this test, we will
compare the quality of the recovered images for several



Fig. 11.

Observed images when 7 = 0.1,0.05,0.01 (left to right).

numbers of FP iterations. The problem consists of a 256-
by-256 image of an ocean reconnaissance satellite observed
by a simulated ground-based imaging system together with
a 256-by-256 image of a guide star observed under similar
circumstances, see Figure 13. The data are provided by the
Phillips Air Force Laboratory at Kirkland AFB, NM [4].
The imaging system detects the atmospheric distortions
using a natural guide star image, see Figure 12 (right).
A wavefront sensor measures the optical distortions which
can then be digitized into a blurred image of the guide
star pixel. We refer the reader to [13] on how to form the
blurring matrix H. In Figures 14-17, we present restored
images for various values of the parameter a after one, three
and five FP iteration(s). Here, we fix 8 = 0.1 and use the
Mp preconditioner when solving the linear system (7). We
perform the PCG iterations until the relative residual less
than 1072. The value ||g(u)|| after the FP iterations are
presented.

In Table VI, we compare the number of CG iterations
with and without applying our preconditioner Mp for var-
ious of a’s. We note that the preconditioner Mp can signif-
ciantly speed up the convergence rate of the CG method.
We observe from Figures 14-17 that after performing only
3 FP iterations, we obtain very good recovered images and
most of the noise in the observed image are removed. Also,
we note that when « is too large (e.g. a = 10~*), the re-
covered image looks “flat” and lost most of the features in
the original image. When a got smaller (e.g. a = 107°
or 107%), an antenna appears in the recovered images. We
remark that the nonsmoothless of the images appearing in
Figure 17 is due to insufficient regularization.

Fig. 12. Original image (left) and guide star image (right)

Fig. 13. Observed image

Fig. 14. Restored images for various FP iterations. Left: 1st FP with
[lg(w)]] = 1.1 x 10~2. Middle: 3rd FP with ||g(u)|| = 3.3 x 1073,
Right: 5th FP with [|g(u)|| = 1.6 x 10~3. Here a = 10~

Fig. 15. Restored images for various FP iterations. Left: 1st FP w1th
llg(u)]| = 1.4 x 10~3. Middle: 3rd FP with ||g(u)|| = 3.4 x 10~
Right: 5th FP with ||g(u)|| = 1.7 x 10~%. Here o = 1075

Fig. 16. Restored images for various FP iterations. Left: 1st FP with
[lg(u)]| = 2.7 x 10~%. Middle: 3rd FP with ||g(u)|| = 5.4 x 1073.
Right: 5th FP with [|g(u)|| = 2.9 x 1075, Here a = 10~6

Fig. 17. Restored images for various FP iterations: Left: 1st FP with
[lg(u)]] = 1.9 x 10~%. Middle: 3rd FP with ||g(u)|| = 1.1 X 10-5.
Right: 5th FP with ||g(u)|| = 6.8 x 1075, Here a = 10~7

« | 1 MD
10-* [ 176 19
1075 | 152 21
1075 | 105 30
1077 | 154 40
TABLE VI

AVERAGE NUMBER OF PCG ITERATIONS IN THE FIRST FIVE FP
STEPS. THE COLUMN “I” DENOTES NO PRECONDITIONING.



VI. CONCLUSION REMARKS

In this paper, we propose cosine transform precondition-
ers for solving linear systems arising from total variation
image deblurring problem. Our analysis and the numerical
results indicate that the cosine transform preconditioner is
an efficient and robust preconditioner over a wide class of
image deblurring problems.

VII. APPENDIX A

In this appendix, we present how to construct c(A,,) effi-
ciently, as stated in Table I in Section II-A. The approach
is basically the same as that for the sine transform precon-
ditioner, see [14]; we present it here for the sake of clairty.
An alternative derivation can be found in [20]. An essen-
tial idea is to make use of a sparse and structured basis for
Brxn, see [14].

Lemma 1: (Boman and Koltracht [3]) Let Q, k =
1,...,n, be n-by-n matrices with the (¢, j)th entry given
by

1 ifli—jl=k—1,
. )1 ifi+j=2n—-k+2,
Qi) =\ 1 itivj=t,
0 otherwise.

Then {Qr}}_; is a basis for B xn.

In other words, every matrix in B, x, can be expressed
as a linear combination of the n matrices {Qr}7_,. We
display the basis for the case n = 6.

1 0 0 0 0 0 1 1 0 0 0 0
o1 0 0 0 O 1 0 1 0 0 0
Q_ o 0o 1 0 0 O Q_ o1 0 1 0 O
1 — o 0o 0 1 0 o0 ) 2 — o0 0 1 0 1 o0
o 0o 0 0 1 o0 o 0o o0 1 0 1
o 0o 0 0 0 1 o 0o 0 0 1 1
o1 1 0 0 O o 0o 1 1 0 O
1 0 0 1 0 0 o1 0 0 1 o0
Q_ 1 0 0 0 1 0 Q 1 0 0 0 0 1
3 = o 1 0 0 0 1 ) 4 — 1 0 0 0 0 1
o 0o 1 0 0 1 o1 0 0 1 o0
o 0o o0 1 1 o0 o 0o 1 1 0 o0
o 0o o0 1 1 o0 o 0o 0 o0 1 1
o 0o 1 0 0 1 o 0o o0 1 0 1
Q o1 0 0 0 1 Q o 0o 1 0 1 o0
5 — 1 0 0 0 1 0 ) 6 — o1 0 1 0 0
1 0 0 1 0 0 1 0 1 0 0 0
o1 1 0 0 O 1 1 0 0 0 0

In general, each @)} has at most 2n non-zero entries.

In order to give a precise description of B,,«,, we intro-
duce the following notations.

Definition 1: Let w = (wy,...,w,)" be an n-vector. De-
fine the shift of w as o(w) = (wz,ws, ..., wy,0)!. Define
Tn(w) to be the n-by-n symmetric Toeplitz matrix with w
as the first column and H,(w) to be the n-by-n Hankel
matrix with w as the first column and (wy, ..., w;)! as the
last column.

Lemma 2: Buxn
(wy,...,w,)" € R"}.

Proof:  From (15), we observe that every Q; (i =
1,---,6) is a sum of a Toeplitz matrix and a Hankel matrix.
In fact, by using Lemma 1, it is not difficult to prove that

= {Ta(w) + Hnlo(w)) =

| w

Qi = Tu(ei) + Hnlo(ei)).

)

Here e; denotes the ith unit vector in IR". Note that 7,(-)
and H,(o(-)) are linear operators. Therefore, an n-by-
n matrix B,, belongs to B, x, if and only if there exist
wi,...,w, € IR such that

B, = ijQj ij[%(ej) + Hn(o(e5))]

%(Z wje;) + ’Hn(a(z wje;j))
Tn(w) + Hp(o(w))

with w = 2?21 w;e;. ]
Now computing the optimal cosine transform approxi-
mation can be reformulated as solving the n-dimensional
minimization problem,
min 170 (w) + Hn(o(w)) — AnF.
w=(w1,...,wn ) ER"™
The minimum can be calculated by setting

0
6wi

[ Ta(w) + Hn(o(w)) — Al =0,

for i = 1,...,n. For the sake of presentation, let us il-
lustrate the procedure of computing the minimum by con-
sidering the simple case n = 6. By the definition of the
Frobenius norm, we express || T, (w) + H, (o (w)) — A, ||% in
terms of the matrix entries and then carry out the partial
derivative with respect to w;. Then, we see that w satisfies
the following linear system

6 2 0 2 0 2
212 4 0 4 0
0 4 12 4 0 4
2 0 4 12 4 o |Y
0 4 0 4 12 4
2 0 4 0 4 12

ai1 + a2z + ass
Q12 + a23 + az4 + a45 + as6 + G21
Q13 + a24 + azs + a46 + 31 + Q42
a14 + azs + ase + aq1 + as2 + ass
ais5 + aze + as1 + a2 + G14 + 23
aig + ag1 + ais + a4 + az3 + a4z

+a44 + as5 + Gge

+asz + aq3 + as4 + ags + a11 + aee
+as3 + aga + a12 + as1 + ase + aes
+ai3 + a2 + asy + a46 + as5 + Q4
+asz + aq1 + asg + Qa5 + as4 + a3
+as1 + az6 + a3s + 44 + a53 + Q62

. (16)

We observe that the kth entry of the right hand side
vector in (16) is obtained by adding those a;; for which the
(4, j)th position of @y is nonzero. For general n, let r,, be
an n-vector with the k-th component given by

E @j j-

(Qr)i,; 70

[rnlk = (17)



A, cost of constructing r,,
general O(n?)
Toeplitz O(n)
banded O((by + by)n)

TABLE VII

CoST OF CONSTRUCTING 7, .

If A,, has no special structure, then clearly by (17), r,, can
be computed in O(n?) operations because each @; has only
O(n) non-zero entries. If A, = [a;;] is a Toeplitz matrix
(correspond to H in (7)), then the sum in (17) can be com-
puted without explicit addition because summing a; ; for
constant value of |j — i| can be reduced to a scalar multi-
plication. Similarly, for banded matrix A, with lower and
upper band width b; and b,, the cost of forming r, can be
reduced to O((b; + b,)n). We summarize the construction
cost of r, in Table VII.

We now go back to the solution of the linear system
(16). We first reorder the unknowns w; of w in such a way
that the odd index entries and even index entries appear
respectively in the upper half and lower half of the resulting
vector. For simplicity, this leads to the following definition.

Definition 2: Let R, be the n-by-n permutation matrix
with the (4, 7)th entry given by

1 if1<i<[2]andj=2 -1,
[Rplij =4« 1 if [§] <i<mnandj=2i-2[F],
0 otherwise.
After permutation, (16) becomes a block system,

= RGT‘G.

NDNDDNDOOD
= = s O N O
—
= s OO
—

O O N = =N
O N O = =N
N OO RN
S

[\V]

The following theorem and corollary prove that in gen-
eral if r,, is known in advance, then the block system can
be solved in O(n) operations.

Theorem 3: Let A, = [a;;] be an n-by-n matrix and
¢(A;,) be the minimizer of || B,, — A, || over all By, € Byxp-
Denote U; ; to be the i-by-j matrix with all its entries being
one and if i is equal to j, then the matrix is just denoted by
U;. Let e; to be the first unit vector of length [3]. Then

c(An) = Ta(w) + Hn(o(w))
with

2n Un —l—nln +n61€1
—2nUn

—2nU%
2(n — 1)U% + TLI%

> R,rn,

(18)

if n is even; and

t
2n2R
2(n— DUnst +nlup + neiel —2nUns1 na
—2nUn-1 nt1 2nUn—1 +1Ina
2 2 2 2

) R.ry,
if n is odd.

Proof: Here we just give the proof for the case n is
even. The proof for odd n is similar. To minimize ||B,, —
A% over Bpxn, we set

0
ow;

(4n) —

fore=1,...,n.

We obtain a linear system that has the same structure as
that in (16). Permutating the system by R,, yields

nV
2U= Vvt

Here V' is an 3-by-§ matrix given by

2VU=

2nI§ >R w=R,r,.

V=2 - erel.

By direct verification,

nV [2nUy +nly +neel] +2VUs [-2nUs] = 2n°I4,
20 V'] [-2nU3] + 201y [2(n — 1)Uz +nly] = 2n°I;,
nV [—QTLU%] + QVU% [Q(n — I)U% + TLI%] =0,

and
QU%Vt [QnU% +nly + nejel] + 2nly [—QnU%] =0.

Therefore, we get

nV 2VU%
W4Vt 2l
¢
20Uy +nly +neje} —2nUs = I,
—2nUs 2(n — 1)Uz +nlz

Combining together with the fact that R, is orthogonal,
(18) follows. [ ]
Before going on, let us first emphasize the relationship
between the first column of matrices B € B, «x, and their
eigenvalues. For any matrix B € B,x,, we have B =
CnAC! where A is the eigenvalue matrix of B. If D denotes
the diagonal matrix whose diagonal is equal to the first
column of C!, and 1,, denotes the n-vector of all ones, then
we have C!e; = D1,,. Therefore, the relation is given by

D7102B61 = A].n

In particular if the first column of ¢(A,) is known, we can
obtain the eigenvalue matrix A of ¢(A4,) in O(nlogn) oper-
ations. Hence, the matrix-vector multiplication ¢(A,) v
can be computed as v «— Clv, v +— A7 lv, v +— Chv
which costs O(nlogn) operations. The following corollary

gives the explicit formula for the entries of the first column



of ¢(A,). The proof follows directly from the expressions and (w — cmax€)I are positive definite, using (19) and (20)

(18) and therefore we omit it. we have
" Cor‘ol.lar.y 1: %TltBAn bj é|1|n n—by—num;triexgnd c(lf)ln) 1t;e oA, . A + cmax€])T W — Conae€
e minimizer o - over a . Denote =~ —/——F——— m )
n = Snlll OV noooTnn rtes(Apn)r  — 2t (c2(A) + cmin€l )T W — Cmin€

by ¢ the first column of ¢(4,). If s, and s, are defined
respectively to be the sum of the odd and even index entries < max
of r,,, then we have, for n even,

CmaxT (A, + €)W — Cmaxe

)
CminTEH (AL + €l)x” w — Cmin€

Cmax W — Cmax€

1 = max ,
Cmin W — Cmin€
[y = 53@nlra]i +nlrals = 2sc) _ Cmax oo
1 . Cmin
g, = W(n[rn]l +n[rplics — 2se) i =2...,n—1 and
1 t
= — (- — A t A min I — Cmin
], 2n2( 2ns, + (2n — 2)s. + n[ry]n) ta: nnT > min{ t:v (A + cminel)x , w—c e}
xtea(Apn)z zt(c2(A) 4 Cmax€l)T’ W — Cax€
and for n odd, >  min Cmin® (AL + el)r W — Cmine
1 - Cmax T (A, + €)1’ w — Cmaxe
la], = 2—712(2n[rn]1 + n[rale — 2s0) = min cmi, &7 Cmin€
1 - Cmax W — Cmax€
lq, = W(n[rn]l +n[raliv1 — 25,) i=2..,n-1 — ch as € — 0.
max
1
lql, = F(—2nse + (2n — 2)s, + n[ru]n)- Hence, Theorem 1 is proved.
n
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