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Abstract

We study the solution of n-by-n complex Toeplitz systems A,z = b
by the preconditioned conjugate gradient method. The precondi-
tioner Cj, is the circulant matrix that minimizes ||B,, — A,||r over
all circulant matrices B,. We prove that if the generating function
of A, is a 2m-periodic continuous complex-valued function without
any zeros, then the spectrum of the normalized preconditioned ma-
trix (C,;1A,)*(C;; 1 A,) will be clustered around one. Hence we show
that if the condition number of A,, is of O(n®), the conjugate gradi-
ent method, when applied to solving the normalized preconditioned
system, converges in at most O(alogn + 1) steps. Thus the total
complexity of the algorithm is O(anlog®n + nlogn).

Abbreviated Title. Complex Toeplitz Systems.

Key Words. Toeplitz matrix, circulant matrix, preconditioned conjugate
gradient method, generating function.
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1 Introduction.

In this paper, we discuss the solutions of n-by-n complex Toeplitz systems
A,x = b by the preconditioned conjugate gradient method. A matrix A, =
(ajr) is said to be Toeplitz if a;j, = aj_j, i.e. A, is constant along its
diagonals. Toeplitz matrices occur in a variety of applications, especially
in signal processing and control theory. Existing direct methods for dealing
with them include the Levinson-Trench-Zohar O(n?) algorithms [20], and
a variety of O(nlog®n) algorithms such as the one by Ammar and Gragg
[1]. The stability properties of these direct methods for symmetric positive
definite matrices are discussed in Bunch [2].

An n-by-n matrix B, is said to be circulant if it is Toeplitz and its diag-
onals b; satisfy b, ; = b_; for 0 < 7 <n — 1. Circulant matrices can always
be diagonalized by a Fourier matrix, i.e.

B, = F,\,F), (1)
where A,, is diagonal and
1 —2rijk
[Foljk=—=€e"7m , 0<j,k<n,

see Davis [13]. The idea of using the preconditioned conjugate gradient
method with circulant preconditioners B,, for solving positive definite Toeplitz
systems was first proposed by Strang [19]. Instead of solving A,z = b, we
solve the preconditioned system B, 'A,z = B, 'b by the conjugate gradient
method with B,, being a circulant matrix.

The number of operations per iteration in the preconditioned conjugate
gradient method depends mainly on the work of computing the matrix-vector
multiplication B, 'A,y, see for instance Golub and van Loan [14]. For any
vector y, since B, 'y = F*A 1F,y, the product B, 'y can be found effi-
ciently by the Fast Fourier Transform in O(nlogn) operations. Likewise, the
product A,y can also be computed by the Fast Fourier Transform by first
embedding A, into a 2n-by-2n circulant matrix. The multiplication thus
requires O(2nlog(2n)) operations. It follows that the total operations per
iteration is of order O(nlogn).

In order to compete with direct methods, the circulant matrix B,, should
be chosen such that the conjugate gradient method converges sufficiently



fast when applied to solving the preconditioned system B, 'A,z = B, 'b.
It is well-known that the method converges fast if B, 'A, has a clustered
spectrum, i.e. B;'A, is of the form I,, + U, + V;, where I, is the identity
matrix, U, is a matrix of low rank and V,, is a matrix of small /, norm.

Several circulant preconditioners have been proposed and analyzed, see
for instance, Chan and Strang [3], Chan [4, 5], Chan, Jin and Yeung [8], Ku
and Kuo [17], Tyrtyshinkov [21] and Huckle [16]. The convergence rate anal-
ysis of these circulant preconditioners depends on an assumption that the
diagonals of the Toeplitz matrix A, are Fourier coefficients of a given func-
tion called the generating function. One typical convergence result is that if
the generating function is a positive 2m-periodic continuous real-valued func-
tion, then the spectrum of the preconditioned system C'A, is clustered
around one, see Chan and Yeung [9]. Here C,, is the T. Chan [12] circulant
preconditioner which is defined to be the minimizer of || B,, — A4, ||r in Frobe-
nius norm over all circulant matrices B,,. It follows that the preconditioned
conjugate gradient method, when applied to solving the preconditioned sys-
tem, converges superlinearly. Hence the number of iterations required for
convergence is independent of the size of the matrix A,,. In particular, the
system A,z = b can be solved in O(nlogn) operations.

The main aim of this paper is to study the solution of Toeplitz system
Apx = b for A, generated by complez-valued functions. We note that such
A, are in general complex non-Hermitian matrices whereas A, generated
by real-valued functions are Hermitian Toeplitz matrices. Since A, is not
positive-definite, the conjugate gradient method in general does not con-
verge when applied to the system A,r = b. Clearly one can consider the
normalized system A’ A,z = A’b, but the numerical results in §5 show that
the convergence rate is usually poor.

In this paper, we consider applying the conjugate gradient method to the
following normalized preconditioned system

(Co An)*(C An)z = (€1 AR)CL .
We show that if the generating function of A, is a 27-periodic continuous
complex-valued function without any zeros, then the spectrum of the itera-
tion matrix (C,'A4,)*(C'A,) is clustered around one. From that we get a
bound on the convergence rate of the method that depends on the condition
number x(A4,) of A,. More precisely, we show that if k(A,) = O(n®), then



the number of iterations required for convergence is at most O(alogn) where
a > 0. By noting that the number of operations per iteration in the conju-
gate gradient method is of O(nlogn), the total complexity of the algorithm is
therefore of O(nlog®n). In the case when a = 0, i.e. A, is well-conditioned,
the method converges in O(1) steps. Hence the complexity is reduced to
O(nlogn).

We note that symmetric positive definite Toeplitz systems can be solved
in O(n log? n) operations by superfast direct Toeplitz solvers, see Ammar and
Gragg [1] for instance. However, these methods are in general not applicable
to complex non-Hermitian Toeplitz matrices. We remark that Ku and Kuo
[18] have also considered solving non-symmetric Toeplitz matrix systems by
preconditioned conjugate gradient method. In their paper, A, is assumed to
be generated by complex-valued rational function in the Wiener class which
happens to be a sub-class of the class of 2m-periodic continuous functions
considered in this paper.

Numerical examples in §5 will show that the requirements on f, namely
that f has no zeros and k(A,) = O(n®) are indispensible in order to get the
said convergence rate. In particular, this implies that circulant precondition-
ers cannot be used for indefinite Toeplitz systems such as the one generated
by f(0) = sinf. We note however that in Chan [6] and Chan and Tang
[11], we have proved that if f is nonnegative with only countable zeros, (e.g.
f(0) = sin?#), then band-Toeplitz preconditioners can be used to speed up
the convergence rate.

The outline of the paper is as follows. In §2, we obtain bounds for the
spectra of A, and C,, in terms of the generating function of A,. In §3, we
show that the spectrum of (C;'4,)*(C;'A,) is clustered around 1. In §4,
we give the bound for the number of iterations required for convergence.
Finally, numerical examples and concluding remarks are given in §5 and §6
respectively.

2 The Spectra of A, and C,,.

For simplicity, we denote by Cs, the Banach space of all 27-periodic continu-
ous complex-valued functions equipped with the supremum norm ||-||. For



all f € Cop, let
1 [ .
ap = 2—/ f(0)e ™dg, k=0,+1,42,---,
T J_x

be the Fourier coefficients of f. Let A,[f] be the n-by-n complex Toeplitz
matrix with the (j, k)th entry given by a;_5. The function f is called the
generating function of the matrices A, [f].

We will use fr and f; to denote respectively the real and imaginary parts
of the function f. We remark that A,[fr] and A,[f;] are both Hermitian
matrices and

Anlf] = Aulfr] + iAu[f1]. (2)
The following Lemma gives the relation between ||f||, and the ¢ norm of

An[f]-
Lemma 1 Let f € Cyr. Then we have

ANz < 2[[flloey 7 =1,2,---. (3)

Proof: Clearly fr and f; are continuous real-valued functions. Hence we
have

[ An(FR)ll2 < [Ifrlloo and  [[An(fD)l2 < [ f1]]o0, (4)
see for instance, Grenander and Sezgt [15]. Therefore, by (2)

ALl < AR (R 2 + 1A (Dl l2 < [l Rlloo + [ f1llo0 < 2/ fllo0:

Let C,[f] be the n-by-n circulant preconditioner of A,[f] as defined in
T. Chan [12], i.e. C,[f] is the minimizer of ||A,[f] — By||r over all circulant
matrices B,,. We note that the (j, £)th entry of C,[f] is given by the diagonal
cj—¢ Where

0<k
n SE<m (5)

(n—k)ay + kag_y,
Cr — {
Cn-i—k: 0 < _k' < n,

see Chan, Jin and Yeung [7].
We now give a simple formula for the eigenvalues X;(C,[f]) of C,[f] in
terms of the Fejér kernel




The following Lemma was proved in Chan and Yeung [10] for the case where
f is real-valued.

Lemma 2 Let f € Cy,. Then

21y

MELT) =5 [ FOEEE oo = (7 + B)ED), 0<j<n. ()

Proof: By (1), it is clear that

)‘J(Cn[f]) :)‘J(Cn[fR])+Z)‘J(Cn[fI])7 0<j)<n.
Hence by noting that (6) holds for real-valued functions, we have

21j

N(Clf]) = {(fntifr) + B} (2 omj

)= (B

), 0<j<n O

The following Lemma gives the bounds for ||C,[f]||2 and |[|C [ f]]]-
Lemma 3 Let f € Cy,. Then we have

1Cu[fIll2 < 2[[fllo; n=1,2,--. (7)

If moreover f has no zeros, i.e.

|flmin = min_[f(0)] >0,
pe[—m,r]

then for all sufficiently large n, we also have
1 1
NG T2 < 2||};Hoo- (8)

Proof: Since C,[fr] and A,[fr] are Hermitian, we have

|CulRlll2 < [[AnlfR]]2,

see for instance, Chan, Jin and Yeung [7]. Hence by (4) we have

|CulRlll2 < [[AnlfR]ll2 < [IfRllo0-



Similarly, we get

Culfilll2 < AR < {1 f1]]oo-
It follows that

1Cuf1ll2 < [|Calfrlllz + [ICulfillla < [[fRlloo + [ filloo < 2[1f oo
To get the bound for ||C~'[f]||2, we note that by (6), we have

21y

1))
= min|f() + (5 B = D)

Z |f|min_||f*Fn_f||007 0§]<n-

min |4;(Calf)] = min|(f [ Ea)(
21y

Since f * F, tends to f uniformly, see for instance Zygmund [24], we see that
for n sufficiently large,

win A (Cal )] 2 51 i )
o > 1
max (G ) < e = 2l
By (1), we see that
N(CACTD) = INCHDE 0<j <n. (10)

Therefore we have

1C [1lle = max | X;(C, [1C, [f])|1/2§2|l%|loo- -

3 The Spectrum of the Iteration Matrix.

In this section, we show that the spectrum of the normalized preconditioned

matrix
(C AL (CLH A1 AR £])

is clustered around 1. We first show that A, [f] —C,[f] can be written as the
sum of a low rank matrix and a small norm matrix.



Theorem 1 Let f € Cor. Then for all € > 0, there exist N and M > 0,
such that for all n > N,

where
rank U,[f] < 2M (12)
and
IValfll2 < e (13)

Proof: Let f € Cy,. Then for any € > 0, by Weierstrass theorem, there
exists a trigonometric polynomial

M
pM(9)= Z pkez‘kG
k=—M

such that
If = Pullee < €. (14)

For all n > 2M, we write

Cn[f] - An[f] = Cn[f _pM] - An[f _pM] +Cn[pM] _An[pM]

where by (5), we see that W,, and U, are Toeplitz matrices given by

0 %pq %pr 0 0
%91 0 %971 ' %pr '
: . 0
%pM %P—M (16)
0 . . . . .
: ) . < 10 Py
0 .. 0 M prr e L5 0



and

r 0 0 n nMPM
0
n—nMp_M
L "o Y 0

respectively. It is clear from (17) that

rank U, < 2M .

. PM (17)

(18)

We will show that the first three terms in the right hand side of (15) are
matrices of small norm. We note that by (3), (7) and (14),

|Culf —pu] — Aulf —pumlll2 <

NCWLS = padllle + [[Aulf = padlll2

< 2f = pulloo + 2/ = parlloo < de. (19)

[t remains to estimate |[W,||o. For all |[k| < M, we first note that

I :
= |— tye dt
‘277 /_WPM( Je ‘

< g [ttt = sne ma | [ e tar

< f = pulloe + {1 lloo < €+ [[f]o0-

Hence we see from (16) that

||Wn||oo = ||Wn||1

M 2 1
= —lpnl o pa[+ o]
n n n

1 2 M
+=lp[+ =lp2| + -+ —lpou]
n n n

IN

Therefore, we have

Wallz < (WallooWall1) ' <

1

n

MM +1)(e + |[f]]o0) -



Thus if we let

||f||oo

N =max{M(M +1)(1+

W1y 2M}:M(M+1)(1+%

),

then for all n > N, we have ||Wn||2 < e. Combining this estimate with (18)
and (19), we see that for all n > N, C,,[f] — A,[f] is the sum of a matrix of
{5 norm less than 5¢ and a matrix of rank less than 2M. O

We now consider the spectrum of C'[f]A,[f] — I, where I, is the n-by-n
identity matrix. Using (11), (8) and the fact that

CollF1AWf] = In = CUANALLf] = Culf]) = CUAULF + O IV ],
we have the following immediate Corollary.

Corollary 1 Let f € Cor. If f has no zeros, then for all € > 0, there exist
N and M > 0, such that for alln > N,

where rank U, [f] < 2M and ||V, [f]|]2 < e.

We now show that the spectrum of the normalized preconditioned matrix

(Co LA1AGLD)(CL A1 ARLSD)

is clustered around 1.

Theorem 2 Let f € Cor. If f has no zeros, then for all € > 0, there exist N
and M > 0, such that for alln > N, at most M eigenvalues of the matriz

(o 1AL (O A1 ARLA) —
have absolute values larger than €.

Proof: By (20), we have

(Co  LAALLD) (CL [ flAn [ ) i
= (I + Ul 1+ ValfD)" (I + Unlf] 4+ ValF])
L+ Unlf] + Valf]

10



where

Unlf] = Ualf1* (In + Ualf] + Valf]) + (In + Va1 Ualf)

and
Valf] = Valf] + ValfT" + VAl Val £
] <4

Then by Corollary 1, we see that rank U,[f] < 4M and ||V,[f]|]; < 3e. Since
now we have

(O A4 (C AR = In = Ual f] + Valf]

and both U,[f] and V,[f] are Hermitian, by applying Cauchy’s interlace
theorem, see Wilkinson [23], we conclude that at most 4/ eigenvalues of the

matrix
(G AL (C A AL —

have absolute values larger than 3e. O

4 Convergence Rate.

In this section, we analyze the convergence rate of the conjugate gradient
method when applied to solving the normalized preconditioned system

(C AL (O 1A N2 = (CM A AL O b (21)

We show that the method converges in at most O(alogn + 1) steps where
O(n®) is the condition number x(A,[f]) of A,[f]. We begin by deriving a
lower bound for the singular values of C [ f]A,[f]-

Lemma 4 Let f € Cor. If f has no zeros, then there exists a constant ¢ > 0
such that for n sufficiently large, we have

[An[f]]2 > €.
Hence we have
L (A
14 ICAfll < Rl <o nlals) @2

for some constant ¢ > 0.

11



Proof: By (11), we have
ALLf1ARLf] = CRIAIC [ fT+ X + Yo, (23)
where

and
Yy = G VAl + VIO LT + VR [FIValS]-

Let us analyze each term in the right hand side of (23). By (12), we see that
rank X,, < 4M. By (13) and (7), we get

1Vall2 < 2/|CalflIVAlAll2 + ValfIIE < 4ellflloe + €.
Hence for € small enough, we have
1
Walle < 51 2
Finally by (9) and (10),

|f|12nin7 0 S] <n.

NN

A (CLUCIA) =

Thus by applying Cauchy’s interlace theorem to (23), we conclude that at
most 4M eigenvalues of A*[f]A,[f] have values less than

Lo Lo _ 1 2
4|f|min 8|f|min - 8|f|min'
Therefore 1
1 ALFI13 = Amax (A7 [F14n[f]) > glfl?nin,

for n > 4M. Equation (22) now follows directly from (7) and the fact that
R(An) = [ An] 2l A ]2 O

To obtain the number of iterations for convergence, we need the following
Lemma by van der Vorst [22].

12



Lemma 5 Let x be the solution to G*Gx = G*b and x; be the jth iterant of
the ordinary conjugate gradient method applied to this normal equation. If
the eigenvalues {0y} of G*G are such that

0<d << <by <dp1 <. S0y Kby < Opgy1 < oo <y,

then
1G( — ;)]s (b—l)j”" < (5—@) - (@—6)
TR A L O ) — - max .
||G(z — xo)|]2 — b+1 5€[b1,b2) 1!_[1 O kl_[qﬂ O

(24)
Here

1
by \ 2
b= = > 1.
<b1> -

We remark that equation (24) can be derived from the following standard
error estimate of the conjugate gradient method:

NG —a)lla _

1GG—ao)ll, = "B, 00
see Golub and van Loan [14]. Here P; is any jth degree polynomial with
constant term 1. By passing linear polynomials through the outlying eigen-
values 0g, 1 <k <pandn—qg+ 1<k <n,and using a (j —p — ¢)th degree
Chebyshev polynomial to minimize the error in the interval [§,1,d,—,] we
get (24).

Notice that for § € [by, by], we always have

0<5’“_5<1,
<=5 <

Thus (24) can be simplified to

IGG = a)lls _, (b= 1) b (6= 6,
S Oy pu— . . 2
G —ao)ll, =~ 2 \bT1 s, T, (25)

n—q+1<k<n.

In our case, we have G = C, '[f]A,[f]. By Theorem 2, we can choose
by =1—¢€and by =1+¢€. Then p and ¢ are constants that depend only on €
but not on n. By choosing € < 1, we have

b—1 1-V1-¢

b+1 €

< €.

13



In order to use (25), we need a lower bound for ¢, for 1 < k < p. By (22),
we see that for n sufficiently large,

1G Iz = | AL [f1Ca[fllz < er(Aalf]) < en®,

for some constant ¢ that does not depend on n. Hence

1
S > mindy=—— >en"2 1<k<n.
¢ IG—[3 ’

Thus for 1 <k <pand d €[l —¢,1+ €|, we have,

0<5_5’“< 20

<5 Sen
Hence (25) becomes
NG (@ = )]l < Pp2Paci—r—a.
|G (2 = o) 2

Therefore given arbitrary tolerance 7 > 0, an upper bound for the number
of iterations required to make

|Gz — )l
G (z = o) ]2
is given by
, 1 + 2aplogn —lo
]oEp—l-q—pOgc P08 gTzO(alogn+1).

log e
Since by using FFT, the matrix-vector product

(C AL D (G 1A

can be done in O(n logn) operations for any vector v, the cost per iteration of
the conjugate gradient method is also of O(nlogn). Thus we conclude that
the work of solving (21) to a given accuracy 7 is O(nlog®n) when a > 0.
When o = 0, i.e. k(A,[f]) = O(1), the number of iterations required
for convergence is of O(1). Hence the complexity of the algorithm reduces
to O(nlogn). We remark that in this case, one can show further that the
method converges superlinearly for the normalized preconditioned system due
to the clustering of the singular values, see Chan and Strang [3] or Chan [5]
for details. In contrast, the method converges just linearly for the normalized

system A7 [f]An[flz = A7 [f]b.

14



5 Numerical Results.

In this section, we test the convergence rate of the normalized preconditioned
systems with generating functions in Cy,. Six different generating functions
were tested. They are

(a) a; = (|j]+1) “+z(|y|+1) Loj=0,41,42,---,
+1) M 5>0

b) ;=4 Wl =

b) a { I,

I+ 1) M i+ )7t G #£0,
(C)a]_{ (|71 ([7]+ 1)~ T
(IJ|+) b j >0,

(d) a]: 1 ]207
(|J|+1) <0,
2 7=0,
(e) aj =9 -1 |j|=1,
0 [il>1,
1
57'('4 ]:0,
(f) a; = 26
4(—1)J(j—2—j—4) 17| > 0.

Since the sequences a; are absolutely summable, it follows that the corre-
sponding generating functions are continuous. Tables 1-3 show the number
of iterations required to solve the systems

AnlfT Anlf]e = AL [f1b

and
(C AALD (CLHAALDz = (C [ F AL L f 1.

The stopping criterion we used is ||74||2/||ro||2 < 1077, where 7, is the residual
vector after ¢ iterations. The right hand side b is the vector of all ones and
the zero vector is our initial guess. The computations are done by using
8-byte arithmetic on a Vax 6420.

15



We see that for the normalized preconditioned systems, the number of
iterations required for convergence indeed depends on the condition number
of A,. If A, is well-conditioned, as is in the cases (a) and (b), then the
number of iterations remains constant when n increases. Therefore the total
complexity of the algorithm is O(nlogn) in these cases. However, if A, is
not well-conditioned, as is in the cases (c) and (d), we see that the number
of iterations does increase with n.

Sequences (e) and (f) are the Fourier coefficients of functions f(#) =
4sin®@ and f(f) = 0* respectively and they both have a zero in [, 7]. In
case (e), the matrix A, is the 1-dimensional discrete Laplacian and is known
to have k(4,) = O(n?). In case (f), k(A4,) = O(n?), see Chan [6]. For
case (e), the normalized preconditioned system still converges in an O(logn)
fashion while for case (f), the number of iterations increases faster than O(n).
Thus the convergence rate of our method does depend on whether f has a
Zero or not.

As for the time comparison, we report that in case (a) with n = 1024,
it requires about 32.57 seconds to solve the original normalized system and
about 6.05 seconds to solve the normalized preconditioned systems. For case
(c) with n = 1024 again, it requires about 1,149.57 seconds to solve the
original normalized system and about 13.75 seconds to solve the normalized
preconditioned systems. Thus there is about five to eighty times saving in
speed when preconditioning is employed.

In Figures 1 and 2, we depict the spectra of the iteration matrices in cases
(b) and (d) with n = 64. In the figures, the eigenvalues of the matrices are
ordered as

AL > A 2> > Ay

We note that the spectra of the normalized preconditioned matrices indeed
are clustered around 1.

16



(a) (b) |
n ALA, [ (CMA)NC T A | A AL [ (CLMA)(CLMA)
16 9 5 11 7
32 15 5 16 8
64 22 5% 22 9
128 31 5 29 9
256 41 6 35 9
512 53 6 40 9
1024 62 6 45 9

Table 1. Number of Iterations for Different Generating Functions

(c) (d)
n | ALA, J(CTA)(CTA) | ARA, [(C,TA) (CTA,)
16 9 9 18 15
32 20 10 41 18
64 45 13 101 19
128 | 115 12 266 19
256 | 318 14 715 24
512 | 857 13 1853 26
1024 | 2280 17 4665 25

Table 2. Number of Iterations for Different Generating Functions

(e) (f)

n Ar Ay ‘ (CrflAn)*(CrflAn) Ar Ay ‘ (CﬁlAn)*(q;lAn)
16 8 9 20 9

32 22 11 101 21

64 74 14 934 63

128 238 18 > 5000 191

256 850 24 > 5000 739

512 3264 32 > 5000 1904

Table 3. Number of Iterations for Different Generating Functions




6 Concluding Remarks

In this paper, we have considered solution of complex Toeplitz systems
A,x = b where A, is generated by 2m-periodic complex-valued continuous
function. The system is solved by conjugate gradient method applied to the
preconditioned system

(C A (C Ap)a = (Cr P AR) Cy ',

where C), is the T. Chan circulant preconditioner. We show that if (i) f has
no zeros and (ii) xk(A,) = O(n®), then the number of iterations required for
convergence is at most O(alogn + 1). Hence the total complexity of the
algorithm is of O(anlog®n + nlogn).

We emphasize that from the examples given in §5, we cannot remove
neither condition (i) nor (ii) on f in order that the method still converges
in O(alogn + 1) steps. We further remark that these two conditions are
mutually exclusive. In fact, if f(f) = e, then f has no zeros but A,[f] is
singular for all n. On the other hand, if f(f) = 4sin?0, then A,[f] is the
1-dimensional discrete Laplacian with x(A,[f]) = O(n?).

18
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