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Prospect and Markowitz Stochastic Dominance

Abstract

Levy and Wiener (1998), Levy and Levy (2002, 2004) develop the Prospect and Markowitz

Stochastic Dominance theory with S-shaped and reverse S-shaped utility functions for

investors. In this paper, we extend their work on Prospect Stochastic Dominance theory

(PSD) and Markowitz Stochastic Dominance theory (MSD) to the first three orders and

link the corresponding S-shaped and reverse S-shaped utility functions to the first three

orders. We also provide experiments to illustrate each case of the MSD and PSD to

the first three orders and demonstrate that the higher order MSD and PSD cannot be

replaced by the lower order MSD and PSD. Furthermore, we formulate the following PSD

and MSD properties: hierarchy exists in both PSD and MSD relationships; arbitrage

opportunities exist in the first orders of both PSD and MSD; and for any two prospects

under certain conditions, their third order MSD preference will be ‘the opposite of’ or ‘the

same as’ their counterpart third order PSD preference. By extending the work of Levy

and Wiener and Levy and Levy, we provide investors with more tools to identify the first

and third order PSD and MSD prospects and thus they could make wiser choices on their

investment decision.

Keywords: Prospect stochastic dominance, Markowitz stochastic dominance, risk

seeking, risk averse, S-shaped utility function, reverse S-shaped utility function

JEL Classification: D81, C91



1 Introduction

According to the von Neuman and Morgenstern (NM, 1944) expected utility theory, the

functions for risk averters and risk seekers are concave and convex respectively, and both

are increasing functions. Comparing the utility functions and the stochastic dominance

(SD) theory has become an issue of great interest among academics. Linking the SD theory

to the selection rules for risk averters under different restrictions on the utility functions

include Quirk and Saposnik (1962) and Fishburn (1964). Linking the SD theory to the

selection rules for risk seekers include Hammond (1974) and Stoyan (1983).

Examining the relative attractiveness of various forms of investments, Friedman and

Savage (1948) claim that the strictly concave functions may not be able to explain the

behavior why investors buy insurance or lottery tickets. Markowitz (1952), the first

to address Friedman and Savage’s concern, proposes a utility function which has con-

vex and concave regions in both the positive and the negative domains.1 To support

Markowitz’s proposed utility function, Williams (1966) reports data where a translation

of outcomes produces a dramatic shift from risk aversion to risk seeking while Fishburn

and Kochenberger (1979) document the prevalence of risk seeking in choices between

negative prospects. Kahneman and Tversky (1979) and Tversky and Kahneman (1992)

claim that the utility function is concave for gains and convex for losses, yielding an S-

shaped function. They also develop a formal theory of loss aversion called prospect theory

in which investors can maximize the expectation of the S-shaped utility function. It is

one of the most popular decision-making theories about risk-taking and has gained much

attention from economists and professionals in the financial sector.

Thereafter, a stream of papers2 building economic or financial models on the prospect

theory has been written. There have also been many empirical and experimental attempts

1Ng (1965) and Machina (1982) also provide other explanations to Friedman and Savage’s paradox.
2see, for example, Shefrin and Statman (1993) and Wang and Fischbeck (2004).
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to test the prospect theory, for example, the equity premium puzzle by Benartzi and

Thaler (1995) and the buying strategies of hog farmers by Pennings and Smidts (2003).

Most of these studies support the prospect theory. The prospect theory has also been

widely applied in Economics and Finance, see for example, Myagkov and Plott (1997).

Noticing the presence of risk seeking in preferences among positive as well as negative

prospects, Markowitz (1952) also proposes another type of utility functions different from

the pure S-shaped utility functions used in the prospect theory. He suggests a utility

which is first concave, then convex, then concave, and finally convex to explain Friedman

and Savage’s question about why investors buy insurance and buy lotteries tickets. Using

sequential gambles technique, Thaler and Johnson (1990) obtain experimental evidence

to show that prior outcomes affect subsequent behavior in a way that is contrary to the

static version of the prospect theory. In particular, subjects are more risk seeking following

gains and more risk averse following losses. This implies that in a dynamic context, a

reverse S-shaped utility function may be more descriptive of actual behavior. Levy and

Wiener (1998) further develop the theory for the reverse S-shaped utility functions for

investors. Levy and Levy (2002) are the first to extend the work of Markowitz (1952)

and others to develop a new criterion called Markowitz Stochastic Dominance (MSD)

to determine the dominance of one investment alternative over another for all reverse

S-shaped functions, and another criterion called Prospect Stochastic Dominance (PSD)

to determine the dominance of one investment alternative over another for all S-shaped

utility functions.

Working along similar lines as Whitmore (1970) who extends the second order SD

developed by Quirk and Saposnik (1962) and others to the third order SD for risk averters,

in this paper, we first extend the work of Levy and Levy to take the PSD and MSD to

the first three orders SD and link the corresponding S-shaped and reverse S-shaped utility

functions to the first three orders.
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Another contribution of Levy and Levy to the literature is to prove the second order

PSD and MSD satisfy the expected utility paradigm. Arrow (1971) first points out that an

individual with unbounded utility must violate either the completeness or the continuity

axiom of the expected utility theory while Machina (1982) suggests that the expected

utility analysis is too theoretical and may not be empirically valid. Swalm (1966) and

Barberis, Huang, and Santos (2001) mount a critique of expected utility theory. Rabin

(2000) also points out that the expected utility cannot explain loss aversion which accounts

for the modest-scale risk aversion for both large and small stakes typically observed in

empirical studies. To circumvent this problem, Kahneman and Tversky (1979) suggest

employing the certainty equivalent approach to study the negative and positive domains

separately. Nonetheless, the PSD and MSD developed in Levy and Wiener (1998) and

Levy and Levy (2002, 2004) bypass the above problems. Moreover, they show that both

MSD and PSD satisfy the expected utility paradigm. Following Levy and Levy, another

contribution of this article is to examine the compatibility of both the extended MSD and

PSD with the expected utility theory and proves that both MSD and PSD of any order

are consistent with the expected utility theory.

In addition, we provide experiments to illustrate each case of the MSD and PSD to

the first three orders and demonstrate that the higher order MSD and PSD cannot be

replaced by the lower order MSD and PSD. We also develop some other properties for the

extended MSD and PSD as follows: hierarchy exists in both PSD and MSD; arbitrage

opportunities exist for the first orders of both PSD and MSD; and for any two prospects

under certain conditions, their third order MSD preference will be ‘the opposite of’ or ‘the

same as’ their third order counterpart PSD preference. In terms of empirical analysis, our

approach is superior to Levy and Levy’s as the definitions of the extended PSD and MSD

developed in our paper enable investors to identify the MSD and PSD prospects to the

first three orders. With more information, investors can make wiser decisions with their

investments. For example, when an investor has identified the first order PSD and MSD
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prospects, the arbitrage opportunities are revealed. In addition, by identifying the third

order PSD and MSD prospects, an investor can make wiser choices about these prospects.

However, Levy and Levy’s approach only allows investors to identity the MSD and PSD

to the second order. Without the extended PSD and MSD definitions, Levy and Levy’s

investors would not have as much information as ours to make their investment decisions.

The paper is organized as follows. We begin by introducing definitions and notations

in the next section. Section 3 develops several properties for the extended MSD and

PSD. Section 4 provides illustrations for MSD and PSD to the first three orders and

demonstrates that the higher order MSD and PSD cannot be replaced by the lower order

MSD and PSD. Section 5 concludes our findings.

2 Definitions and Notations

Let R be the set of extended real numbers and Ω = [a, b] be a subset of R in which a < 0

and b > 0. Let B be the Borel σ-field of Ω and µ be a measure on (Ω,B). We first define

the functions F and FD of the measure µ on the support Ω as

F (x) = µ[a, x] and FD(x) = µ[x, b] for all x ∈ Ω . (1)

Function F is a probability distribution function3 or simply distribution function (DF) and

µ is a probability measure if µ(Ω) = 1. We follow the basic probability theory that for

any random variable X and for any probability measure P , there exists a unique induced

probability measure µ on (Ω,B) and a DF F such that F satisfies (1) and

µ(B) = P (X−1(B)) = P (X ∈ B) for any B ∈ B .

3In this paper, the definition of F is slightly different from the ‘traditional’ definition of a distribution
function.
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An integral written in the form of
∫

A
f(t) d µ(t) or

∫
A

f(t) dF (t) is a Lebesgue integral

for any integrable function f(t). If the integral has the same value for any set A which is

equal to (c, d], [c, d) or [c, d], then we use the notation
∫ d

c
f(t) d µ(t) instead. In addition,

if µ is a Borel measure with µ(c, d] = d− c, then we write the integral as
∫ d

c
f(t) dt.

Random variables, denoted by X and Y defined on Ω are considered together with

their corresponding DFs F and G and their corresponding probability density functions

(pdfs) f and g respectively. The following notations will be used throughout this paper:

µF = µX = E(X) =

∫ b

a

x dF (x), µG = µY = E(Y ) =

∫ b

a

x dG(x) ;

f(x) = FA
0 (x) = FD

0 (x), g(x) = GA
0 (x) = GD

0 (x)

HA
n (x) =

∫ x

a

HA
n−1(y) dy , HD

n (x) =

∫ b

x

HD
n−1(y) dy n = 1, 2, 3; (2)

where H = F or G.4 In (2), µF = µX is the mean of X whereas µG = µY is the mean of

Y . f = FA
0 = FD

0 is the pdf of X and g = GA
0 = GD

0 is the pdf of Y . 5

The definition of HA
n in (2) can be used to develop the SD theory for risk averters

(see, for example, Quirk and Saposnik 1962 and Fishburn 1964). We call this type of

SD Ascending Stochastic Dominance (ASD) and HA
n the nth order ASD integral or the

nth order cumulative probability as HA
n is integrated from HA

n−1 in ascending order from

the leftmost point of downside risk. On the other hand, HD
n can be used to develop the

SD theory for risk seekers (see, for example, Meyer 1977 and Stoyan 1983). We call this

type of SD Descending Stochastic Dominance (DSD) and HD
n the nth order DSD integral

or the nth order reversed cumulative probability as HD
n is integrated HD

n−1 in descending

order from the rightmost point of upside profit. Typically, risk averters prefer assets that

4The above definitions have been commonly used in the literature, see for example, Wong and Li
(1999), Li and Wong (1999) and Anderson (2004).

5The notations FA
0 , FD

0 , GA
0 and GD

0 are introduced for convenience purposes. For example, without
introducing the notation FA

0 , the statement FA
n (x) =

∫ x

a
FA

n−1(y) dy in (2) does not hold for n = 1.
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have a smaller probability of losing, especially in downside risk; while risk seekers prefer

assets that have a higher probability of gaining, especially in upside profit. To make a

choice between two assets F or G, risker averters will compare their corresponding nth

order ASD integrals FA
n and GA

n and choose F if FA
n is smaller since it has a smaller

probability of losing. On the other hand, risk seekers will compare their corresponding

nth order DSD integrals FD
n and GD

n and choose F if FD
n is bigger since it has a higher

probability of gaining.6

All functions are assumed to be measurable and all random variables are assumed to

satisfy:7

FA
1 (a) = 0 and FD

1 (b) = 0. (3)

For H = F or G, we define the following functions for MSD and PSD:

Ha
1 (x) = H(x) = HA

1 (x), Hd
1 (x) = 1−H(x) = HD

1 (x);

Hd
n(y) =

∫ 0

y

Hd
n−1(t)dt, y ≤ 0; and

Ha
n(x) =

∫ x

0

Ha
n−1(t)dt, x ≥ 0 for n = 2, 3 . (4)

In order to make the computation easier, we further define

HM
n (x) =





HA
n (x) x ≤ 0

HD
n (x) x > 0

and HP
n (x) =





Hd
n(x) x ≤ 0

Ha
n(x) x > 0 ;

(5)

where H = F and G and n = 1, 2 and 3.

As pointed out by Markowitz (1952) and many others, investors’ behaviors can be

different in the positive and negative domains of the return. Without loss of generality, in

6see Li and Wong (1999) and Anderson (2004) for more discussion.
7Condition (3) will hold for any random variable except a random variable with positive probability

at the points of negative infinity or positive infinity.
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this paper, ‘upside profit’ refers to the positive domain of the return and ‘downside risk’

the negative domain of return. We first consider the function HM
n which is equal to HA

n

in downside risk and equal to HD
n in upside profit. By comparing the FM

n and GM
n of the

two assets F and G, we study whether we could choose an asset which shows a smaller

probability in downside risk and a bigger probability in upside profit. Once we find F such

that it has a smaller ASD integral in downside risk and a higher DSD integral in upside

profit, one may believe that F has the best of both worlds – a smaller probability of losing

in downside risk and a larger probability to gain in upside profit. On the other hand, in

this paper we also study the properties of the function HP
n which is equal to ASD integral

(Ha
n) in upside profit and equal to the DSD integral (Hd

n) in downside risk. As shown in

the next section, our paper shows that HM
n can be used to develop the MSD theory while

HP
n can be used to develop the PSD theory.8 The following are our definitions:

Definition 1 Given two random variables X and Y with F and G as their respective

DFs, X weakly dominates Y and F weakly dominates G in the sense of:

a. FMSD, denoted by X ºM
1 Y or F ºM

1 G, if and only if FM
1 (−x) ≤ GM

1 (−x) and

FM
1 (x) ≥ GM

1 (x) for each x ≥ 0;

b. SMSD, denoted by X ºM
2 Y or F ºM

2 G, if and only if FM
2 (−x) ≤ GM

2 (−x) and

FM
2 (x) ≥ GM

2 (x) for each x ≥ 0;

c. TMSD, denoted by X ºM
3 Y or F ºM

3 G, if and only if FM
3 (−x) ≤ GM

3 (−x) and

FM
3 (x) ≥ GM

3 (x) for each x ≥ 0;

where FMSD, SMSD, and TMSD stand for the first, second and third order MSD respec-

tively. If, in addition, there exists an x in [a, b] such that FM
n (x) < GM

n (x) with x < 0

or FM
n (x) > GM

n (x) with x > 0 for n = 1, 2 and 3, we say that X dominates Y and

8Thus, we call the function HM
n the nth order MSD integral and call the function HP

n the nth order
PSD integral.
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F dominates G in the sense of SFMSD, SSMSD, and STMSD, denoted by X ÂM
1 Y or

F ÂM
1 G, X ÂM

2 Y or F ÂM
2 G, and X ÂM

3 Y or F ÂM
3 G respectively, where SFMSD,

SSMSD, and STMSD stand for strictly first, second and third order MSD respectively.

Definition 2 Given two random variables X and Y with F and G as their respective

DFs, X weakly dominates Y and F weakly dominates G in the sense of:

a. FPSD, denoted by X ºP
1 Y or F ºP

1 G, if and only if F P
1 (−x) ≥ GP

1 (−x) and

F P
1 (x) ≤ GP

1 (x) for each x ≥ 0;

b. SPSD, denoted by X ºP
2 Y or F ºP

2 G, if, and only if, F P
2 (−x) ≥ GP

2 (−x) and

F P
2 (x) ≤ GP

2 (x) for each x ≥ 0;

c. TPSD, denoted by X ºP
3 Y or F ºP

3 G, if and only if F P
3 (−x) ≥ GP

3 (−x) and

F P
3 (x) ≤ GP

3 (x) for each x ≥ 0;

where FPSD, SPSD, and TPSD stand for the first, second and third order PSD respec-

tively. If, in addition, there exists an x in [a, b] such that F P
n (x) > GP

n (x) with x < 0

or F P
n (x) < GP

n (x) with x > 0 for n = 1, 2 and 3, we say that X dominates Y and

F dominates G in the sense of SFPSD, SSPSD, and STPSD, denoted by X ÂP
1 Y or

F ÂP
1 G,X ÂP

2 Y or F ÂP
2 G, and X ÂP

3 Y or F ÂP
3 G respectively, where SFPSD,

SSPSD, and STPSD stand for strictly first, second and third order PSD respectively.

Levy and Levy (2002) define the MSD and PSD functions as:

HM(x) =





∫ x

a
H(t) dt x < 0

∫ b

x
H(t) dt x > 0

and HP (x) =





∫ 0

x
H(t) dt x < 0

∫ x

0
H(t) dt x > 0

(6)

where H = F and G. MSD and PSD are expressed in the following definition:

Definition 3

F ºMSD G if FM(x) ≤ GM(x) for all x, and F ºPSD G if F P (x) ≤ GP (x) for all x.
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One can easily show that F ºMSD G if and only if F ºM
2 G and F ºPSD G if and only if

F ºP
2 G. Hence, the MSD and PSD defined in Levy and Levy are the same as the second

order MSD and PSD defined in our paper.9

Definition 4 n = 1, 2, 3, UA
n , USA

n , UD
n and USD

n are the sets of the utility functions10 u

such that:

UA
n (USA

n ) = {u : (−1)i+1u(i) ≥ (>) 0 , i = 1, · · · , n} ;

UD
n (USD

n ) = {u : u(i) ≥ (>) 0 , i = 1, · · · , n} ;

US
n (USS

n ) = {u : u+ ∈ UA
n (USA

n ) and u− ∈ UD
n (USD

n ) } ;

UR
n (USR

n ) = {u : u+ ∈ UD
n (USD

n ) and u− ∈ UA
n (USA

n ) } .

where u(i) is the ith derivative of the utility function u, u+ = u restricted for x ≥ 0 and

u− = u restricted for x ≤ 0.

It is noted that investors in UA
n is risk averse while investors in UD

n is risk seeking.

Investors in UR
n with reversed S-shaped utility functions are risk seeking for gains but risk

aversion for losses while investors in US
n with S-shaped utility functions are risk averse

for gains but risk seeking for losses. Refer to Figure 1 for the shape of utility functions

in UA
2 , UD

2 , UR
2 and US

2 and refer to Figure 2 for the shape of the first derivatives of the

utility functions in UA
3 , UD

3 , UR
3 and US

3 respectively.

One choosing between F (X) and G (Y ) in accordance with a consistent set of prefer-

ences will satisfy the NM consistency properties. Accordingly, F (X) is (strictly) preferred

to G (Y ) if

∆Eu ≡ u(F )− u(G) ≡ u(X)− u(Y ) ≥ 0(> 0), (7)

9We note that Levy and Wiener (1998) and Levy and Levy (2004) define PSD as F ºPSD G if and
only if 0 ≤ ∫ x2

x1
[G(z)− F (z)] dz for all x1 ≤ 0 ≤ x2 with at least one strict inequality.

10We note that the theory can be easily extended to satisfy utilities defined to be non-differentiable.
In this paper, we will skip the discussion of non-differentiable utilities.
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where u(F ) ≡ u(X) ≡ ∫ b

a
u(x)dF (x) and u(G) ≡ u(Y ) ≡ ∫ b

a
u(x)dG(x).

There is an ongoing debate in the literature regarding the shape of the utility func-

tions. The utility functions UA
2 advocated in the literature depict the concavity of the

utility function, which is equivalent to risk aversion, according to the notion of decreasing

marginal utility. The prevalence of risk aversion is the best known generalization regard-

ing risky choices and was popular among the early decision theorists of the twentieth

century (Pratt 1964, Arrow 1971).

On the other hand, Markowitz (1952) proposes a utility function which is first concave,

then convex, then concave, and finally convex. The portion of this utility function that

has convex and concave regions in the negative and the positive domains respectively

is equivalent to US
2 defined in our paper and forms a S-shaped utility function. Later,

Kahneman and Tversky (1979) and Tversky and Kahneman (1992) formally develop the

prospect theory to link up the S-shaped utility functions. Similarly, the portion that

has concave and convex regions in the negative and the positive domains respectively is

equivalent to UR
2 defined in our paper and forms a reverse S-shaped utility function.

Whitmore (1970) extends the second order SD to the third order SD and improves the

linkage of SD to the utility functions for risk averse investors up to UA
3 . In this paper,

we extend PSD and MSD to the first three orders and improve the linkage of PSD and

MSD to the utility functions up to US
3 and UR

3 . Details of these linkages are discussed in

the next section. One can easily show that US
1 and UR

1 are equivalent to UA
1 and UD

1 ; all

of these are simply sets of increasing utility functions. The set US
2 containing S-shaped

utility functions and the set UR
n containing reverse S-shaped utility functions have been

discussed in detail in the literature, for example, see Markowitz (1952) and Levy and

Levy (2002, 2004). A utility in US
3 is increasing with its marginal utility decreasing in

the positive domain but increasing in the negative domain, and is graphically convex in

both the positive and negative domains. On the other hand, a utility in UR
3 is increasing
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with its marginal utility increasing in the positive domain but decreasing in the negative

domain, and is graphically convex in both the positive and negative domains. In order to

draw a clearer picture for both the second and third orders SD, we define the following

Pratt-Arrow risk aversion at ω for an individual with the utility function u:

r(ω) = −u(2)(ω)

u(1)(ω)
= −d log u(1)(ω)

dω
. (8)

where u(i) is the ith derivative of the utility function u.

With the definition of risk aversion, one can easily show the relationship between risk

aversion and the sets of utility functions defined in Definition 4. For example, if u ∈ US
2 ,

then its risk aversion will be positive in the positive domain and negative in the negative

domain. Similarly, if u ∈ UR
2 , then its risk aversion will be negative in the position

domain and positive in the negative domain. In addition, if the risk aversion is positively

decreasing in the positive domain and negatively decreasing in the negative domain, then

the utility function belongs to u ∈ US
3 . On the other hand, if the risk aversion is negatively

decreasing in the positive domain but positively decreasing in the negative domain, then

the utility function belongs to u ∈ UR
3 . Investors with utility u is well-known to have

Decreasing Absolute Risk Aversion (DARA) behavior if u(1) > 0, u(2) < 0 and u(3) > 0,

see for example, Falk and Levy (1989). We can say that investors with utility functions

u ∈ US
3 have DARA behavior in the positive domain and investors with utility functions

u ∈ UR
3 have DARA behavior in the negative domain.

Let us turn to the empirical evidence on the (reverse) S-shaped utility functions. It is

well-known that under the expected utility theory, convexity of utility is equivalent to risk

seeking while concavity is equivalent to risk aversion. Empirical measurements generally

corroborate with the concavity in the utility for gains, for example, see Fishburn and

Kochenberger (1979). However, the behavior of gamblers reveals convexity for gains

(Friedman and Savage 1948). For the utility for losses, some studies find convexity while
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some find concavity. For example, Pennings and Smidts (2003) find convex utility for

losses for the majority of cases and concave utility for losses for a sizable minority of

subjects. Despite the study of Myagkov and Plott (1997), no conclusive evidence in favor

of convex utility for losses is provided, which would have supported the reverse S-shaped

utility functions. However, Wu and Gonzalez (1996) propose to use preference ‘ladders’ to

test for concavity and convexity of the weighting function. They validate the findings of an

S-shaped weighting function, concave with probability up to .4, and convex beyond that

probability. Nevertheless, using sequential gambles technique, Thaler and Johnson (1990)

obtain experimental evidence to show that prior outcomes affect subsequent behavior in

a way that subjects are more risk seeking following gains and more risk averse following

losses. This supports the reverse S-shaped utility function behavior.

Finally, we note that in the prospect theory developed by Kahneman and Tversky

(1979), the S-shaped utility function is called the value function as it is attuned to the

evaluation of changes or differences of wealth rather than the evaluation of absolute magni-

tudes. In this paper, we simply call it utility function as we do not restrict its applications

to total wealth or the changes or differences of wealth.11 In addition, prospect theory as-

sumes loss aversion which reflects the observed behavior that agents are more sensitive to

losses than to gains, resulting in the value functions for losses are usually restricted to be

steeper than their shapes for gains.12 In another words, the investors are downside risk

averse and could be measured by loss aversion.13 In Definition 4, we do not include this

restriction in the definition of US
2 . However, US

2 is a more general class of S-shaped utility

functions containing all the value functions with this restriction and hence the theory of

loss aversion and value function satisfy the theory developed in this paper.

11Levy and Wiener (1998) define Up and Levy and Levy (2002) define VKT as the class of all prospect
theory value S-shaped functions with an inflection point at x = 0. This is the same as our US

2 . They also
define VM as the class of all Markowitz utility functions which are reverse S-shaped, with an inflection
point at x = 0. This is the same as our UR

2 .
12see, for example, Barberis, Huang and Santos (2001) and Wakker (2003).
13see for example, Rabin (2000) and Kobberling and Wakker (2005).
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3 Theory

In this section we develop some basic properties for MSD and PSD. We first introduce the

basic theorem linking the MSD (PSD) of the first three orders to investors with reverse

S-shaped utility functions (S-shaped utility functions) to the first three orders:

Theorem 1 14 Let X and Y be random variables with probability distribution functions

F and G respectively. Suppose u is a utility function. For n = 1, 2 and 3, we have

a. F ºM
n (ÂM

n )G if and only if u(F ) ≥ (>)u(G) for any u in UR
n (USR

n ), and

b. F ºP
n (ÂP

n )G if and only if u(F ) ≥ (>)u(G) for any u in US
n (USS

n ).

See appendix for the proof of Theorem 1. The SD results for risk averters and risk

seekers similar to the above theorem have been well explored. Levy and Wiener (1998)

and Levy and Levy (2002, 2004) extend the theory of SD by developing the second order

PSD and MSD theories and link them to the second order S-shaped and reverse S-shaped

utility functions. They also prove that both the second order MSD and PSD satisfy the

expected utility paradigm. In this paper, we extend their work and link PSD and MSD

of any order to the S-shaped and reverse S-shaped utility functions. We also extend Levy

and Levy’s results to examine the compatibility of the MSD and PSD of any order with

the expected utility theory and prove that the MSD and PSD of any order are consistent

with the expected utility paradigm as shown in the above theorem.

In the following corollary, FPSD and FMSD are equivalent, and both of them coincide

with the traditional firt order SD (FSD).

14As most of the established properties of SD require the “strict” form but not the “weak” form of SD,
from now on, we will only discuss the “strict” form of SD in our paper. Thus, for n = 1, 2 and 3, we will
use “ÂX

n ” to represent both “ÂX
n ” and “ºX

n ” for X = M and P , and UY
n to represent both UY

n and USY
n

for Y = S and R if no confusion occurs.
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Corollary 1 For any random variables X and Y , X ÂM
1 Y if and only if X ÂP

1 Y if

and only if X stochastically dominates Y in the sense of the FSD.

The proof of Corollary 1 is straightforward.15 Incorporating this into the Arbitrage versus

SD theorem in Jarrow (1986) will yield the following corollary:

Corollary 2 Under the condition that the market is complete, for any random vari-

ables X and Y , X ÂM
1 Y and/or X ÂP

1 Y if and only if there is an arbitrage opportunity

between X and Y such that one will increase one’s wealth as well as one’s utility if one

shifts the investments from Y to X.

The safety-first rule is first introduced by Roy (1952) for decision making under un-

certainty. It stipulates choosing an alternative that provides a target mean return while

minimizing the probability of the return falling below some threshold of disaster. Bawa

(1978) takes the idea and examines the relationships between the SD and generalized

safety-first rules for arbitrage distributions. Thereafter, Jarrow (1986) discovers the ex-

istence of the arbitrage opportunities in the SD rules. He defines a ‘complete’ market

as ‘an economy where all contingent claims on the primary assets trade.’ His Arbitrage

versus SD theorem says that when the market is complete, X stochastically dominates Y

in the sense of FSD if and only if there is an arbitrage opportunity between X and Y . As

X ÂM
1 Y is equivalent to X ÂP

1 Y (see Corollary 1), both are equivalent to X stochasti-

cally dominates Y in the sense of FSD. Thus, Corollary 2 holds when the Arbitrage versus

SD theorem in Jarrow is applied.

Whitmore (1970) extends the second order SD to the third order SD for risk averters

and thereafter many academics demonstrate the usefulness of the third order SD. In

addition, Hammond (1974) generalizes the SD theory to the n-order for any integer n.

15The proof is available on request.

14



Both the MSD and PSD theories can be extended to any order in similar ways. However,

we focus our discussion up to the first three orders in this paper as the first three orders

SD are of most importance in theory as well as empirical applications. However, the

first order PSD and MSD are not very interesting concepts because the curvature of the

utility function does not influence the first-order SD criterion which only requires the

utility function to be increasing. In this paper, we mainly discuss the higher order cases.

But before doing so, we will show the hierarchy relationships for MSP and PSD in the

following corollary:

Corollary 3 For any random variables X and Y , for n = 1 and 2, we have:

if X ÂM
n Y , then X ÂM

n+1 Y ; and if X ÂP
n Y , then X ÂP

n+1 Y .

The proof of Corollary 3 is straightforward. The results of this corollary suggest that

practitioners report the MSD and PSD results to the lowest order in empirical analysis.

Levy and Levy (2002) show that it is possible for MSD to be ‘the opposite’ of PSD

in their second orders and that F dominates G in SPSD, but G dominates F in SMSD.

In the following corollary, we extend their results to include MSD and PSD to the second

and third orders:

Corollary 4 For any random variables X and Y , if F and G have the same mean

which is finite, then we have

F ÂM
2 G if and only if G ÂP

2 F ; and (9)

if, in addition, either F ÂM
2 G or G ÂP

2 F holds, we have

F ÂM
3 G and G ÂP

3 F . (10)
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The proof of (9) follows the paper by Levy and Levy, while (10) follows Corollary 3.

However, there are cases when distributions F and G have the same mean and do not

satisfy (9) yet satisfying (10) as shown in the following example:

Example 1: Consider the distribution functions

F (t) =





0 −1 ≤ t ≤ −7/8,

1/6 −7/8 ≤ t ≤ −3/4,

2(t + 1)/3 −3/4 ≤ t ≤ −1/2,

1/3 −1/2 ≤ t ≤ −1/4,

1/2 −1/4 ≤ t ≤ 0,

1−G(−t) 0 ≤ t ≤ 1,

and G(t) =





2(t + 1)/3 −1 ≤ t ≤ −3/4,

1/6 −3/4 ≤ t ≤ −5/8,

1/3 −5/8 ≤ t ≤ −1/2,

1/2 + t/3 −1/2 ≤ t ≤ 0,

1− F (−t) 0 ≤ t ≤ 1.

In this example, one can easily show that there is no SMSD and no SPSD dominance but

F ÂM
3 G and G ÂP

3 F .16 The above corollary provides the conditions in which F is ‘the

opposite’ of G and the above example shows that there exist pairs of distributions which

are ‘opposites’ in the third order but not in the second order. On the other hand, we

find that under some regularities, F becomes ‘the same’ as G in the sense of TMSD and

TPSD as shown in the corollary below:

Corollary 5 If F and G satisfy

FA
2 (0) = GA

2 (0), FA
3 (0) = GA

3 (0), F a
2 (b) = Ga

2(b), and F a
3 (b) = Ga

3(b), (11)

then

F ÂM
3 G if and only if F ÂP

3 G .

The proof of Corollary 5 is straightforward.17 One should note that the assumptions in

16The working is available on request.
17The proof is available on request.
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(11) are very restrictive. In fact, if some of the assumptions are not satisfied, there exists

F and G such that G ÂP
3 F but neither F ÂM

3 G nor G ÂM
3 F holds, as shown in the

following example:

Example 2: Consider

F (t) =





4(t + 1)/5 −1 ≤ t ≤ −3/4,

2t/5 + 1/2 −3/4 ≤ t ≤ −1/4,

(4t + 3)/5 −1/4 ≤ t ≤ 0,

1−G(−t) 0 ≤ t ≤ 1,

and G(t) =





0 −1 ≤ t ≤ −3/4,

2/5 −3/4 ≤ t ≤ 0,

1− F (−t) 0 ≤ t ≤ 1.

In this example, one can easily show that we do not have F ÂM
3 G or G ÂM

3 F but we

have G ÂP
3 F .18 The above corollary and example show that under some regularities, F

is ‘the same’ as G in the sense of TMSD and TPSD. One may wonder whether this ‘same

direction property’ could appear in FMSD vs FPSD and SMSD vs SPSD. In the following

corollary, we show that this is possible.

Corollary 6 If the random variable X = p + qY and if p + qx > x for all x ∈ [a, b], then

we have X ÂM
n Y and X ÂP

n Y for n = 1, 2 and 3.

The proof of the above corollary is trivial. As shown by Levy and Levy (2002), MSD is

generally not ‘the opposite’ of PSD. In other words, if F dominates G in PSD, it does not

necessarily mean that G dominates F in MSD. This is easy to see because having a higher

mean is a necessary condition for dominance by both rules. Therefore, if F dominates G

in the sense of PSD, and F has a higher mean than G, G cannot possibly dominate F in

the sense of MSD. The above corollary goes one step further and shows that they could

18The working is available on request.
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be ‘the same’ in the sense of MSD and PSD. In addition, we derive the following corollary

to show the relationship between the first order MSD and PSD.

Using the results in Theorem 1, we can call a person a first-order-MSD (FMSD)

investor if his/her utility function u belongs to UR
1 , and a first-order-PSD (FPSD) investor

if his/her utility function U belongs to US
1 . A second-order-MSD (SMSD) risk investor, a

second-order-PSD (SPSD) risk investor, a third-order-MSD (TMSD) risk investor and a

third-order-PSD (TPSD) risk investor can be defined in the same way. From Definition

4 and the definition of risk aversion defined in (8), one can tell that the risk aversion of

a SPSD investor is positive in the positive domain and negative in the negative domain

and a SMSD investor’s risk aversion is negative in the positive domain and positive in the

negative domain. If one’s risk aversion is positive and decreasing in the positive domain

and negative and decreasing in the negative domain, then one is a TPSD investor; but

the reverse is not true. Similarly, if one’s risk aversion is negative and decreasing in the

positive domain and positive and decreasing in the negative domain, then one is a TMSD

investor. We summarize these results in the following corollary:

Corollary 7 For an investor with an increasing utility function u and risk aversion

r,

a. s/he is a SPSD (SMSD) investor if and only if her/his risk aversion r is positive

(negative) in the positive domain and negative (positive) in the negative domain;

b. if her/his risk aversion r is always decreasing and is positive (negative) in the pos-

itive domain and negative (positive) in the negative domain, then s/he is a TPSD

(TMSD) investor.

The proof of Corollary 7 is straightforward.19 Corollary 7 states the relationships

19The proof is available on request.
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between different types of investors and their risk aversions. We note that the converse

of (b) is not true.

4 Illustration

In this section we illustrate each case of MSD and PSD to the first three orders by using

examples from Levy and Levy (2002) and modifying them. We first use Task III of

Experiment 3 in Levy and Levy (2002) which is a replication of the tasks in Kahneman

and Tversky (1979). In the experiment, $10,000 is invested in either stock F or Stock G

with the following dollar gain one month later and with probabilities f and g respectively,

as shown in Table 1.

We use the MSD and PSD integrals HM
n and HP

n for H = F and G and n = 1, 2 and

3 as defined in (5). To make the comparison easier, we define their differentials

GFM
n = GM

n − FM
n and GF P

n = GP
n − F P

n (12)

for n = 1, 2 and 3 and present the results of the MSD and PSD integrals with their

differentials for the first three orders in Tables 2 and 3.

In this example, Levy and Levy conclude that F ºMSD G but G ºPSD F while our

results show that F ÂM
n G and G ÂP

n F for n = 2 and 3. From Corollary 3, we know that

hierarchy exists in both MSD and PSD such that F ÂM
2 G implies F ÂM

3 G while G ÂP
2 F

implies G ÂP
3 F . Hence, one only has to report the lowest SD order. Our findings shows

that F ÂM
2 G and G ÂP

2 F , same as the findings in Levy and Levy. Our approach has

no advantage over Levy and Levy’s in this example. However, Levy and Levy’s approach

can only detect the second order MSD and PSD while our approach, by incorporating

the extended PSD and MSD, enables investors to compare MSD and PSD to any order.
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In order to show the superiority of our approach, we modify the above experiment by

adjusting the probabilities f and g for investments F and G respectively. Reported in

Tables 4–6 are all other orders of both MSD and PSD. For simplicity, we only report the

differentials GFM
n and GF P

n and skip reporting their integrals. For easy comparison, we

also report the MSD and PSD computation based on Levy and Levy’s formula:

GFM = GM − FM and GF P = GP − F P . (13)

Note that Levy and Levy define F ºMSD G if GFM(x) ≥ 0 for all x and F ºPSD G if

GF P (x) ≥ 0 for all x with some strict inequality.

In Table 4, if one adopts Levy and Levy’s approach, one will conclude that F ºMSD G

and F ºPSD G. However, if one applies our approach, one will conclude that F ÂM
1 G and

F ÂP
1 G, which is different from the conclusion drawn from Levy and Levy’s approach.

From Corollary 3, we know that hierarchy exists in both MSD and PSD such that F ÂM
1 G

implies F ÂM
2 G while G ÂP

1 F implies G ÂP
2 F . Hence, one only has to report the

lowest SD order. However, reporting the first order MSD and PSD obtained by using our

approach should be more appropriate.

In Table 5, if one uses Levy and Levy’s approach, one will conclude G ºPSD F and

conclude that neither F nor G dominate each other in the sense of MSD. However, if one

applies our approach, one will conclude that G ÂP
2 F but F ÂM

3 G, which is different

from the conclusion drawn from Levy and Levy’s approach. Similarly, in Table 6, if one

uses Levy and Levy’s approach, one will conclude G ºMSD F and conclude that neither

F and G dominates each other in the sense of PSD. However, if one applies our approach,

one will conclude that F ÂM
2 G but G ÂP

3 F , which is different from the conclusion drawn

from Levy and Levy’s approach. Thus, our approach reveals more information on both

MSD and PSD.
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The results from our illustrations are more informative for investors than Levy and

Levy’s because we identify the MSD and PSD prospects for the first three orders while

Levy and Levy only identify MSD and PSD for the second order, which may not truly

present the MSD and PSD nature of these prospects. As our approach can provide

investors with more information about investments opportunities, our approach could

enable investors to make wiser decisions on investments. For example, in Table 4, using

Levy and Levy’s approach, SMSD and SPSD (also TMSD and TPSD) investors will choose

to invest on F rather than G and will increase their expected utilities but not their wealth

when shifting their investments from G to F . For FMSD and FPSD investors, they will

not be able to obtain any useful information at all. However, if investors adopt our

approach, it will be a completely different story. FMSD, SMSD, TMSD, FPSD, SPSD

and TPSD investors will choose to invest on F rather than G and all of them will increase

their expected utilities as well as their wealth when shifting their investments from G to

F . What’s more, our approach enables investors to identify that there is an arbitrage

opportunity between F and G and one could long F and short G and making good profit.

Furthermore, Levy and Levy’s approach will not be able to reveal any TMSD or TPSD

prospect, while ours will enable investors to identify them, which in turn provides useful

information for the TMSD and TPSD investors. If the approach by Levy and Levy is

applied, one will conclude neither MSD nor PSD. For the TMSD and TPSD investors,

they will not know about the relationships between these prospects and will miss these

investment opportunities. For example, referring to Table 5, TMSD investors will not be

able to decide which prospect to invest if they apply Levy and Levy’s approach. However,

if they apply our approach, they will invest in F rather than G and if they have invested

in G, our approach will tell them that they will increase their expected utilities if they

shift their investments from G to F . Similar conclusion can be made by TPSD investors

about the investment choices presented in Table 6.
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5 Concluding Remarks

In this paper, we extend the MSD and PSD theory by first defining the MSD and PSD of

the first three orders and link them to the corresponding S-shaped and reverse S-shaped

utility functions to the first three orders. We then provide experiments to illustrate each

case of the MSD and PSD to the first three orders and develop some properties for the

extended MSD and PSD.

Prospect theory is a paradigm challenging the expected utility theory. The main con-

troversy is the prospect theory’s S-shaped value function which describes preferences. This

has been discussed in our paper in detail and our conclusion is that it is consistent with

the expected utility theory. The next allegation is that the prospect theory invalidates the

expected utility theory as being “subjectively distorted probabilities” (Levy and Wiener

1998)20. This was later corrected by what is now known as Cumulative Prospect Theory,

see Starmer (2000) for the review of the subject. We suggest incorporating the Bayesian

approach (Matsumura, Tsui and Wong, 1990) and distribution-free statistics (Wong and

Miller, 1990) into the subjective probability (Anscombe and Aumann, 1963; Machina

and Schmeidler, 1992) to estimate the subjectively distorted probabilities. Prospect the-

ory will satisfy the Bayesian expected utility maximization. Thus, the problem that the

prospect theory violates the expected utility theory could be circumvented.

The advantage of the SD approach is that we have a decision rule which holds for all

utility functions of certain classes. Specifically, PSD (MSD) of any order is a criterion

which is valid for all S-shaped (reverse S-shaped) utility functions of the corresponding

order. Moreover, the SD rules for S-shaped and reverse S-shaped utility functions can

be employed with mixed prospects. We note that in our paper we do not restrict the

20We note that Wu, Wu and Abdellaoui (2005) develop a critical test of the two prospect theories based
on their respective probability tradeoff consistency conditions.

22



S-shaped utility functions to be steeper than their shapes for gains as the restricted set in

value functions defined by Kahneman and Tversky (1979). However, the class of S-shaped

utility functions defined in our paper is more general and contains all the value functions

with this restriction. Wakka (2003) claims that some examples in Levy and Levy (2002)

violate this curvature restriction on value function posited by prospect theory. In this

paper, as we follow Levy and Levy (2002)’s definition of S-shaped utility function without

this curvature restriction. Our examples could be set without this curvature restriction.

However, one could easier show that all examples with this curvature restriction will fit

our theory well.

The MSD and PSD developed by Levy and Wiener (1998), Levy and Levy (2002, 2004)

and the extensions in our paper only link to the S-shaped and reverse S-shaped utility

functions. These utility functions are simplified version of the utility functions proposed

by Markowitz (1952) which have convex and concave regions in both the positive and the

negative domains. Empirical studies reveal a more complex behavior. For example, people

are mostly risk averse to prospects yielding a best outcome with a low probability but

they are mostly risk seeking to prospects yielding a worst outcome with a low probability

(Starmer 2000 and Luce 2000). Further research includes extension of the MSD and PSD

to link to this more complicated patterns of behavior.

These days, it is popular to apply SD to explain financial theories and anomalies, for

example, McNamara (1998), Post and Levy (2005), Fong, Wong and Lean (2005) and

Broll, Wahl and Wong (2006). Some apply the Levy and Levy approach to study risk

averse and risk seeking behaviors. For example, Post and Levy (2005) study risk seeking

behaviors in order to explain the cross-sectional patterns of stock returns and suggest

that the reverse S-shaped utility functions can explain stock returns, with risk aversion to

losses and risk seeking for gains reflecting investors’ twin desire for downside protection

in bear markets and upside potential in bull markets. Using the second order MSD and
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PSD introduced by Levy and Levy can only detect investment opportunities for SMSD

and SPSD investors. We recommend financial analysts to apply the approach introduced

in this paper and examine the MSD and PSD relationships of different orders so that they

can detect opportunities for MSD and PSD investors of different orders.

One of the main reasons for the recent popularity of the SD in financial literature is

that Post (2003) and Kuosmanen (2004) have developed means to test if it is possible to

construct a dominating portfolio from an infinitely large set of diversified portfolios. As

they increase the appeal of the SD approach in finance, the present paper shows that the

FSD test by Kuosmanen (2004) is consistent with the first-order PSD and MSD as well.

Development of portfolio efficiency tests for the second- and third-order PSD and MSD

would be interesting challenges for future research.
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Appendices

We only prove the necessary condition for both Parts A and B of Theorem 1. The

sufficient condition can be proved by contradiction. Huang and Litzenberger (1988) and

others have proved the sufficeint condition of SD for risk averters. One could easily modify

their proofs to obtain the proof of sufficeint conditions in both Parts A and B of Theorem

1 of our paper.

Appendix A – Proof of Part a of Theorem 1:

Levy and Levy (2002) have proved the second order of Part A of Theorem 1. Suppose

[a, b] is the support with negative a and positive b, we modify and extend their proof to

include the first three orders of the MSD as follows:

∆Eu ≡ u(F )− u(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

= [F (x)−G(x)]u(x)|ba −
∫ b

a

[F (x)−G(x)]u(1)(x) dx

=

∫ b

a

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[G(x)− F (x)]u(1)(x) dx +

∫ b

0

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[GA
1 (x)− FA

1 (x)]u(1)(x) dx +

∫ b

0

[FD
1 (x)−GD

1 (x)]u(1)(x) dx (14)

=

∫ 0

a

u(1)(x) d [GA
2 (x)− FA

2 (x)]−
∫ b

0

u(1)(x) d [FD
2 (x)−GD

2 (x)]

= [GA
2 (x)− FA

2 (x)]u(1)(x)
∣∣0
a
−

∫ 0

a

[GA
2 (x)− FA

2 (x)]u(2)(x) dx−

[FD
2 (x)−GD

2 (x)]u(1)(x)
∣∣b
0
+

∫ b

0

[FD
2 (x)−GD

2 (x)]u(2)(x) dx

= B1 +

∫ 0

a

[FA
2 (x)−GA

2 (x)]u(2)(x) dx +

∫ b

0

[FD
2 (x)−GD

2 (x)]u(2)(x) dx (15)
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= B1 +

∫ 0

a

u(2)(x) d [FA
3 (x)−GA

3 (x)]−
∫ b

0

u(2)(x) d [FD
3 (x)−GD

3 (x)]

= B1 + [FA
3 (x)−GA

3 (x)]u(2)(x)
∣∣0
a
−

∫ 0

a

[FA
3 (x)−GA

3 (x)]u(3)(x) dx−

[FD
3 (x)−GD

3 (x)]u(2)(x)
∣∣b
0
+

∫ b

0

[FD
3 (x)−GD

3 (x)]u(3)(x) dx

= B1 + B2 +

∫ 0

a

[GA
3 (x)− FA

3 (x)]u(3)(x) dx +

∫ b

0

[FD
3 (x)−GD

3 (x)]u(3)(x) dx (16)

where

B1 = [GA
2 (0)− FA

2 (0) + FD
2 (0)−GD

2 (0)]u(1)(0) and

B2 = [FA
3 (0)−GA

3 (0) + FD
3 (0)−GD

3 (0)]u(2)(0) . (17)

From (14), we have if F ÂM
1 G then FD

1 (x) ≥ GD
1 (x) for x ≥ 0 and FA

1 (x) ≤ GA
1 (x) for

x ≤ 0. If u ∈ UR
1 then u(1) ≥ 0. Hence ∆Eu = u(F )− u(G) ≥ 0.

If F ÂM
2 G, then FD

2 (x) ≥ GD
2 (x) for x ≥ 0 and FA

2 (x) ≤ GA
2 (x) for x ≤ 0. If in addition,

u ∈ US
2 then u(1) ≥ 0, u(2)(x) ≥ 0 for x ≥ 0 and u(2)(x) ≤ 0 for x ≤ 0. From (17), B1 ≥ 0,

and hence from (15), ∆Eu = u(F )− u(G) ≥ 0.

If F ÂM
3 G, then FD

3 (x) ≥ GD
3 (x) for x ≥ 0 and FA

3 (x) ≤ GA
3 (x) for x ≤ 0. If in addition,

u ∈ UR
3 then u(1) ≥ 0, u(2)(x) ≥ 0 for x ≥ 0, u(2)(x) ≤ 0 for x ≤ 0, u(2)(0) = 0 and

u(3) ≥ 0. From (17), we have B2 = 0 and hence from (16), ∆Eu = u(F )− u(G) ≥ 0.
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Appendix B – Proof of Part b of Theorem 1:

Levy and Levy (2002) have proved the second order of Part B of Theorem 1. Suppose

[a, b] is the support with negative a and positive b, we modify and extend their proof to

include the first three orders of the PSD as follows:

∆Eu ≡ u(F )− u(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

=

∫ 0

a

[G(x)− F (x)]u(1)(x) dx +

∫ b

0

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[F d
1 (y)−Gd

1(y)]u(1)(y) dy +

∫ b

0

[Ga
1(x)− F a

1 (x)]u(1)(x) dx (18)

=

∫ 0

a

u(1)(y) d [Gd
2(y)− F d

2 (y)] +

∫ b

0

u(1)(x) d [Ga
2(x)− F a

2 (x)]

= [Gd
2(y)− F d

2 (y)]u(1)(y)
∣∣0
a
+

∫ 0

a

[F d
2 (y)−Gd

2(y)]u(2)(y) dy

+ [Ga
2(x)− F a

2 (x)]u(1)(x)
∣∣b
0
+

∫ b

0

[F a
2 (x)−Ga

2(x)]u(2)(x) dx

= B2 +

∫ 0

a

[F d
2 (y)−Gd

2(y)]u(2)(y) dy +

∫ b

0

[F a
2 (x)−Ga

2(x)]u(2)(x) dx (19)

= B2 +

∫ 0

a

u(2)(y) d [Gd
3(y)− F d

3 (y)] +

∫ b

0

u(2)(x) d [FA
3 (x)−GA

3 (x)]

= B2 + [Gd
3(y)− F d

3 (y)]u(2)(y)
∣∣0
a
+

∫ 0

a

[F d
3 (y)−Gd

3(y)]u(3)(y) dx

+ [F a
3 (x)−Ga

3(x)]u(2)(x)
∣∣b
0
+

∫ b

0

[Ga
3(x)− F a

3 (x)]u(3)(x) dx

= B2 + B3 +

∫ 0

a

[F d
3 (y)−Gd

3(y)]u(3)(y) dy +

∫ b

0

[Ga
3(x)− F a

3 (x)]u(3)(x) dx(20)
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where

B2 = u(1)(a)[F d
2 (a)−Gd

2(a)] + u(1)(b)[Ga
2(b)− F a

2 (b)]

+u(1)(0)[Gd
2(0)− F d

2 (0)] + u(1)(0)[F a
2 (0)−Ga

2(0)] and

B3 = u(2)(a)[F d
3 (a)−Gd

3(a)] + u(2)(b)[F a
3 (b)−Ga

3(b)] (21)

+u(2)(0)[Gd
3(0)− F d

3 (0)] + u(2)(0)[Ga
3(0)− F a

3 (0)]

As a ≤ 0, F d
2 (a) ≥ Gd

2(a). Similarly Ga
2(b) ≥ F a

2 (b) as b ≥ 0. Since u(1)(a), u(1)(b) are

nonnegative; Hd
2 (0) = Ha

2 (0) = 0 for H = F and G, we see that B2 ≥ 0. Also, as a ≤ 0,

F d
3 (a) ≥ Gd

3(a) and also we have u(2)(a) ≥ 0. Similarly Ga
2(b) ≥ F a

2 (b) as b ≥ 0, but we

have u(2)(b) ≤ 0. In addition, Hd
3 (0) = Ha

3 (0) = 0 for H = F and G, We see that B3 ≥ 0.

Hence, from (18), if X ÂP
1 Y or F ÂP

1 G, then we have ∆Eu = u(F ) − u(G) ≥ 0;

from (19), we have if X ÂP
2 Y or F ÂP

2 G, then ∆Eu = u(F )− u(G) ≥ 0; and from (20),

we have if X ÂP
3 Y or F ÂP

3 G, then ∆Eu = u(F )− u(G) ≥ 0.
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Table 1 : The Distributions for Investments F and G

Investment F Investment G

Gain Probability (f) Gain Probability (g)

-1,500 1
2

-3,000 1
4

4,500 1
2

3,000 3
4

Table 2 : The MSD Integrals and their Differentials for F and G

Gain First Order Second Order Third Order

X FM
1 GM

1 GFM
1 FM

2 GM
2 GFM

2 FM
3 GM

3 GFM
3

-3 0 0.25 0.25 0 0 0 0 0 0

-1.5 0.5 0.25 -0.25 0 0.375 0.375 0 0.28125 0.28125

0− 0.5 0.25 -0.25 0.75 0.75 0 0.5625 1.125 0.5625

0+ 0.5 0.75 0.25 2.25 2.25 0 5.0625 3.375 -1.6875

3 0.5 0.75 0.25 0.75 0 -0.75 0.5625 0 -0.5625

4.5 0.5 0 -0.5 0 0 0 0 0 0

Table 3 : The PSD Integrals and their Differentials for F and G

Gain First Order Second Order Third Order

X F P
1 GP

1 GF P
1 F P

2 GP
2 GF P

2 F P
3 GP

3 GF P
3

-3 1 1 0 2.25 2.25 0 2.8125 3.375 0.5625

-1.5 1 0.75 -0.25 0.75 1.125 0.375 0.5625 0.84375 0.28125

0− 0.5 0.75 0.25 0 0 0 0 0 0

0+ 0.5 0.25 -0.25 0 0 0 0 0 0

3 0.5 1 0.5 1.5 0.75 -0.75 2.25 1.125 -1.125

4.5 1 1 0 2.25 2.25 0 5.0625 3.375 -1.6875
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Table 4 : The MSP and PSD Differentials for F and G : Case 2

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 -0.45 -0.45 0 0.45

-1.5 0.2 0 0.05 0.375 0.28125 -0.25 -0.075 -0.05625 0.375 0.075

0− 0 0 0.05 0.45 0.9 -0.05 0 0 0.45 0

0+ 0 0 -0.05 -1.35 -4.785 0.05 0 0 1.35 0

3 0 0.75 -0.05 -1.2 -0.9 0.8 0.15 0.225 1.2 0.15

4.5 0.8 0 -0.8 0 0 0 1.35 1.35 0 1.35

Table 5 : The MSP and PSD Differentials for F and G : Case 3

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 0.075 0.73125 0 -0.075

-1.5 0.55 0 -0.3 0.375 0.28125 -0.25 0.45 0.3375 0.375 -0.45

0− 0 0 -0.3 -0.075 0.50625 0.3 0 0 -0.075 0

0+ 0 0 0.3 0.225 -1.18125 -0.3 0 0 -0.225 0

3 0 0.75 0.3 -0.675 -0.50625 0.45 -0.9 -1.35 0.675 -0.9

4.5 0.45 0 -0.45 0 0 0 -0.225 -2.19375 0 -0.225

Table 6 : The MSP and PSD Differentials for F and G : Case 4

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 -0.15 0.225 0 0.15

-1.5 0.4 0 -0.15 0.375 0.28125 -0.25 0.225 0.16875 0.375 -0.225

0− 0 0 -0.15 0.15 0.625 0.15 0 0 0.15 0

0+ 0 0 0.15 -0.45 -2.7 -0.15 0 0 0.45 0

3 0 0.75 0.15 -0.9 -0.625 0.6 -0.45 -0.675 0.9 -0.45

4.5 0.6 0 -0.6 0 0 0 0.45 -0.675 0 0.45
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Figure 1: Functions in UA
2 , UD

2 , US
2 and UR
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Figure 2: Derivatives of Functions in UA
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