Fast Construction of Optimal Circulant Preconditioners for
Matrices from Fast Dense Matrix Method

Raymond H. Chan* Wing-Fai Ngf Hai-Wei Sunt

Abstract

In this paper, we consider solving non-convolution type integral equations by the precon-
ditioned conjugate gradient method. The fast dense matrix method is a fast multiplication
scheme that provides a dense discretization matrix A approximating a given integral equa-
tion. The dense matrix A can be constructed in O(n) operations and requires only O(n)
storage where n is the size of the matrix. Moreover, the matrix-vector multiplication Ax can
be done in O(nlogn) operations. Thus if the conjugate gradient method is used to solve the
discretized system, the cost per iteration is O(nlogn) operations. However, for some inte-
gral equations, such as the Fredholm integral equations of the first kind, the system will be
ill-conditioned and therefore the convergence rate of the method will be slow. In these cases,
preconditioning is required to speed up the convergence rate of the method. A good choice
of preconditioner is the optimal circulant preconditioner which is the minimizer of ||C — A||r
in Frobenius norm over all circulant matrices C'. It can be obtained by taking arithmetic
averages of all the entries of A and therefore the cost of constructing the preconditioner is of
O(n?) operations for general dense matrices. In this paper, we develop an O(nlogn) method
of constructing the preconditioner for dense matrices A obtained from the fast dense matrix
method. Application of these ideas to boundary integral equations from potential theory
will be given. These equations are ill-conditioned whereas their optimal circulant precondi-
tioned equations will be well-conditioned. The accuracy of the approximation A, the fast
construction of the preconditioner and the fast convergence of the preconditioned systems
will be illustrated by numerical examples.

AMS(MOS) subject classifications. 45B05, 65F10, 65R20.

Key Words. Integral equations, circulant preconditioners, conjugate gradient method.

1 Introduction

Circulant matrices are matrices that have constant diagonals and that the first entry of each
column is the last entry of its preceding column. More precisely, each column in the matrix is
obtained by a cyclic shift of its preceding column. For an n-by-n matrix B, the optimal circulant
preconditioner ¢(B) of B is defined to be the minimizer of |C — B||r over all n-by-n circulant

*Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong. Research supported in
part by HK Research Grant Council grant no. CUHK4207/97P.

"Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong.

iDepartment of Mathematics and Physics, Guangdong University of Technology, Guangzhou, People’s Republic
of China. The research of this author is supported by Guangdong Provincial Natural Science Foundation of China
No. 974176.

matrices C, see T. Chan [10]. Here || - || denotes the Frobenius norm. Since ¢(B) is a circulant
matrix, it is determined uniquely by its first column which can be obtained easily by taking
the arithmetic average of the entries b, 3 of B. More precisely, the entries {cs}j_, in the first
column of ¢(B) are given by

1
05+1:ﬁ Z ba,ﬂa 0=0,...,n—1, (1)
a—pF=0(mod n)

see Tyrtyshnikov [17].

Using the circulant structure of ¢(B), the inverse [c(B)]~! of ¢(B) and the matrix-vector
multiplication [¢(B)] 'x for any vector x can be obtained in O(nlogn) operations by using
fast Fourier transforms, see for instance Chan and Ng [8]. Moreover, ¢(B) is positive-definite
whenever B is, see Tyrtyshnikov [17]. This makes ¢(B) a very attractive choice of preconditioner
in the preconditioned conjugate gradient method for solving the system By = b. For then, if
B is positive-definite, the preconditioned matrix is positive-definite. Moreover, the cost of
multiplying [¢(B)]~! to a vector, which is required in each iteration of the method, can be
obtained in O(nlogn) operations by using fast Fourier transforms.

Optimal circulant preconditioners have also been proposed and used successfully in solving
convolution type integral equations, see [12, 4]. The discrete matrices from these integral equa-
tions are Toeplitz matrices if the rectangular quadrature rule is used. For non-convolution type
integral equations, where the discrete matrices are no longer Toeplitz, convergence analysis of
optimal circulant preconditioners has also been studied, see [6, 9]. For example, for boundary
integral equations arising from potential equations, which are ill-conditioned, non-convolution
type integral equations with condition number increasing like O(n), the preconditioned systems
have been shown to be well-conditioned, see Chan, Sun and Ng [9] and also §5.

However, there are two main difficulties in using circulant preconditioned conjugate gradient
methods for non-convolution type integral equations. The first one is that the discretization
matrix B corresponding to the integral equation is dense. Hence multiplying B to a vector,
which is required in each iteration of the conjugate gradient method, is of O(n?) complexity.
The other difficulty is that since B is dense, forming the optimal circulant preconditioner ¢(B)
using (1) will require O(n?) operations in general. In this paper, we will address the second
difficulty.

To overcome the first difficulty, a number of fast multiplication schemes have been developed
in recent years, see for instance [13, 16, 3, 1, 18]. These methods try to obtain an approximation
A to the given integral equation such that the matrix-vector multiplication of A with any vector
can be done in O(n) or O(n logn) operations, depending on the smoothness of the kernel function
of the integral equation. In Chan, Lin and Ng [7], we have proposed a fast dense matrix method
for approximating integral equations. The method is basically the same as the skeleton method
of Tyrtyshnikov [18] applied to a partition suggested in Alpert et. al. [1]. The approximation
matrix A is a dense matrix which can be obtained in O(n) operations and only O(n) storage is
required. Moreover, the matrix-vector multiplication Ax can be done in O(nlogn) operations.

To deal with the second difficulty mentioned above, we will develop in this paper a fast
algorithm for constructing the optimal circulant preconditioner ¢(A) for matrices A that are
obtained from our fast dense matrix method. Using the special structure of our A, the circulant
matrix ¢(A) can be obtained in O(nlogn) operations. Thus, the construction of the discretiza-
tion matrix A and its circulant preconditioner ¢(A), and the cost of multiplying A or [c(A4)] !

to any vector can all be done in O(nlogn) operations. Hence used in conjunction with our
fast dense matrix method, the circulant preconditioned conjugate gradient method for integral
equations requires only O(nlogn) operations per iteration.

To illustrate the efficiency of our construction and the effect of using circulant precondition-
ers, we will apply these ideas in solving first kind integral equations from potential equations.
These equations are known to be ill-conditioned with condition number growing like O(n). Chan,
Sun and Ng [9] have shown however that the problem becomes well-conditioned if it is precondi-
tioned by optimal circulant preconditioners. In particular, the preconditioned system converges
in a fixed finite number of iterations independent of the size of the discretized system. Thus, if
the system is solved by using preconditioned conjugate gradient method coupled with our fast
dense matrix method, the total cost of solving the system is of the order O(nlogn) operations.

The outline of the paper is as follows. In §2, we briefly recall the main concept of the fast
dense matrix method. Preliminary lemmas that are useful in computing the arithmetic average
of diagonals of matrices are given in §3. In §4, we give an O(nlogn) algorithm for constructing
the optimal circulant preconditioners. Finally, in §5, we apply our ideas in solving boundary
integral equations from potential equations where the use of circulant preconditioners will speed
up the convergence.

2 Fast Dense Matrix Method

In this section, we give a brief introduction of the fast dense matrix method proposed in Chan,
Lin and Ng [7]. In the following, n is the size of the discretization matrix under consideration,
i.e. 1/n is proportional to the the mesh size with which we discretize the integral equation. We
will set n = k- 2!, where k is a fixed small integer that depends on the smoothness of the kernel
function of the given integral equation.

The method in [7] approximates a given integral equation or its discretization matrix by sum
of low rank matrices using the partition suggested in Alpert et. al. [1]. It is basically the same
as the skeleton method [18] applied to such a partition. With the partition, B is cut into blocks
of different sizes. The blocks near the main diagonal are of size k-by-k, those next remote are of
size 2k-by-2k, and so forth up to the largest blocks of size 2'2k-by-2/=2k. By grouping blocks
of the same size into one matrix, we can express the matrix B as

B = B(O) + B(l) 4+ 4 B(Z_Q)’ (2)

where B consists only of blocks of size 2#k-by-2/k. As an illustration, for [= 5, B has the
structure as shown in Figure 1, where each B@¥) ig a 4k-by-4k matrix. We can easily check
that the number of nonzero blocks in B" (see Figure 1) is given by

{6 2l —8 n
SR CE

We will denote these nonzero blocks by BWv) =1, ... s Vpe
Our approximation matrix A of B is obtained by approximating each block B () in B by

a rank k matrix A#) by using polynomial approximation. More precisely, the approximation
matrix A is also cut into blocks of sizes the same as that of B. Then A is given by

0,
1,0 —2. (3)

A= A(O) + A(l) 4+ 4+ A(Z_Q)’ (4)

B(2,10) g(2,16)
B(2.11)
B2 B(2.12)g(2,17)
B(2.1)| B(25) B(2.13)
B=
B(2:6) B(2,14) p(2,18)
B(2:2)| B(2.6) B(2.15)
B28)
B23) B(2,9)

Figure 1. Partition of the matrix B.

with each AW, pw=0,...,1—2, consists only of blocks of size 2*k-by-2#k, the same size as B,
As an illustration, for [= 5, A® is of the form

i A(2,10)| (2,16) |
A2,11)
A(24) A(2,12)[4(2,17)
o A2 | A(25) A(2,13)
AR) =
A(2,6) A(2,14) | 4(2,18)
A2:2) | 427 A(2,15)
A(2:8)
AR3) [42,9
L . (5)

Here each of the block AW") is of size 2"k-by-2¢k and is a rank k matrix of the form
Alwr) — (p(ﬂ))TA(N:V)p(M), (6)

where AY) is a k-by-k sampling matrix from B#¥) and P® is a k-by-2#k polynormial in-
terpolation matrix which is the same for all v = 1,...,v,. For p = 0, PO s just the k-by-k
identity matrix. Using (6) and the block structure of A% as depicted in (5), we see that A
can be written as

AW = [1y- & (PWYT] AW 1y @ PO (7)

Here I, is the identity matrix of size 2!7#, ® is the Kronecker tensor product and A g a
matrix having the same block structure as A, except that the blocks A#*) in AW are of size
k. As an illustration, the matrix A® for [= 5 can be written as (cf. (5)):

A(2:10) | A(2,16)
A2:11)
A(2:4) AZ12) | A(217)
A(2,1) A(2,5) A(2,13)
A2 — [[8® (p(2))T] [Is @ P2,
A(2,6) A(2,14) A(2,18)
A(22) | A2T) A(2:15)
A2:8)
A23) | A2:9)
L . (8)
where each A is a k-by-k matrix.
Combining (4) and (7), we then have
1—2 -2
A=A =% [[217# ® (p(u))T} A [[21# ® p(u)] ‘ 9)
#=0 u=0

Thus for the computation of the matrix-vector product Ax using (9), it suffices to form and store
AW and P for 4 =0,...,1 —2 only. As shown in Chan, Lin and Ng [7], these matrices can
be constructed in O(n) operations and requires O(n) storage, and the cost of the matrix-vector
multiplication Ax using (9) is of order O(nlogn) operations.

In §4, we will discuss an O(n logn) algorithm for forming the optimal circulant preconditioner
c(A) of A using the decomposition in (9). In the next section, we give some lemmas that are
useful in computing the arithmetic averages of diagonals of a given matrix.

3 Preliminary Lemmas

Given an n-by-n matrix B with entries b, 3, we define the diagonal sums {df?}?;i(nq) of B to
be the sum along each of the diagonals of B. More precisely,

n
Z ba,a—éa 0<6< n,

_ a=0
dy=1{ 55 (10)

Z ba,a—&a 0< -0 <mn.

a=1

Thus dj is the sum of the main diagonal entries of B, d; is the sum of the entries on the sub-
diagonal and d_; is the sum of the entries on the super-diagonal. We note that once we have
the diagonal sums of B, then ¢(B) can be obtained in O(n) operations. In fact, by comparing
(1) and (10), the following lemma follows.

Lemma 1 Let {df?}?:_i(nq) be the diagonal sums of B. Then the first column entries {cs}5_,
of ¢(B) are given by ¢; = dy and

1
Co+1 = E(d6+d5_”)’ d=1,...,n—1.

In view of (6) and (9), to form c(A) of A given in (9), we need to know how to form the
diagonal sums of A®¥) in (6). It is because they are the fundamental building blocks of A(*)
and hence of A. In the following, we consider the cost and storage requirement for forming
the diagonal sums of matrices of the form given in (6). The results are needed in §4 when we
construct the optimal circulant preconditioner ¢(A) for A. We begin with the complexity counts
of forming diagonal sums for rank 1 matrices.

Lemma 2 Let p = (p1,...,pm) and q = (q1,-..,qm). Then the diagonal sums of the m-by-m
matriz p'q can be obtained in O(mlogm) operations and the storage required is O(m).

Proof: Recall from (10) that the diagonal sums of p‘q are given by

m
Z Palda—6, 0< 0 < m,

o a=0+1
d5 - m+0

Z Pada—s6, 0 S _6 <m.
a=1

In matrix terms, this amounts to

Pm 0
Pm—1 DPm dm_1
. . dm72
. ¢ :
p2 1 e o d
P P2 i Pm : = do ; (11)
- : : d_y
y4I . . Pm—-1 . .
’ : . dm
d_(m-2)
. b2 df(mfl)
0 D1

where the matrix is a column circulant matrix.

It is easy to augment the column circulant matrix to make it a square circulant matrix (which
in fact is determined uniquely by its first column). The diagonal sums {d; };-”:_fm 41 1-e. the right
hand side vector in (11), can be obtained by multiplying the augmented square circulant matrix
to the augmented vector (q1,q2,...,qm,0,...,0)t. This matrix-vector product can be obtained
efficiently by using three fast Fourier transforms of length 2m — 1, see for instance Chan and
Ng [8]. Thus the cost of obtaining the diagonal sums is O(m logm) operations and the storage

required is O(m).

Corollary 1 Let P and Q be two given k-by-m matrices. Then the diagonal sums of the product
P'Q can be obtained in O(kmlogm) operations and the storage required is O(m).

Proof: We have i
PtQ = Z pfxqa (12)
a=1

where p, and q, are the ath row of P and @ respectively. Notice that the sum of the diagonal
sums is equal to the diagonal sums of the sum. Therefore we can form the diagonal sums of
each term p’ q, and sum them up to get the diagonal sums of P!Q). By Lemma 2, the diagonal
sums for each pl,qa, @ = 1,...,k, can be obtained in O(m logm) operations with O(m) storage.
Once the diagonal sums of p' q, are formed, they can be accumulated to the final result and
there is no need to store the intermediate diagonal sums for each a = 1,...,k. Thus the cost
of obtaining the diagonal sums of P'Q is O(kmlogm) operations and storage requirement is

Corollary 2 Let P be a given k-by-m matriz and A be a k-by-k matriz. Then the diagonal
sums of the product P'AP can be obtained in O(kmlogm)+ O(k?m) operations and the storage
required is O(m).

Proof: We just need to compute the product AP first and then apply Corollary 1 to the
product PY(AP). In computing AP, we need one row of the product at any one time (see (12))
and therefore the total cost of forming AP is k?m operations and the total storage required is
O(m). o

4 Construction of Optimal Circulant Preconditioner

In this section, we develop an O(nlogn) method of constructing the optimal circulant precon-
ditioner ¢(A) for the approximation matrix A given in (9). Recall that c(A) is defined as the
minimizer of ||C' — A||r over all circulant matrices C. By (1), it is clear that ¢(-) is a linear
operator. Therefore by (4), we have

-2 -2
c(A) = (Y AW) =3 " c(AW),
#:[] ;LZU

where we recall that n = k- 2!. By Lemma 1, ¢(A®) can be obtained easily if we have the
diagonal sums of A, In view of the block structure of A (cf. (5)), we can have the diagonal
sums of A if we have the diagonal sums of its sub-blocks A®*). Thus in the following, we
first consider the complexity of computing the diagonal sums of the sub-blocks A*). Then the
results will be pieced together to get the complexity counts for computing the diagonals sums
of A.

We begin by noting that for py =1,...,1 — 2, AW ig a block matrix made up of sub-blocks
AW¥) that concentrate only on four block-diagonals (cf (5)). Since the sum of diagonal sums is
equal to the diagonal sums of the sum, one can obtain the diagonal sums of A by summing
the sub-blocks A*) along the four block-diagonals first and computing the diagonal sums
afterward. To be more specific, let us consider the example in (5) first. Here p = 2. The
diagonal sums of A can be obtained from the diagonal sums of the following four matrices:

S, S A, S AR and 3 ACY)
v=1 v=4 v=10 v=16

By (6), these four matrices can be rewritten as
3 3 ,
ZA(ZV) — (p(2))t{z A PO = (p(2))tAg ' p®),
v=1 v=1

9 9
ZA(ZV) — (p(2))t{z AC NP2 = (P@)AP pO)
v=4 v=4

15 15
Z A = (p@)iy Z A PR = (p@)iAP pO)
v=10 v=10
18 18
Z A = (p@)iy Z AN p@) = (P(2))tA512)P(2)_ (13)

v=16 v=16

From the diagonal sums of these four matrices, one can compute the diagonal sums of A, cf.
(5). With this example in mind, it is easy to verify the following lemma.

Lemma 3 For u = 1,2,...,1 — 2, the diagonal sums of A can be obtained in O(kZu2") +
O(k22!=H) + O(k32") operations and O(k2*) storage.

Proof: As in the example above, we first have to sum the A") along the four block-diagonals
to obtain Ag“), Ag“), Ag“) and Afl“) (cf (13) and (8)). By (6), there are 6(2/~1=# — 1) sub-blocks
of A¥) which are all k-by-k matrices. Therefore to form A(a”), a=1,2,3,4, it requires at most
6(2!='=# — 1)k? operations and 4k memory.

Once A(a”) for o = 1,2,3,4 are formed, we compute the diagonal sums of the matrices

(P(u))tA(ﬂ)P(/‘), o = 1,2,3,4,

a

(cf. (13)). We recall by (6) that P are k-by-2#*k matrices. Therefore, by Corollary 2, the
diagonal sums of these four matrices can be obtained in O(k%2*(u + log k) + k32H) operations
and O(k2*) storage.

Once these diagonal sums are formed, we can accumulate them together to get the diagonal
sums of A, This step requires no more than 2#3k operations since there are only four diagonal
sums to accumulate and each of the diagonal sums has no more than 2#*'k numbers. Combining
all the complexity counts above, the lemma follows.

Next we consider the case for y = 0.
Lemma 4 The diagonal sums of A can be obtained in O(k*2') operations and O(k) storage.

Proof: For p = 0, the sub-blocks AOP) are of size k-by-k and are concentrated on 7 (instead
of 4) block-diagonals next to and including the main block-diagonal, see for instance [1, Figure
4]. In other words, A© js a band matrix of band-width less than or equal to 8%. Thus forming
the diagonal sums of A(*) requires at most O(kn) = O(k?2') operations and 8k memory.

Combining Lemmas 10, 3 and 4, we have our main theorem.

Theorem 1 For A given in (9), the cost of forming c(A) for A is of O(knlogn) + O(k*n)
operations and the storage required is O(n).

Proof: In view of Lemma 3 and 4, the cost of obtaining the diagonal sums of EZM;ZO AW s of
the order of

-2
K220+ B2 (2t 4 2 4 k2t) < K120 4+ BP2) = knlogn + kPn.
p=1

The memory requirement is of the order of

-2
8k + kS 28 = k2=l 4 6k = = + k.
+ky + 6k = 3 + 6k
pn=1
Once the diagonal sums of A are formed, by using Lemma 1, the first column of the circulant
matrix ¢(A) can be obtained in just another O(n) operations.

In the next section, we will apply our ¢(A) to solving systems Ax = b arising from non-
convolution type integral equations.

5 Boundary Integral Equations from Potential Equations

In this section, we consider solutions of potential equations

Aw(r) =0, z€Q,

w(z) = g(z), =€,
where 9Q is a smooth close curve in R? and € is either the bounded interior region with boundary
0N} or the unbounded exterior region with boundary 9€2. In the boundary integral equation ap-

proach, the solution w(z) is found by solving the density function u(y) in the following Fredholm
equation of the first kind:

1
—5— [logl|z —ylu(y)dS, = g(z), x € 09, (14)
271' 50

see Chen and Zhou [11, §6.12] or Chan, Sun and Ng [9].
If we define the boundary integral operator B as

(Bua) = —5= [1ogle = yluty)as,

then (14) can be written as
(Bu)(z) = g(). (15)

For simplicity, we parameterize the boundary 0S2 by (z1(0),z2(0)), 0 < 6 < 2w, and thus (15)
can be expressed as

21T
(Bu)(6) = /0 b6, H)o($)dd = g(6), 0<6<2m, (16)

where v(¢) = u(z1(p), 22($)) /(2 (¢))2 + (24(¢))? and the kernel function b(6, ¢) is given by

b(0, ¢) = —% log {(z1(0) — 1(¢))* + (22(0) — x2(¢))*}. (17)

In order to guarantee that the operator B has a positive kernel, such that I have no eigensolutions
of zero, we assume without loss of generality that

diam(0Q) = xglggg |z —y| <1, (18)
see [15, p.453] and [14, Remark2.5]. One can scale down the size of the given boundary if
necessary, see Chan and Zhou [11, p.287].

The well-known advantage of the boundary integral equation approach is that the dimension
of the problem is reduced by one. However, (14) is a first kind boundary integral equation having
a weakly singular kernel. If the Galerkin method with piecewise polynomials basis functions is
applied to discretize (16), the discrete matrix B of B will be ill-conditioned and has condition
number increasing like O(n), where n is the size of the matrix, see for instance Hsiao and
Wendland [15, Remark 4]. Therefore if the system is solved by the conjugate gradient method,
the number of iterations required for convergence will be increasing like O(y/n).

To overcome the ill-conditioned nature of the operator B, optimal circulant integral operators
are proposed in Chan, Sun and Ng [9] to precondition (16). Circulant integral operators are

10

convolution operators with 2m-periodic kernels. The optimal circulant integral operator of a
given operator B is defined to be the minimizer of |||C — B||| over all circulant integral operators
C, where ||| - ||| is the Hilbert-Schmidt norm, see Gohberg, Hanke and Koltracht [12]. For B
given in (16), the kernel function of its optimal circulant integral preconditioner M is given by

1 27
—/ b(0,0 — $)df, 0 < ¢ <2,
2T 0
see Chan, Sun and Ng [9]. Instead of solving (15), we solve the preconditioned equation
M™'Bu= My (19)
It is proven in [9] that this preconditioned equation is well-conditioned.

Theorem 2 (Chan, Sun and Ng [9, Theorems 3,4]) Let B be the integral operator as
defined in (16) and (17) and M be the optimal circulant integral operator for B. Then there
exist positive constants o > y1 > 0 such that the spectrum of M™1B lies in [y1,72]. Moreover,
if the Galerkin method is used to discretize the operator M~'B, then the condition number of
the discretized system is of O(1) independent of the size of the discretized system.

Thus if the conjugate gradient method is used to solve the preconditioned system (19), the
convergence rate of the method is expected to be linear, see Axelsson and Barker [2, p.26].

In the following, we denote by B the discretization matrix of B using the Galerkin method
with the trapezoidal rule and A the approximation matrix to B using our fast dense matrix
method described in §2. We note that the optimal circulant preconditioner ¢(B) of B is equal to
the discretization matrix of M using the rectangular quadrature rule, see Chan, Sun and Ng [9,
Theorem 5]. We remark that the matrix A provides a good approximation to the discretization
matrix B, see [7], [18] or Table 1 below. Since the operator norm of the operator ¢(-) in matrix
2-norm is equal to 1 (see Chan, Jin and Yeung [5, Theorem 3]), we have,

le(A) = e(B)l2 < [|A — Blf2. (20)

Therefore, ¢(A) will be a good approximation to ¢(B) and hence to M.

We now illustrate the effectiveness of the optimal circulant preconditioners and our approx-
imation scheme by using a problem tested in Chan, Sun and Ng [9]. We consider the solution
of (16) on regions © with boundaries 02 as depicted in Figure 2. The boundaries are defined in
polar coordinates by

r = cos 20 + fi(0), 0 <6< 2,

where f5(0) = (* —sin?20)'/? with A > 1. Since § = diam(df2) > 1, we scale the boundary so
that the diameter of the new boundary satisfies p = diam(9€?) = 3/4 < 1, see (18). For such
scaled domains, the kernel function (17) becomes

B 1 p... 0—0¢ 1 . 0— ¢ cos 20 + cos 2¢ 2
bo,p) = —%log5|2sm 5 |—Elog{43m2(0+¢)cos2(T) <1+m>
+ (cos 20 + f1(0))(cos 2¢+f,\(<]5))}
= b1(0,¢) + b2(0, ¢). (21)

11

Figure 2. Solid line: A = 1.1, dashed line: A = 1.3, dotted line: A = 1.5.

The right hand side g(f) in (16) is chosen to be g(f) = |cos(0)|g, 0 <0 < 2r. Al our
computations were done in Matlab on an IBM 43P-133 workstation.

As in Chan, Sun and Ng [9], we discretize [0,27] by uniform mesh and use the Galerkin
method with piecewise constant polynomials as basis functions to discretize the equation. The
integral over each element is computed by using trapezoidal rule with 3 points. Since by in (21)
is a 2m-periodic convolution kernel, we see that the discretization matrix B of B can be written
as B = C'+ By where C' is a circulant matrix corresponding to the integration of b; over the
elements. Thus C is determined only by its first column. From (21), we also see that

b2(07 ¢) = b2(¢7 0) = b2(27T - 07 21 — ¢)7 0 < 97 ¢ < 2m. (22)

Therefore, By is a symmetric centro-symmetric matrix. In particular, if Bo is an n-by-n matrix,
it is determined by its upper half entries [Bs];;, 1 < j < [n/2], 1 <1 < n. The bottom half can
be obtained by reflecting the upper half entries with respect to the center of the matrix.

It is clear that forming the matrix By (or just its upper half) directly by integration of bo
over the elements requires O(n?) operations. In Figure 3, we plot the log of the numbers of
floating point operations in thousand (Kflops) required to form the upper half of B, against [
for different values of & (solid lines). We recall that n = & - 2!. Thus the largest matrix size we
tried is n = 14 - 28 = 3,584. We remark that the counts do not depend on the values of A and
diam(092). We clearly see from the slope of the lines in the figure that the cost of constructing
By is increasing like O(n?).

Besides Bo, we also use our fast dense matrix method to approximate the integration of by
over the elements. This results in a matrix Ay which can be obtained in O(n) operations and
requires only O(n) storage, and that the matrix-vector product Asx for any vector x can be
done in O(nlogn) operations, see Chan, Lin and Ng [7]. By the centro-symmetric property of
by (see (22)), we only need to generate the upper half of As. More precisely, we only need to
apply our method to get the upper left and upper right n/2-by-n/2 submatrices of Ay only. The
bottom half of Ay can be obtained by reflecting these two matrices.

In Figure 3, we plot the log of Kflops required to form the upper half of A, against [
for different values of & (dashed lines). Since n = k - 2!, the largest matrix size we tried is
n = 14 - 2'2 = 57,344. We remark that the counts do not depend on the values of A and
diam(092). We see from the slope of the lines that the cost of constructing A is increasing like
O(n). In contrast, the cost for constructing By is O(n?) (solid lines). We emphasize that there
is no need to form By in order to form As. We get Ay by directly approximating by in (21) using
our fast dense matrix method.

To illustrate the accuracy of our approximation, the relative errors ||Ay — Bo||r/||B2||F for
different A are given in Table 1. Because generating B> is very expensive, we tried only matrices

12

(Kflops)

22

20

[EnN
oo

[y
[op]

[EEN
SN

2

log

10

line with slope =2

line with slope = 1

3

4 5 6 7 8l 9 0 11 12 13
Figure 3. Cost in constructing By, A, and c(Ay) where n =k - 2!

13

14

A=11 1| A=13 | A=15 k
3.89E-03 | 1.20E-03 | 4.37E-04 || 11
4.58E-03 | 1.39E-03 | 5.03E-04 || 11
4.94E-03 | 1.48E-03 | 5.38E-04 || 11
5.13E-03 | 1.53E-03 | 5.57E-04 || 11
5.16E-05 | 3.21E-06 | 4.39E-07 || 14
6.00E-05 | 3.66E-06 | 5.03E-07 || 14
6.43E-05 | 3.90E-06 | 5.36E-07 || 14 3.60E-07 | 3.94E-09 | 1.59E-10
6.65E-05 | 4.03E-06 | 5.54E-07 || 14 3.72E-07 | 4.06E-09 | 1.64E-10

Table 1: || By — As||#/|| Bzl for different kernels, where n = k - 2.

A=11 | A=13 | A=1.5
3.40E-06 | 9.44E-08 | 6.61E-09
3.98E-06 | 1.09E-07 | 7.61E-09
4.27E-06 | 1.16E-07 | 8.12E-09
4.42E-06 | 1.19E-07 | 8.38E-09
2.91E-07 | 3.23E-09 | 1.29E-10
3.37E-07 | 3.70E-09 | 1.49E-10

CO OO OO QO = = | &
O g O U100 N O O =~
CO ~J O U100 J O O =~

of size up to 14 - 2% = 3,584. We see from the table that our approximation scheme provides a
very accurate approximation As to the matrix By even for small £ like 8.

To accelerate the convergence of the conjugate gradient method, we use the optimal circulant
preconditioner ¢(C' + As) to precondition the system (C' 4+ As). By the linear property of ¢(+),
we see that

c(C + As) = ¢(C) + ¢(Az) = C + ¢(As).

In constructing c(Asy), we have also made use of the centro-symmetric property of the matrix
Ao, i.e. we only need to compute the diagonal sums of the upper half of A;. In Figure 3, we
plot the log of Kflops required to form c¢(Ay) against [for different values of k (dotted lines).
Since n = k - 2!, the largest matrix size we tried here is also n = 14 - 212 = 57, 344. We remark
again that the counts do not depends on the values of A and diam(92). We see from the figure
that the cost of constructing c(Az) is increasing like O(nkl) = O(nlogn). In contrast, the cost
for constructing ¢(Bs) using (1) will be of O(n?) operations.

Next we test the efficiency and accuracy of solving (19) using the approximation Ag for Bo
and the optimal circulant preconditioner C' + ¢(As). Using the conjugate gradient method, we
solve for the vector x in the non-preconditioned system (cf (16))

(C+ Ba)x =g, (23)
and for the vector y in the preconditioned system (cf (19))
c(C + A2)7H(C + Ag)y = ¢(C + Ay) " 'g. (24)

We note that ¢(C + Ay) = C + ¢(As2) is a circulant matrix. Hence its inverse can be found
efficiently in O(nlogn) operations by using fast Fourier transforms, see Chan and Ng [8]. Thus
the cost per iteration of solving (23) and (24) by conjugate gradient method is O(n?) and
O(nlogn) operations respectively.

For both systems (23) and (24), we choose the zero vector as the initial guess and the
stopping criterion is ||ry||2/||roll2 < 10710, where r, is the residual vector at the gth iteration.
The numbers of iterations required for convergence for different A are given in Table 2, where
the symbols C' and I indicate if circulant preconditioning is used or not. From the table, we
see that the numbers of iterations of the preconditioned systems are smaller than that of the
non-preconditioned ones considerably. Notice that the iteration numbers of the preconditioned

14

p:3/4 A=1.1 A=1.3 A=1.5

k l I C en I C en I C en

4 5129 9 590E-03| 30 8 1.60E-03| 31 7 1.52E-03
4 6 | 40 9 641E-03 | 41 7 1.75E-03 | 41 7 1.62E-03
4 7 |54 9 683E-03| 54 7 1.81E-03| 53 7 1.65E-03
4 8 |70 9 THE-03| 71 7 1.8E-03| 74 7 1.67E-03
8 5 |40 9 191E-04 | 41 7 241E-05| 41 7 4.33E-06
8 6 | 54 9 2.03E-04| 54 7 259E-05| 53 7 4.63E-06
8 7 |7 9 206E-04| 71 7 26lE-05| 74 7 4.70E-06
8 8 |94 9 214E-04 | 94 7 261E-05| 95 7 4.77E-06
11 5 | 51 9 3.76E-05| 49 7 1.03E-06 | 49 7 9.09E-08
11 6 | 63 9 4.07E-05| 63 7 1.14E-06 | 64 7 9.90E-08
1 7 | 8 9 4.14E-05| 8 7 1.16E-06 | 8 7 1.01E-07
11 8 [117 9 4.26E-05 | 118 7 1.18E-06 | 118 7 1.02E-07
14 5 | 53 9 583E-06| 53 7 4.81E-08 | 54 7 5.57E-09
14 6 | 73 9 6.47E-06 | 74 7 536E-08| 74 7 9.01E-09
14 7 193 9 6.51E-06| 95 7 5.51E-08| 91 7 2.19E-08
14 8 [121 9 6.44E-06 | 123 7 6.11E-08 | 122 7 3.03E-08

Table 2: Numbers of Iterations and Relative Errors, where n = k - 2.

systems are uniformly bounded whereas those of the original systems are increasing with n as

expected.

Finally, we compare the accuracy of the solution y of the approximate system (24) with the
solution x of (23). We give the relative errors ||x —y||2/||x||2 for different A in Table 2 under the
column e,. We see that the solution y provides a very accurate approximation to the solution

x even for small &.

15

References

[1]

2]

[13]

[14]

[15]

[16]

[17]

[18]

B. Alpert, G. Beylkin, R. Coifman and V. Rokhlin, Wavelets for the Fast Solution of
Second-Kind Integral Equations, STAM J. Sci. Comput., 14 (1993), 159-184.

O. Axelsson and V. Barker, Finite Element Solution of Boundary Value Problems, Academic
Press, Orlando, 1984.

G. Beylkin, R. Coifman and V. Rokhlin, Fast Wavelet Transforms and Numerical Algo-
rithms I, Comm. Pure Appl. Math., 46 (1991), 141-183.

R. Chan, X. Jin and M. Ng, Circulant Integral Operators as Preconditioners for Wiener-
Hopf Equations, Integr. Equat. Oper. Theory, 21 (1995), 12-23.

R. Chan, X. Jin and M. Yeung, The Circulant Operator in the Banach Algebra of Matrices,
Lin. Algebra Appls., 149 (1991), 41-53.

R. Chan and F. Lin, Preconditioned Conjugate Gradient Methods for Integral Equations of
the Second Kind Defined on the Half-Line, J. Comput. Math., 14 (1996), 223-236.

R. Chan, F. Lin and W. Ng, Fast Dense Matriz Method for the Solution of Integral Equations
of the Second Kind, Numer. Math. J. Chinese Univ. (English Ser.), 7 (1998), 105-120.

R. Chan and M. Ng, Conjugate Gradient Methods for Toeplitz Systems, STAM Review, 38
(1996), 427-482.

R. Chan, H. Sun and W. Ng, Circulant Preconditioners for Ill-Conditioned Boundary Inte-
gral Equations from Potential Equations, Int. J. Numer. Meth. Eng., 43 (1998), 1505-1521.

T. Chan, An Optimal Circulant Preconditioner for Toeplitz Systems, STAM J. Sci. Statist.
Comput., 9 (1988), 766-771.

G. Chen and J. Zhou, Boundary Element Methods, Academic Press, London, 1992.

I. Gohberg, M. Hanke and I. Koltracht, Fast Preconditioned Conjugate Gradient Algorithms
for Wiener-Hopf Integral Equations, STAM J. Numer. Anal., 31 (1994), 429-443.

L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, J. Comput. Phys.,
73 (1987), 325-348.

G. Hsiao and R. C. MacCamy, Solutions of Boundary Value Problems by Integral Equations
of the First Kind, SIAM Rev., 15 (1973), 687-705.

G. Hsiao and W. L. Wendland, A Finite Element Method for Some Integral Equations of
the First Kind, J. Math. Anal. Appla. 58 (1977), 447-481.

L. Reichel, Fast Solution Methods for Fredholm Integral Equations of the Second Kind,
Numer. Math., 57 (1989), 719-736.

E. Tyrtyshnikov, Optimal and Super-Optimal Circulant Preconditioners, STAM Matrix
Anal. Appl., 13 (1992), 459-473.

E. Tyrtyshnikov, Mosaic Ranks and Skeletons, Lect. Notes Comput. Sc., 1196 (1997), 505—
526.

16

