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Abstract

Discretized 2-D deconvolution problems arising, e.g., in image restoration and seis-
mic tomography can be formulated as least squares computations, min ||b—Tz||2, where
T is often a large-scale rectangular Toeplitz-block matrix. We consider solving such
block least squares problems by the preconditioned conjugate gradient algorithm using
square nonsingular circulant-block and related preconditioners, constructed from the
blocks of the rectangular matrix T'. Preconditioning with such matrices allows efficient
implementation using the 1-D or 2-D Fast Fourier Transform (FFT). Two block pre-
conditioners, related to ones proposed by T. Chan and J. Olkin for square nonsingular
Toeplitz-block systems, are derived and analyzed. We show that, for important classes
of T, the singular values of the preconditioned matrix are clustered around one. This
extends our earlier work on preconditioners for Toeplitz least squares iterations for 1-D
problems.

It is well known that the solution of ill-posed deconvolution problems can be sub-
stantially improved by regularization to compensate for their ill-posed nature. We
show that regularization can easily be incorporated into our preconditioners, and we
report on numerical experiments on a Cray Y-MP. The experiments illustrate good
convergence properties of these FFT-based preconditioned iterations.
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1 Introduction

In this paper we investigate conjugate gradient preconditioners for the iterative solution of
some large-scale structured least squares problems arising, for example, in 2-D deconvolution.
Our aim is to provide computational algorithms, backed up by formal convergence analyses,
and to report on preliminary numerical experience with applying the algorithms to some
simulation problems in image restoration.

The preconditioned conjugate gradient (PCG) method is an iterative method of funda-
mental importance for solving systems of linear equations, cf., Golub and van Loan [13].
When 7' is a rectangular matrix with full column rank, one can still use the CG algorithm
to find the solution to the least squares problem

min ||b — T'z||5. (1)
This can be done by applying the algorithm to the normal equations in factored form,
T (b—Tzxz) =0, (2)

which can be solved by conjugate gradients without explicitly forming the matrix 7%7.

The convergence rate of the conjugate gradient algorithm depends on the singular values
of the least squares data matrix 7', see Axelsson and Lindskog [3]. If the singular values
cluster around a fixed point, convergence will be rapid. Thus, to make the algorithm a
useful iterative method, one usually preconditions the system. The PCG algorithm then
solves (1) by transforming the problem with a preconditioner C, applying the conjugate
gradient method to the transformed problem, and then transforming back. More precisely,
one can use the conjugate gradient method to solve

min ||b — TC”IyHQ,

with Cz = y. The version of the PCG algorithm we use is given in [5] and can be stated as
follows:

Algorithm 1. PCG for Least Squares. Let 2(*) be an initial approzimation to Tx = b,
and let C' be a given preconditioner. This algorithm computes the solution, x, to the
least squares problem (1).
r® =p — Tz
p(o) —_ S(O) —_ C’**T*T(O)
Yo = [1sO1l3
for k=0,1,2,...
q(k) e chlp(k)
o = /99
x(k+1) — x(k) _|_ akcflp(k)

plE+1) — (k) _ akq(k)
S(lc-i—l) _ O_*T*T(k+1)
Ve+1 = ||5(k+1)||%

Br, = ’Yk+1/7k

p(k+1) — S(k+1) _|_ ﬁkp(k)




This approach is generally called the Preconditioned CGNR method. A variation of
CGNR is the LSQR method of Paige and Saunders [26]. When the problem is properly
scaled, these two methods are mathematically equivalent, e.g., [5].

In this paper we consider the least squares problem (1), where the data matrix is a
rectangular matrix with square n-by-n Toeplitz blocks. Such matrices are said to have a
Toeplitz-block (TB) structure. It is well-known that a matrix with a block-Toeplitz (BT)
structure ( i.e., the blocks form a Toeplitz pattern) can always be permuted into a matrix
that is Toeplitz-block. Thus we will concentrate on the TB form.

Toeplitz-block least squares problems occur in a variety of 2-D applications, especially in
signal and image processing, cf., Andrews and Hunt [2], Jain [19] and Oppenheim and Schafer
[25], and sometimes in computerized geophysical tomography, cf., Nolet [24] and van der Sluis
and van der Vorst [29]. A comparison of the non-preconditioned CGNR algorithm with ART
(Algebraic Reconstruction Techniques) for seismic tomography applications, where T' is not
necessarily Toeplitz, has been given by van der Sluis and van der Vorst [30]. They show that
the conjugate gradient method CGNR performs much better than ART for these seismic
applications. The general problems we are considering have the following characteristics:

e they are very large;

e they are structured;

e they may have singular values very close to 0;

e the right-hand side is generally perturbed by noise.

A square matrix T' = (t;;) is said to be Toeplitzif t;;, = t;_4, i.e., T is constant along its
diagonals. An n-by-n matrix C' is said to be circulant if it is Toeplitz and its diagonals c;
satisfy ¢, j = c¢_; for 0 < j <mn — 1. Recently, we have shown how to precondition Toeplitz
least squares computations using square circulant matrices C', and have applied the methods
to solving 1-D deconvolution problems. These methods are based upon application of the
Fast Fourier Transform, FE'T, in finding the eigenvalues of C' and in performing the CGNR
iterations [8]. By applying the FFT, all matrix-vector multiplications involving 7" and T*
and solutions to linear systems involving C' and C* can be performed in at most O(mlogn)
operations, where 7" is m-by-n [8].

The idea of using the preconditioned conjugate gradient method with circulant precon-
ditioners for solving square positive definite Toeplitz systems was first proposed by Strang
[28]. The application of circulant approximations to Toeplitz matrices has been used for
some time in image processing, e.g., [4], but not as preconditioners for conjugate gradient
iterations.

In this paper we consider the T. Chan [9] circulant approximation for a square Toeplitz
matrix. The circulant approximation is optimal with respect to the Frobenius norm. The
T. Chan preconditioner is defined for arbitrary square matrices A, and is constructed by
averaging the entries along certain pairs of diagonals of A. In particular, for a given generic
n-by-n matrix A, let C' be the n-by-n circulant approximation of A as defined in T. Chan



[9], i.e., C' is the minimizer of F(X) = ||A — X||r over all circulant matrices X. For the
special case where A = T, where T is Toeplitz, we note that the (7, £)th entry of C' is given
by the diagonal c¢;_, where

— k)t + kty_p
ck:{(" Wit Min o< <,

n (3)
Cntk 0< —k<n.

Throughout this paper we will use the T. Chan approximations exclusively as a basic tool
to construct our preconditioners for Toeplitz-block least squares problems. Other circulant
preconditioners can perhaps be used in our work, by appropriately modifying the convergence
analysis material in §3. We emphasize that the T. Chan circulant preconditioner can also
be defined even when T is not Toeplitz, see [9].

Recently, the use of circulant preconditioners was considered for Toeplitz least squares
problems by Nagy [22] and Nagy and Plemmons [23]. In R. Chan, Nagy and Plemmons|[8] we
establish formal convergence results and provide applications when 7" has a “1-D TB form”.
More precisely, we consider kn-by-n matrices 1" of the form

T= ) (4)

where each square block Tj is a Toeplitz matrix. Notice that by extending the Toeplitz
structure of the matrix 7" and padding the bottom rows with zeros, we may assume without
loss of generality that 7" is m-by-n with m = kn for some positive integer k. This padding
is only for convenience in constructing the preconditioner and does not alter the original
least squares problem. If T' itself is a rectangular Toeplitz matrix, then each block T is
necessarily Toeplitz. For each block T}, we construct a circulant approximation C;. Then
our preconditioner is defined as a square circulant matrix C, such that

k
CcrC=> " CrC;.
7=1

Since each C is an n-by-n circulant matrix, it can be diagonalized by the Fourier matrix £,
ie.
C; = F"'\;F
where A; is diagonal, see Davis [11]. In particular, A;1 = F'¢;, where 1 is the vector of all
ones and ¢; is the first column of Cj.
Therefore the spectrum of Cj, j =1,-- -k, can be computed in O(nlogn) operations by
using the Fast Fourier Transform (FFT). Since

k
C*C'=F*) (AjA))F,

i=1
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C*C is also circulant and its spectrum can be computed in O(knlogn) operations, where T
is kn-by-n. Here we choose, as in [22, 23], C' to be the symmetric positive definite matrix
defined by

k
C=F()_ AN (5)
7=1

Notice that to use the preconditioner C' in Algorithm 1 we need only know its eigenvalues.
That is, we simply use the right-hand side of (5) to solve linear systems involving C' and C*.
The construction is summarized in the following algorithm:

Algorithm 2. Construction of the preconditioner for 1-D problems. Let T be given
in (4), and let F denote the n-by-n discrete Fourier matriz. This algorithm computes
the eigenvalues of C' given in (5) and stores them in the diagonal matriz A.

Find the first column, ¢;, of C; using (3), j=1,--- k.
Find A from A;1 = F¢;, using the FFT, j=1,--- k.

A= (5 AAy)2.

We show in [8] that the cost per iteration in the preconditioned conjugate gradient method
based on the use of A and F' is of the order O(mlogn) where m = kn. As already mentioned
in the beginning, the convergence rate of the method depends on the distribution of the
singular values of the matrix TC'~!, which are the same as the square roots of the eigenvalues
of the matrix (C*C) 1 (T*T). We also show in [8] that if the generating functions of the blocks
T; are 2m-periodic continuous functions and if one of these functions has no zeros, then the
singular values of the preconditioned matrix TC~! are clustered around 1. Tt turns out that
the class of 2m-periodic continuous functions contains the Wiener class of functions, which
in turn contains the class of rational functions considered in Ku and Kuo [21].

By using a standard error analysis of the conjugate gradient method, we then show in [8]
that if the condition number x(7) of T is of O(n®), then the number of iterations required
for convergence is at most O(alogn + 1) where o > 0. Since the number of operations
per iteration in the conjugate gradient method is of O(mlogn), the total complexity of the
algorithm is therefore of O(amlog? n+mlogn). In the case when o = 0, i.e., if one block of
T is well-conditioned, the method converges in O(1) steps. Hence the complexity is reduced
to just O(mlogn) operations for solving these Toeplitz least squares problems. In [8] we
also report on numerical experiments and applications of the method to 1-D deconvolution
computations in signal restoration.

The outline of this paper is as follows. In §2, we define the Toeplitz-block least squares
problem and suggest two preconditioners which are based on using either the 1-D or the
2-D FFT in the computations. Our preconditioners are related to those suggested by T.
Chan and J. Olkin [10] for the square nonsingular TB case. In §3, we provide a detailed
convergence analysis for the resulting preconditioned iterations under mild assumptions on



the generating functions for the Toeplitz blocks. In §4, we discuss an application of our
methods in the area of 2-D deconvolution computations arising in image restoration. Such
problems generally lead to very ill-conditioned least squares computations, due to the ill-
posed nature of associated inverse problems. In §5, we discuss the technique of regularization
when the given rectangular Toeplitz-block matrix is ill-conditioned. Numerical results and
some concluding remarks on future work are given in §6.

2 Construction of the 2-D Preconditioners

We now derive two preconditioners for Toeplitz-block, i.e., 2-D, least squares problems. The
first is called the Level-1 preconditioner, since it is based in part on circulant approximations
only at the Toeplitz-block level. The second, Level-2, preconditioner is based on circulant
approximations at the Toeplitz-block level and again at a second, block-Toeplitz level . Each
preconditioner reduces to the one described in Algorithm 2 for the special case of 1-D Toeplitz
least squares problems.

Let T" be the kmn-by-mn matrix of the form

) (6)

where each block T®W, i = 1,--- k, is a Toeplitz-block matrix. More precisely, T® can be
partitioned as

ny Tp oo T
po | a0 Tz B G )
19, 19, . 1,

where each TOE?B, 1 < a,8 < m, is an n-by-n Toeplitz matrix. In particular, the (v,0)th

(4)

entry of Tafﬂ depends only on v — 4, i.e.
Tohhs = Tohlsy 1<a,f<m, 1<7,6<n

We denote T®) given in (7) as a TB(1,m,n) matrix and 7" given in (6) as a general TB
(k,m,n) matrix. If, moreover, T is also a block—Toeplitz (BT) matrix, i.e.

T =105 1<a,8<m,

then we call T® in (7) a block—Toeplitz matriz with Toeplitz-blocks, and denote it as a
BTTB(1,m,n) matrix. If each block T® in (7) is BTTB(1,m,n), then T in (6) is BTTB



(k,m,n). Such a matrix has a column of k£ blocks T®", each of which is a block-Toeplitz ma-
trix with m blocks in each direction, and where each individual block is an n-by-n Toeplitz
matrix. In particular, n-by-n Toeplitz matrices are denoted by BTTB(1,1,n) and the
Toeplitz least squares matrix in (4) associated with 1-D problems is BTTB(k, 1,n). Similar
notation will be used for circulant-block and block-circulant matrices.

We first describe a preconditioner, to be called the Level-1 preconditioner, which is
based upon an application of the 1-D FFT and the computation of a resulting approximate
Cholesky factor of T*7T. We will show how to construct an mn-by-mn preconditioning
matrix R = (I,, ® F,)*R(I,, ® F,) for Algorithm 1, where R is block upper triangular with
diagonal blocks, and F;, denotes the Fourier transform matrix of dimension n. Here, ®
denotes the usual Kronecker product. It turns out that the actual preconditioner R is block
upper triangular with circulant blocks. Thus applying the preconditioner R in Algorithm 1
involves application of the 1-D FFT together with backsolves involving R.

For an n-by-n Toeplitz block T 5 of T, we let c(T 3) denote the T. Chan [9] circulant
preconditioner of Ty, g, as defined 1n (3). Usmg this notatlon and the Fourier transform
represented by the matrix F},, we construct a first-level circulant block approximation ¢, (T( ))
to T given by

o(1y)) (1Y) o1y,
(10) = ez = | 0 ) T ®)
o) o1, o (T
Notice that we can express ¢;(T®) as
(TD) = (I, @ F,)* A1, ® F,), i=1,---,k,

where the subscripts on the matrices indicate the dimensions and ® indicates the Kronecker
product. (We will drop the subscripts on these matrices in cases where their dimensions are
apparent.) Here A is the block matrix whose (o, 3) block entry is given by the diagonal
matrix _ _
AYy = Fe(T) F.
Then the preconditioner R that we seek satisfies

R'R=c(TV)ei(TY) + -+ e(TW) e (TW) = (I @ F)'BU ® F),

where
k

B = (Bag) = Y (AD)"AD.

i=1
Here, each B, is a diagonal matrix. Observe that the matrix B is symmetric positive
definite.



Let [¢V), .-, #™)]T be an mn-vector, where 7" = [vgi), e w(f)]T

matrix P by

. Define a permutation

P, .. g mT = [V (m) o) T

y U, yUn ™ » Un

That is, P groups together all the first elements of each block vector, followed by all second
elements, etc. Then it is easy to see that P satisfies

PTBP = diag(By,- - -, B,),
where each B; is an m-by-m symmetric positive definite matrix. Thus we can factor
P"BP = R"R,

where R is the Cholesky factor of PTBP, which can be obtained by block factorization of
the m-by-m symmetric positive definite blocks B;. Then we define the Level-1 preconditioner
R by

R=(I® F)*PRP'(I®F). (9)

Notice that R = PRPT is block upper triangular with diagonal blocks, and hence R is
block upper triangular with circulant blocks. We also note that when T is block-Toeplitz
with Toeplitz blocks, BTTB(1, m,n), then each B; is Toeplitz. Thus a fast Toeplitz algo-
rithm [14] can be used to construct R. The permutation matrix P in (9) is for notational
convenience only, and no permutations need to be used in the actual implementation. The
Level-1 preconditioner is thus formed by using the 1-D Fourier transform and the Cholesky
algorithm. It is essentially a transform based approximate Cholesky factor of T*T.

The construction of our Level-1 preconditioner for the TB(k, m,n) matrix 7" is summa-
rized in the following algorithm:

Algorithm 3. Construction of the Level-1 preconditioner for 2-D problems. Let T
be the TB(k,m,n) matriz given as in (6) with the T®) given as in (7), let F denote
the n-by-n discrete Fourier matriz, 1 denote the vector of all ones, and let e, denote
the first unit vector. This algorithm computes the Level-1 preconditioner R for T as
an approximate factor of T*T.

Find the first column, c(TO%)el, of c(To(f)ﬁ) using (3), for all o, B and i =1,- -k,
Find Ag,)ﬂ from A(of?ﬁl = FC(TO(Z?B)GD using the FFT, for all a, 8 and i =1,---, k.
Set AU = (A(i,)ﬂ) and form B =YF_ (AD)*A®),

Factor B = R*R, R block upper triangular with diagonal blocks.

A

Set R=(I® F)'R(I® F).

In the following table, we write down the cost in the different stages of forming the Level-1
preconditioner R, for the cases where T is either block-Toeplitz (BT) or block-Toeplitz with
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Toeplitz blocks (BTTB). Of course R is kept in the factored form R = (I ® F)*R(I ® F).
Recall that T is kmn-by-mn.

Computations Order of Operations
(fori=1,---k) TB ‘ BTTB
c(TO(f)B)el km?®n kmn
A® kEm?*nlogn | kmnlogn
B km3n km?n
R m3n nmlog®m

Table 1. Order of operations for constructing the preconditioner R in Algorithm 3.

Observe that for any vector y, R~'y can be computed by the formula R~'y = (I ® F)*z,
using the FF'T, where z = I%_I(I ® F)y can be computed using the FFT and block back
substitution with diagonal blocks. The computation of R~'y is parallelizable and involves
O(mn?) operations.

For the second, Level-2, preconditioner, each matrix 7' is approximated by the second-
level circulant preconditioner cy(7T™) related to the one proposed by T. Chan and Olkin [10]
for square Toeplitz-block matrices. Then we stack the c,(T®) together to get our circulant
approximation to 7"

CQ(T(’“))

Since the matrix c3(T) is of the type CB(k, m,n) and is not square, it cannot be used as a
preconditioner in Algorithm 1 applied to the block Toeplitz least squares problem.

We now construct a square matrix C', the Level-2 preconditioner, of size mn-by-mn such
that

C*C = co(T) ea(T) = Y eo(TW) en(TW). (10)

From Chan and Jin [6, Theorem 3], it follows that the matrix co(7™) we seek satisfies
eo(TW) = (Fp @ Fp)*0[(Fip @ Fo)TO(Fp, @ F)(Frn @ Fy) i=1,---,k,  (11)

where §[A] denotes the diagonal matrix whose diagonal is equal to the diagonal of the matrix
A, and Fy denotes the Fourier matrix of size ¢. (Again, we will drop the subscript for Fy in
the following discussion.)

Clearly, the matrix 6[(F ® F)T®(F ® F)*] gives the eigenvalues of c,(T®). Adopting
the procedure used to construct our previous preconditioners, it follows from (10) that we
can define the Level-2 preconditioner C' to be

C=(F®F)®(FeF), (12)

9



where
k 1/2
@:{E}mF®mﬂWF®mTﬂw®Fﬂww®Fﬂ} (13)

is a square diagonal matrix.
We next introduce an efficient way of generating the diagonal matrix

S[(F @ F)YTY(F @ F)*].

For any T let ¢;(T®) be the first-level circulant approximation to T given by (8), where
c(TO(f?B) is the T. Chan circulant preconditioner for T(f)ﬁ, see (3). In this notation, the ~th

[0}

entry of the first column of c(To(f)ﬁ) is given by

i 1 i
(Topho=— >, [Taplw 0<7<n-1 (14)

p—v=y(modn)

Now we apply another first-level circulant approximation ¢ to ¢, (T™) to get the second-
level circulant approximation c,(T) that we want. The matrix & {c,(T®)} is obtained by
treating each block c(To(f)ﬁ) in ¢;(T®™) as an entry of a matrix and then applying formula (3)
to this “point” matrix. More precisely, we form the block-circulant matrix

A I
) . C i i ij
cifa (T(l))} = 1 0 . o
SN .
where in the notation (14),
| ;
C’g) = c(TO(é}}), 0<y<m-—1. (15)

a—pB=y(modm)

Since each c(To(f)ﬁ) is circulant, we see that the sums C~’§i) are circulant matrices. Moreover,

by their definition in (15), we see that

o6 — o0

5 ems 0 <7y <m.

In particular, we see that & {c;(T®)} is then a block-circulant matrix with circulant blocks
of the form BCCB(1,m,n). We note further that

o(TV) = & {er(TW)},

see Chan and Jin [6, Theorem 3]. Thus the entries of c,(T®™) are given by formulas (14) and
(15). For our purposes, we need only find the first column of c,(T®).

10



By (11), we see that the eigenvalues of c(T™) are given by the vector
S[(F@ F)TYF®F) |1 =(F® F)e,(TY)(F® F)1.
Since (F' ® F)*1 = e, we see that
S[(F @ F)TO(F @ F)*]1 = (F ® F)ey(TD)ey.

Thus the eigenvalues of ¢;(T™) can be obtained by taking the 2-D FFT of the first column
of ¢o(T™), which is given by (14) and (15). Once we have the eigenvalues of each cy(7?),
then ® can be computed easily by (13).

The construction of our Level-2 BCCB preconditioner (i.e., the eigenvalues of C') for the
matrix 7" is summarized in the following algorithm:

Algorithm 4. Construction of the Level-2 preconditioner for 2-D problems. Let T be
the TB(k,m,n) matriz given as in (6) with the T given as in (7) and let F denote
the n-by-n discrete Fourier matrixz. This algorithm computes the eigenvalues of the
BCCB preconditioner C given in (12), using the 2-D FFT, and stores them in the
diagonal matrix P.

Find the first column, é(li), of c(TW) using (14), i=1,---,k.
Find the first column, E(Zi), of co(TW) using (15), i=1,--- k.
Find A; from \i1 = (F @ F)&”, using the 2-D FFT, i=1,---,k.
® = (S5, A5
In the following table, we write down the cost in the different stages of forming the
Level-2 BCCB preconditioner C, for the cases where T is either block-Toeplitz (BT) or

block-Toeplitz with Toeplitz blocks (BTTB). For implementation in Algorithm 1, we need
only the eigenvalues of C' together with the 2-D FFT. Recall that T is kmn-by-mn.

Computations Order of Operations
(fori=1,---k) TB | BTTB
E(li) km?*n kmn
E(;) km?*n kmn
A; kmn(logn + logm) | kmn(logn + logm)
) kmn kmn

Table 2. Order of operations for constructing the eigenvalues of C' in Algorithm 4.

We note that for any vector y, by (12), C~'y can be computed by the formula
Cly=(FRF)*d (F®F)y

in O(kmn(logn + logm)) operations by using the 2-D FFT.

11



3 Convergence Analysis

In this section, we analyze the convergence rates of the methods in the case where all the
blocks T in the matrix 7" are BTTB. For simplicity, we write

T o1, T,

ro g o,

T co Ty
|y, Ty, e T T

where each T;Si), || < m, is a Toeplitz matrix by itself. We denote the entries of Tlgi) by

[Tﬁsi)]y,(; = tEi)%a, 0<7,6<n.

We assume that the double-index sequence formed by tEi),, is absolutely summable for

each i, i.e.
o0 o0

S N I <Ki<oo i=1,-k (16)

[=—00 V=—00

Thus we immediately have
ITON; < ITOIL TNl < KZ i= 1,000 k. (17)

We will analyze both the Level-1 and Level-2 preconditioners in the following sections. How-
ever, since the proof for the Level-2 preconditioners basically covers most of that for the
Level-1 preconditioners, we begin with the Level-2 preconditioners first. The results for
Level-1 preconditioners will come as corollaries.

3.1 Level-2 Preconditioners

The following Lemma is proved in Chan and Jin [6, Theorem 4] for the case where T is real
symmetric BTTB. Its generalization to general complex BTTB matrices is straightforward
and therefore we omit its proof here.

Lemma 1 Let T% satisfy (16). Then for all € > 0, there exists N; > 0, such that for all
n > N; and m > 0, _ _ _ _
TO — ¢ (T = Ul(l) + V1(Z)

where

rank U = O(m)

and _
V7], < e.

12



Thus 7@ and ¢, (T®) are close, apart from a rank O(m) perturbation. Next we will
show that ¢;(T™) and cy(T™) are also close. We use this fact for the purpose of analyzing
the convergence rate for the Level-2 preconditioner.

Lemma 2 Let T satisfy (16). Then for all € > 0, there exists M; > 0, such that for all
m > M; and n > 0, _ _ _ _
e (TD) = ep(TD) = U + v

where

rank U’ = O(n)

and _
V3]s < e.

Proof: We first recall that the first-level circulant preconditioner to T is given by

c1 (T(z)) — C(jjl ) C(ZTO C(T 7m) ,
(T ) «(T,) c(T3")

and that each block c(TlEi)) can be diagonalized by the Fourier matrix F'. Thus

I

) A 2 A (2 . A (2

I®Fa(TH(IeF) = | " S (18)
Asz)—1 A%)—z e Agl)

where A,(f) are diagonal matrices with their ath diagonal entries given by

n—1
[AZ Z n—|v|)t, @ e’27ri”a/”, 0<a<n, (19)

=—(n-1)

see for instance Chan and Yeung [7]. Clearly, we have
A laal < D DL 0<a<n (20)

Next we recall that cy(T®) = & [c;(T™)] is a BCCB matrix and hence it is easy to show
that (cf. Chan and Jin [6, Lemma 4])

(I® F)e(T(I @ F) = (I® F)&[a(T]I e F)*
= &I ® F)e(TYYI @ F)Y.
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By applying formula (15) to the matrix in (18), we get
&I ® F)e (T (I ® F))

AP mAT S TAD e A et
| mafeaan, T AT BA e
mA AL mEAG AT, Ay

Thus

(I® F)e(TY(I® F) —(I® F)ey(TY)(I ® F)*
= IQF)a(THI®F) — &I F)ey(TY)(I @ F)']

0 AGADL AR, AP AR, P
Clapean, Y

T om
R | CECE
A —AD AT Al AP — AP 0o |

For all € > 0, since the sequence {tEf,),,} is absolutely summable, there exist M; > 0 and

M; > 2]\% such that _
> Do ll<e (21)

M;<|p| lv|<oo

Y < (22)

7 ~
lul<M;  [v]<oo

and

With this given M;, we write
(I® F)e(TNI @ F)* — (1@ F)ep(TP) (I @ F)* =UW + v,
where UZ(i) is obtained by retaining the last nM; rows and columns of the matrix
(I® F)e (TN(I Q@ F) — (I® F)eo(TO) (I ® F)* (23)

and setting all other entries to zeros. Thus ‘/2@) contains the [n(m — M;)]-by-[n(m — M;)]
principal submatrix of (23) with the other entries being zeros.

Clearly, rankU2(i) = nM; = O(n). It remains to show that ||V2(i) |2 < €. Since the principal
submatrix of Vz(l) is still a block-Toeplitz matrix, it is easy to check that

i 2Nt m—|ul
V< D0 SHAR L+ >0 == lIAR .

|| < M; M;<|p|<m

14



By using (20), (21) and (22), we therefore have

VO S B e o oS e <o

|pe| < M; lv|<n M;<|p|l<m lv|<n

for all m > M; and n > 0. .
Similarly, we can show that ||V}"||o < 2¢. Therefore

V21 < VA1V e < 4€%.

Combining Lemmas 1 and 2, we immediately get

Corollary 1 Let T% satisfy (16). Then for all € > 0, there exist M;, N; > 0, such that for
all m > M; and n > N,

TG _ CQ(T(i)) = U® 4 y©

where

rank U® = O(m) + O(n)

and o
||V(Z)||2 < €.

Using the Corollary, we are able to show that the singular values of T® and c,(T®) are
close.

Theorem 1 Let T satisfy (16). Then for all € > 0, there exist N;, M; > 0, such that for
all m > M; and n > N,

TO*70 _ ¢, (T(i))*CQ(T(i)) =@ 4 @
where UD and VO are Hermitian matrices with
rank U® = O(m) + O(n)
and

VO|y < e

Proof: By Corollary 1, we have

T@* ) _ CZ(T(i))*Cg(T(l))
— T(i)*(T(i) — ¢y (T(i))) + (T(z) _ CQ(T(i)))*cz(T(i))
— T(i)*(T(i) — ¢y (T(i))) _ (T(i) — CQ(T(i)))*(T(i) — CQ(T(i))) + (T(i) _ CQ(T(’))) T
= TONUD £ vO) — (@O VO (OO + VO 4 (UD 4 7@)7®
= Uy

15



Here

and

VO — Osp) L o) _ o)

It is clear that both U® and V) are Hermitian matrices. Moreover we have, by Corollary
1 again, rank U® = O(m) + O(n) and

VO ]y < 2€||TD ] + €%
By (17), we then have _
VD)), < 2eK; + €%
Using the facts that for the Level-2 preconditioner C,
k
T*T — C*C =Y {TW T — ¢y(T) ey (T0)}
i=1

and that £ is independent of m and n, we immediately have

Corollary 2 Let T% satisfy (16) fori=1,---,k. Then for all € > 0, there exist M, N > 0,
such that for allm > M and n > N,

™T-C*C=U+V
where U and V' are Hermitian matrices with
rank U = O(m) + O(n) (24)

and
[1V]]2 < €. (25)

Our next task is to show that C*C' is uniformly invertible for large m and n. Again let
T satisfy (16). Define

FOy) =Y Y the™e™™  Va,ye[0,2n]. (26)

U=—00 V=—00

Notice that since {tg,),,} is absolutely summable, the function f®(z,y) is well-defined and
indeed continuous on [0, 27]? and 2m-periodic in each direction.
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Lemma 3 Let T satisfy (16). Define the corresponding function f@(x,y) as in (26). If

min_|f@(z,y)| > 6 >0, (27)
v wel0,2n]

then for sufficiently large m and n, co(TW) is invertible with

lea(TD) |2 < 2/6.
Proof: We first recall that & [(I ® F)c;(T™)(I ® F)*] is a block-circulant matrix. Hence it
can be block-diagonalized by (F' ® I'). More precisely, we have

(FQF)e(TOYFQF) = (FRD&[(I®F)o(TY)I @ F)|(FI)*

ol 0
0 O
where (cf (19))
i 1 — i m A (¢
@y:;{ E: — |ul)e 2 mB/mAD 0 < B < m.

Since @(ﬂi) are diagonal matrices, the eigenvalues of (F ® F)cy(T™W)(F ® F)* (and hence
of co(T™)) are given by

Aas{(F @ F)ex(TV)(F @ F)*)}

= [@,(Bi)]a,a
1 m—1
= — 3 (= |u) AP a2
p=—(m-1)
m—1 n—1

— %% Z Z tg,)uef27riu,3/mef27riua/n‘

Notice that the last expression can be written in terms of the Fejér sum of f®)(x,y)
evaluated at the point (27 3/m, 2w« /n), see Chan and Yeung [7]. More precisely, we have

213 21«

Mg €(TD) = 01219 ) (n,

—), 0<pB<m0<a<n,

where 0,1, 1[f@](, y) denotes the (m — 1,n — 1) Fejér sum, (also called the (C,1) sum),
evaluated at the point (z,vy), see Zygmund [32, p.302]. Since f(®(z,y) is continuous on
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[0,27]?, the Fejér sum converges uniformly to £ (x,y) on [0, 27)?, see Zygmund [32, p.304].
In particular, by (27)

ag(ea(T)] = lowmrn-a[ [P, y)] = /2> 0

for m and n sufficiently large. Since cy(T) can be diagonalized by the unitary matrix
(F®F), it is clear that

Aap{ea(TV) e2(TV)} = Paplea(TO)P = (6/2)* > 0
for m and n sufficiently large.

Corollary 3 Let T® satisfy (16) for i = 1,---,k. Define the corresponding functions
fO(x,y) as in (26). If one of the fO(z,y) satisfies (27), then for sufficiently large m
and n, C*C s invertible with

[(c*O) 7| < K, (28)

for some constant K independent of m and n.

Proof: Let f()(x,y) be the function that satisfies (27). Then by (10) and Lemma 3, we

have
1) < Mlea(TOY e (TN = [lea(TO) TP < (2/6)°.

Now we are ready to prove the main Theorem for the Level-2 preconditioner C'.
Theorem 2 Let T satisfy (16) fori=1,---,k. If one of the f)(x,y) as defined in (26)

satisfies (27), then for all € > 0, there exist M, N > 0, such that for allm > M and n > N,
at most O(m) + O(n) eigenvalues of the matriz

ey T*T) - I

have absolute values larger than €. Thus at most O(m) + O(n) of the singular values of the
preconditioned matriz

TC!
lie outside the interval (1 —e€,1 +¢€).

Proof: By Corollary 2, we have
(Y T*T) — I = (C*C) N (T*T — C*C) = (C*C) " (U + V).
Therefore the spectra of the matrices
(C*C)"N(T*T) -1 and (C*C)"V2(U + V) (C*C)~Y/?
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are the same. However, by (24), we have
rank {(C*C)"Y*U(C*C)*} = O(m) + O(n)
and by (25), (10) and (28), we have
()~ Pv(C )2l < |IVI[LII(CC) M lo < Ke.
Thus by applying Cauchy’s interlace theorem (see Wilkinson [31]) to the Hermitian matrix
(Ccre) MR (cro) T2 (oro) TRV (Cre) TR,

we see that its eigenvalues are clustered around zero except for at most O(m)+O(n) outlying
ones.

Using standard error analysis of the conjugate gradient method, we see that the method
will converge in at most O(m) + O(n) steps for n and m sufficiently large.

3.2 Level-1 Preconditioners

By substituting Lemma 1 for Corollary 1 in the proof of Theorem 1 and using the fact that

k
T*T = R*'R =Y {TWTW — ¢ (TW) e, (TW)},

=1

we get, instead of Corollary 2, the following result.

Lemma 4 Let T satisfy (16) for i = 1,---,k. Then for all ¢ > 0, there exist M, N > 0,
such that for all m > M and n > N,

T"T—RFR=U+YV
where U and V' are Hermitian matrices with rank U = O(m) and ||V]]2 < €.

However to get similar results as in Theorem 2 for the Level-1 preconditioner, we need
to bound the smallest singular value of R away from zero as we did in (28). Unfortunately,
the conditions on f@(z,y) in Theorem 2 are not sufficient for getting such a bound. For a
counter-example, consider 7" with only one block 7™ where Tl(l) = I, the identity matrix
and Tj(l) = 0, the zero matrix, for j # 1, with m > 1. Then the smallest singular value of
R*R is zero whereas C*C' is still well-conditioned. One remedy to this situation is to restrict
our class of matrices 7 from general complex matrices to Hermitian matrices. Suppose
there exists an £, 1 < ¢ < k, such that f)(z,y) is real-valued. Then clearly 7 is Hermitian
and we can show that

O < Xs(TO)< O 0<a<m0<8<n,

min —
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where fr(rfi)n and f{ denote the minimum and maximum values of f(©), see for instance Jin

[20]. We remark that this result is a 2-dimensional generalization of a similar result found
in Grenander and Szego [14].
Using Theorem 1 in Chan and Jin [6], we then have

Aaaﬂ(cl(T(a)) 2 fr(rfi)rv 0 S a < m, 0 S ﬁ <mn.
> > 0, then using arguments

Thus if additionally f*) is a positive function, i.e. fr(fi)n
similar to those used in Corollary 3, we have

I(R°R) || < K

for some constant K independent of m and n. Using this result instead of (28) in the proof
of Theorem 2, we then have our main Theorem for the Level-1 preconditioner.

Theorem 3 Let T satisfy (16) fori=1,---,k. If one of the f)(x,y) as defined in (26)
15 a positive function, then for all € > 0, there exist M, N > 0, such that for all m > M and
n > N, at most O(m) eigenvalues of the matriz

(R*R) N(T*T) — I

have absolute values larger than €. Thus at most O(m) of the singular values of the precon-
ditioned matriz TR~ lie outside the interval (1 —€,1 + €).

Using a standard error analysis of the conjugate gradient method, we see that the PCG
method, with the Level-1 preconditioner, will converge in at most O(m) steps for n and m
sufficiently large.

4 Image Restoration Computations

In this section we consider possible applications of our methods to ill-conditioned inverse
problems arising in image restoration. Image restoration refers to the removal or minimiza-
tion of degradations (or blur) in an image using a priori knowledge about the degradation
phenomena. It is important to recover the information in a blurred image: for example, (i)
in remote sensing, details about the photographed terrain should be clarified; (ii) in medical
imaging, the diagnosis is based on the clarity of the x-ray radiographs taken; and (iii) in
space activities, images transmitted to earth by unmanned or manned spacecraft need to
be analyzed. When the quality of the recorded images is degraded by blurring and noise,
important information remains hidden and cannot be directly interpreted without numerical
processing.

Here we will apply our preconditioned Toeplitz iterative least squares schemes to im-
age restoration (deblurring) computations. We remark that the presentation of the image
restoration problem given here is brief. The interested reader can find more thorough dis-
cussions on this topic in Andrews and Hunt [2] and Jain [19].
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We begin with a mathematical model of the image restoration problem. The image of an
object can be modeled as

9(€,6) = 5 { || e a,ﬂ)f(a,ﬁ)dadﬁ} +(E,6)

where g(&,9) is the recorded (or degraded) image, f(«, ) is the ideal (or original) image,
the vector n(&, §) represents additive noise and s{-} represents the nonlinear characteristics
of the device which senses and records the image. The function h(E,0; «, 3) is called the
point spread function (PSF) and represents the degradation of the image. Typically the
nonlinearity s{-} is either neglected, or linearized [2], resulting in a model given by

s&.0= [ ) / " h(E,5: 0, B) (0 B)dad B+ (€, 5). (20)

In the digital implementation of (29), the integral is discretized using some quadrature rule,
to obtain the discrete scalar model

g, 3) =YY hli, sk, 1) (k1) + (i, j)-

k=1 [=1

Writing this in matrix-vector notation, we obtain the linear algebraic form of the image
restoration problem,
g=Hf+n, (30)

where g, n and f are N2-vectors and H is an N2 x N? matrix. This is the square image
formulation. Often the discretization is chosen so that g is much larger than f. In this case,
H is a rectangular M?2-by-N? matrix with M >> N.

The image processing problem can be stated as follows. Given the observed image g, the
matrix H (which represents the degradation) and, possibly, the statistics of the noise vector
n, compute an approximation to the original signal f.

Some remarks on the linear algebraic model (30) are needed. Firstly, notice that the
addition of the nonzero noise vector n, which is modeled as a random process, may imply
that there is no unique solution to (30). Secondly, the matrix H is usually ill-conditioned
and, hence, extremely sensitive to noise [2]. Thus one cannot consider the noise vector n
insignificant and simply solve Hf = ¢g. As we will see in §5, one method to overcome this
ill-conditioning is to use a method of regularization. This has been shown (e.g., [4]) to be
an effective method for solving signal and image restoration problems.

Finally, observe that the sizes of the arrays in (30) can become quite large. For example,
in low resolution imagery, N = 256. Thus the matrix H is 65, 536 x65, 536. In high resolution
imagery, N is typically on the order of 103, which implies the matrix H has dimensions on
the order of 10% x 10° [2]. The sizes of typical image restoration problems make the use
of iterative methods of solution almost essential [4]. These remarks indicate that if H has
no special structure then the signal restoration problem can be nontrivial and extremely
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complicated to solve. But in many cases, fortunately, H has a TB or a BTTB structure,
allowing for more efficient methods.

Writing the PSF as h(,0;«, ) provides the most general description of the imaging
system. This representation allows the PSF to vary with position in both the image and
object planes. In this case the PSF is said to be spatially variant. If we assume the PSF
is spatially variant, then the matrix H in (30) has no special structure. Thus computing a
solution to (30), in this case, can be very expensive.

In many cases, though, the PSF acts uniformly across the image and object planes. That
is, the PSF is independent of position and, hence, becomes a function of only £ — a and
0 — (. In this case the PSF is said to be spatially invariant, and is written as

h(é-a(sa aaﬂ) = h(é- - a75 - 6)

Thus the image model (29) is written as

9(€,5) = / / (€ — a,6 — B)f (o f)dadp + (€. ), (31)

where the integral in (31) is a 2-dimensional convolution. The inverse problem of recovering
f is thus a 2-D deconvolution problem. In the discrete implementation, (31) becomes

g=Hf+n

where the matrix T' = H is now a block-Toeplitz matrix with Toeplitz blocks i.e., BTTB. The
image restoration problem, with a spatially invariant PSF, can be reduced to solving an ill-
conditioned BTTB system using a regularization method to be discussed in §5. By applying
the preconditioned conjugate gradient algorithm with the Level-1 or Level-2 preconditioner
derived in §2, a solution to the space invariant signal restoration problem may be efficiently
computed.

5 Preconditioned Regularized Least Squares

In this section we consider solving least squares problems (1), where the rectangular matrix
T comes from an ill-posed inverse problem , such as 2-D deconvolution, and is thus very ill-
conditioned. Such problems arise in many applications, such as signal and image restoration,
as discussed in §4. Often, the ill-conditioned nature of T results from discretization of ill-
posed problems in partial differential and integral equations [15]. Here for example, the
problem of estimating an original image from a blurred and noisy observed image is an
important case of an inverse problem, and was first studied by Hadamard [16] in the inversion
of certain integral equations. Because of the ill-conditioning of 7', naively solving T'x = b will
lead to extreme instability with respect to perturbations in b. The method of reqularization
can be used to achieve stability for these problems [5].

In classical Tikhonov regularization [15], stability is attained by introducing a stabilizing
operator (called a regularization operator) which restricts the set of admissible solutions.
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Since this causes the regularized solution to be biased, a scalar (called a regularization
parameter) is introduced to control the degree of bias. More specifically, the regularized

solution is computed as
. b T
win| | o = | 7 |l )

where 1 is the regularization parameter and the p X n matrix L is the regularization operator.

The standard least squares solution to (1), given by & = TTb, is useless for these problems
because it is dominated by rapid oscillations due to the errors. Hence in (32), one adds a
term ||Lz||* in order to smooth the solution z. Choosing L as a kth difference operator
matrix forces the solution to have a small kth derivative. For example, the 2nd difference
operator L has the banded rectangular Toeplitz form:

The regularization parameter p controls the degree of smoothness (i.e., degree of bias)
of the solution, and is usually small. Choosing p is not a trivial problem. In some cases
a priori information about the signal and the degree of perturbations in b can be used to
choose p [1], or generalized cross-validation techniques may be used, e.g., [5]. If no a priori
information is known, then it may be necessary to solve (32) for several values of u [12].
Recent analytical methods for choosing an optimal parameter p are discussed by Reeves and
Mersereau [27]. Other regularization schemes for ill-posed problems are discussed by Hanke
[17], and by Hanke, Nagy and Plemmons [18].

Based on the discussion above for Tikhonov regularization, the regularization operator
L is usually chosen to be the identity matrix or some discretization of a differential operator
[4, 12]. In problems arising in 2-D applications, the matrix 7" will have a block structure.
In this case the regularization operator L is often chosen to be the identity matrix, the
Laplacian, or a discretization of a 2-D differentiation operator [2]. Hence, if 7" has the
Toeplitz-block form (4), then the matrix

r-[5]

retains this structure, with the addition of one block (or two blocks if L has more rows than
columns). Since 7' has the block structure (4), we can form Level-1 and Level-2 precondi-
tioners for 7" and use Algorithm 1 for least squares problems to solve (32). Notice that if L
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is chosen to be the identity matrix, then the Level-2 preconditioner for T can be constructed
by simply adding p to each of the eigenvalues of the preconditioner C' for 7'

In addition, the last block in T (i.e., uI) has singular values p. Due to the remarks at
the end of §3, if each block in T" has an appropriate generating function, and if u is not too
small, then x(7') = O(1). It follows then, based on the analytical results for these problems
given is §3, that (32) may be solved efficiently by our methods.

6 Numerical Tests and Final Comments

In this section we report on some numerical experiments using both the Level-1 and Level-2
preconditioners in the conjugate gradient algorithm for solving Toeplitz least squares prob-
lems of the form (6). The good performance of our preconditioners is illustrated using test
generating sequences from [6], as well as an ill-conditioned problem arising in image restora-
tion simulations. All numerical examples were performed on the Cray Y-MP at the North
Carolina Supercomputing Center.

Example 1: In this example we consider matrices of the form

1
2
3
4

(1)
(2)
3)
(4)

~
I
NSNS

where each T, i = 1,2, 3,4, is a BTTB(1,m,n) matrix. The diagonals of the T are given
by the generating sequences

(1) tlg) = (j+1)(‘k|+1;1+0.1><(j+1)7 j>0, k=0,£1,4£2,---,
() 1 = Gy 420, h=0,41,42,
(3) tk(J:) - (j+1)1-1+1(|k\+2)1.1, j>0, k=0,%£1,%+2 -+,
(4) tk(]) - (j+1)2-1+1(|k\+1)2.1, j>0, k=0,%£1,%2, -

These generating functions come from Chan and Jin [6]. They note that the sequences (2)
and (4) are absolutely summable, while (1) and (3) are not. The right hand side vector b
is chosen to be the vector of all ones and the zero vector is the initial guess. The stopping
criteria we use is [[s||5/||s@|ls < 1077, where s\ is the (normal equations) residual after j
iterations.

The convergence results for this example are given in Table 3, which shows the numbers of
iterations required for the PCG algorithm to converge using no preconditioner and our Level-
1 and Level-2 preconditioners, for several values of m and n. We can see from Table 3 that,
for this problem, our preconditioners accelerate the convergence rate of the PCG algorithm
quite significantly. Moreover, as m and n increase, the number of iterations for the Level-1
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preconditioner remains essentially constant, while the number of iterations increases very
slowly for the Level-2 preconditioner. But if no preconditioner is used, then the number of
iterations increases dramatically with m and n.

‘ m=n ‘ kmn ‘ mn H no prec. ‘ Level-1 ‘ Level-2 ‘

8 256 64 24 8 11
16 1024 | 256 80 9 13
32 4096 | 1024 220 9 15
64 16384 | 4096 || > 220 9 16

Table 3. Number of iterations for Example 1.

In Tables 4, 5 and 6 we show the cpu timings on the Cray Y-MP using four processors,
for the PCG method with no preconditioner, the Level-1 preconditioner and the Level-2 pre-
conditioner, respectively. The timings per iteration were done by taking an average over 5
iterations. We remark that the code for performing the preconditioned linear system solves,
for both the Level-1 and Level-2 preconditioners, may not be optimal. Thus, it may not be
fair to compare the timings for the Level-1 and Level-2 preconditioned systems with each
other. But these tables do show, for this problem, that we gain excellent timing speed-ups
using our preconditioners. Finally, in Table 7 we summarize the numerical results for Exam-
ple 1, and in Figure 1 we plot the convergence history of the PCG using no preconditioner
and both the Level-1 and Level-2 preconditioners for the case 4096 x 1024 size problem.

| kmn x mn | initial. time | time/iter. | total time |

256 x 64 3.48 x 1072 | 6.96 x 1072 || 1.68 x 10°
1024 x 256 1.96 x 1071 [ 3.93 x 1071 || 3.18 x 10*
4096 x 1024 1.09 x 10° | 2.18 x 10° || 4.81 x 10?

16384 x 4096 | 6.84 x 10° 1.37 x 10! *

Table 4. CPU timings (in seconds) for Example 1, using no preconditioner.

| kmn x mn | initial. time | time/iter. | total time |

256 x 64 5.26 x 1072 | 6.97 x 1072 || 6.11x~!
1024 x 256 3.00 x 1071 | 3.97 x 1071 || 3.87 x 10°
4096 x 1024 1.75 x 10° | 2.19 x 10° || 2.15 x 10!

16384 x 4096 | 1.22 x 10! 1.38 x 10! || 1.36 x 102

Table 5. CPU timings (in seconds) for Example 1, using the Level-1 preconditioner.

| kmn x mn | initial. time | time/iter. | total time |
256 x 64 3.97x 1072 | 712 x 1072 || 8.13 x 107!
1024 x 256 || 4.62 x 101 [ 8.40 x 107 || 1.13 x 10"
4096 x 1024 | 1.12 x 10° | 2.19 x 10° || 3.38 x 10*
16384 x 4096 || 7.07 x 10° | 1.37 x 10" || 2.27 x 107
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Table 6. CPU timings (in seconds) for Example 1, using the Level-2 preconditioner.

no prec. Level-1 Level-2
kmn X mn its. ‘ time its. ‘ time its. ‘ time
256 x 64 24 1.68 x10° || 8 |6.11x 1071 11 |8.13 x 107t

1024 x 256 80 318 x 10 || 9 | 3.87x10° || 13 | 1.13 x 10*
4096 x 1024 220 | 481 x10% || 9 | 215 x 10! | 15 | 3.38 x 10*
16384 x 4096 | > 220 * 9 | 1.36 x 10% || 16 | 2.27 x 107

Table 7. Summary of numerical results for example 1.

104

103
102
101 1
100 |

101

102 No preconditioner

103

2-Norm of the NE residual.

104

10-5

10- 6 I I I I
0 50 100 150 200 250

Number of iterations.

Figure 1: Convergence history for the 4096 x 1024 problem in Example 1.

Example 2: In this example we apply our PCG methods to a simulated image restoration
problem with a spatially invariant point spread function. Recall that, in this case, the image
restoration problem can be modeled as the discrete problem

g=Hf+n,

where H is a BTTB matrix, f represents the true image, g represents the blurred, noisy
image, and 7 represents the noise.
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The 2-D simulation provided in this example is constructed as follows. First, we generate
the known 64 x 64 image shown in Figure 2, and consider the spatially invariant discretized
PSF matrix H defined by

p [ e{=00(G— )P+ (k= 1?)} —8<i—jk—1<8, (33)
A ) otherwise '

In the image processing community this is known as a Gaussian PSF, and can be used to
model aberrations in a lens with finite aperture [2, 19]. The matrix H for this example is
4096 x 4096.

We construct the observed image by forming the vector ¢ = Hf + n, where H is the
4096 x 4096 BTTB matrix defined by equation (33), f is a vector formed by row ordering
(see [19]) the original image in Figure 2, and 7 is a vector with random entries chosen from
a normal distribution with a mean of 0.0 and a variance of 1.0. The condition number of
H in this example is O(107). The noise vector 7 is scaled so that the noise to signal ratio,
Inll2/ 1| H f||2, was 1073, By unstacking the vector g (again using row ordering), we obtain
the blurred noisy image, shown also in Figure 2.

Our goal is, given g and H, to recover an approximation to the original image f. Because
of the ill-conditioning of H, we use the method of Tikhonov regularization described in §5 to
stabilize the problem and to obtain a reasonable solution. Here we use the identity matrix
as the regularization operator, and ;4 = 0.1 as the regularization parameter. The parameter
it was chosen based on several runs.

To test the effectiveness of our methods, we used the PCG method with our precondi-
tioners, and with no preconditioner, and used the relative normal equations residual norm
of 107% as a stopping tolerance. The results for this simulated image restoration problem
are summarized in Table 8, and Figures 3-6.

‘ H no prec. ‘ Level-1 ‘ Level-2 ‘

iterations 108 32 42
CPU time (sec.) 729.87 | 214.22 | 278.19

Table 8. Convergence results for the simulated image restoration in Example 2.

From these experiments, we notice that the restorations after just a few iterations of the
preconditioned computations are fairly good, except for some edge artifacts. In contrast,
the restoration obtained when no preconditioner is used are not very good until several
iterations are completed. It is also interesting to note that after just a few iterations, the
restorations obtained from the Level-1 preconditioned system are very good, except for some
edge artifacts which appear only in one direction (i.e., on two edges). Moreover, the Level-
2 preconditioned system also produces good restorations after only a few iterations, but
with edge artifacts in two directions (i.e., on all four edges). This is due to the fact that
the Level-1 preconditioner approximates 1" at one level or one direction only, whereas the
Level-2 preconditioner approximates T' at two levels or both directions, see Chan and Jin [6].
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It should be pointed out that only preliminary experiments with applying the precondi-
tioners have been reported in this paper. The results thus far look promising, and we intend
to test our methods on actual image restoration problem in the next phase of our work.
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Figure 3: Restoration after 2 iterations with Level-1 preconditioner and no regularization.
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Figure 4a: Restoration after 2 iterations using no preconditioner.

i
i

—
———

//]/'// llrllu
Wil

A

:“

Figure 4c: Restoration after 2 iterations using the Level-2 preconditioner.
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Figure 5c: Restoration using the Level-2 preconditioner (42 iterations).
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