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An Iterative Procedure for Removing

Random-Valued Impulse Noise
Raymond H. Chan, Chen Hu, and Mila Nikolova

Abstract

This paper proposes a two-stage iterative method for removing random-valued impulse noise. In the

first phase, we use the adaptive center-weighted median filter to identify pixels which are likely to be

corrupted by noise (noise candidates). In the second phase, these noise candidates are restored using a

detail-preserving regularization method which allows edges and noise-free pixels to be preserved. These

two phases are applied alternatively. Simulation results indicate that the proposed method is significantly

better than those using just nonlinear filters or regularization only.

Index Terms
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I. I NTRODUCTION

Images are frequently corrupted by impulse noise due to noisy sensors or channel transmission errors

[10]. There are many types of impulse noise. LetYij be the gray level of a true imageY at pixel location

(i, j) and [nmin, nmax] be the dynamic range ofY. Let Xij be the gray level of the noisy imageX at

pixel (i, j), then

Xij =











Rij , with probability r,

Yij , with probability 1− r,

R. H. Chan and C. Hu are with the Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong

Kong (email: rchan, chu@math.cuhk.edu.hk). This work was supported by HKRGC Grant CUHK4243/01P and CUHK DAG

2060220.

M. Nikolova is with Centre de Mathematiques et de Leurs Applications (CNRS UMR 8536), ENS de Cachan, 61 av. du

President Wilson, 94235 Cachan Cedex, France (email: nikolova@cmla.ens-cachan.fr)

February 25, 2004 DRAFT



2

whereRij ∈ [nmin, nmax] are random numbers andr is the noise ratio. For example, for fixed-valued

(salt-and-pepper) impulse noise, noisy pixelsXij take eithernmin or nmax, see [14]. In this paper, we

focus on general random-valued impulse noise whereRij can be any numbers betweennmin andnmax,

see [8]. Cleaning such noise is far more difficult than cleaning fixed-valued impulse noise since for the

latter, the differences in gray levels between a noisy pixel and its noise-free neighbors are significant

most of the times.

The main approach for removing impulse noise is to use median-based filters, see [1], [13], [16] for

instance. However, since filters typically are implemented invariantly across the images, they also tend

to modify pixels that are not affected by noise. In addition, when the noise ratio is high, they are prone

to edge jitter, and that the details and edges of the original image are usually blurred by the filters [18].

To improve performance, various decision-based filters have been proposed where possible noise pixels

are first identified and then replaced by using the median filter. Examples of decision-based filters are the

center-weighted median filter [15], the adaptive center-weighted median filter (ACWMF) [9], the adaptive

median filter [14], and the median filter based on homogeneity information [19]. These filters are good

in locating the noise even in high noise ratio. However, the main drawback is that the replacement of the

noisy pixels by the median filter entails blurring of details and edges, especially when the noise ratio is

high.

Recently, a detail-preserving variational method (DPVM) has been proposed to restore impulse noise

[17]. It uses a non-smooth data-fitting term (e.g.`1) along with edge-preserving regularization. In this

paper, we propose to combine ACWMF with DPVM for restoring images that are highly corrupted by

random-valued impulse noise. Our method involves two steps which are applied alternatively. First, noisy

pixels are detected using ACWMF; then these pixels are selectively restored by DPVM. Since in each

iteration the edges and the details are preserved for the noise candidates by the regularization method, and

no changes are made to the signal candidates, the performance of this combined method is much better

than just using either ACWMF or DPVM, especially when the noise ratio is high. Our method can restore

large patches of noisy pixels because it introduces pertinent prior information via the regularization term.

It is most efficient to deal with high noise ratio, e.g. ratio as high as 50%.

The outline of the paper is as follows. In§II, we review ACWMF. Our denoising scheme is given in

§III. In §IV, we demonstrate the effectiveness of our method using various images.
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II. REVIEW OF ACWMF

ACWMF is a good method for removing random-valued impulse noise when the noise ratio is not

high, see [9] or cf. Figures 1(b) and 2(b) in§IV. Here we give a brief review of the filter.

Let the window size be(2h+1)2 andL = 2h(h+1). Denote byXij the gray level of the noisy image

at pixel location(i, j). Let

Y 2k
ij = median{Xi−u,j−v, (2k)♦Xij | − h ≤ u, v ≤ h},

where2k is the weight given to pixel(i, j), and♦ represents the repetition operation. Clearly,Y 0
ij is the

output of the standard median filter, whereasY 2k
ij is the output of the identity filter whenk ≥ L. We

define the differences

dk = |Y 2k
ij −Xij | = |Y 2k

ij −Xij |

wherek = 0, 1, · · · , L− 1. It is readily seen thatdk ≤ dk−1 for k ≥ 1, see [7].

To determine whether the current pixel(i, j) is corrupted, a set of thresholdsTk are employed, where

Tk−1 > Tk for k = 1, 2, · · · , L − 1. If any one of the inequalitiesdk > Tk, k = 0, 1, · · · , L − 1, is

true, thenXij is regarded as a noise candidate and replaced by the median i.e.,Y 0
ij . Otherwise,Xij is

regarded as a signal candidate and will not be changed.

If 3× 3 windows are used (i.e.,h = 1 andL = 4), four thresholdsTk, k = 0, · · · , 3, are needed. The

median of the absolute deviations from the median (MAD), which is defined as

MAD = median
{∣

∣Xi−u,j−v − Y 0
ij

∣

∣ : −h ≤ s, t ≤ h
}

(1)

is a robust estimate of dispersion [12], [2], and its scaled forms are used as the thresholds. Specifically,

one sets

Tk = s ·MAD + δk, 0 ≤ k ≤ 3, (2)

with

[δ0, δ1, δ2, δ3] = [40, 25, 10, 5], (3)

and0 ≤ s ≤ 0.6, see [9]. This choice yields satisfactory results in filtering random-valued impulse noise

when the noise ratio is not high, see Figure 1(b). However, for high-level noise ratio, the filter cannot

preserve the fine features in the images, see Figure 2(b).
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III. O UR METHOD

When the noise ratio is high, ACWMF may falsely detect some noise-free pixels as noisy pixels. If

these erroneous noise candidates form patches, and are located near to edges, DPVM will distort them.

To alleviate the problem, we apply our method iteratively with different thresholds. More precisely, at the

early iterations, we take large thresholds in ACWMF so that it will only select pixels that are most likely

to be noisy. Then we restore them by DPVM. In the subsequent iterations, we decrease the thresholds

to include more noise candidates. Since the edges and the details are preserved by the regularization

successfully in each iteration, the restored image will not be distorted by the method.

In the following we give our algorithm. LetVij be the set of the four closest neighbors of(i, j), not

including (i, j).

Algorithm:

1. Setr = 0. Initialize X(r) to be the observed image.

2. Apply ACWMF with the thresholdsT (r)
k , 0 ≤ k ≤ 3, to the imageX(r) to get the noise candidate

setM(r).

3. Let N (r) =
⋃r

l=0M(l).

4. For all (i, j) /∈ N (r), take Ŷij = X(r)
ij .

Restore all pixels inN (r) by minimizing the following functional overN (r):

f(Y) =
∑

(i,j)∈N (r)

{

|Yij −X(r)
ij |

+
β
2





∑

(m,n)∈Vij∩N (r)

ϕ(Yij − Ymn)

+
∑

(m,n)∈Vij\N (r)

ϕ(X(r)
mn − Yij)











(4)

where ϕ is an edge-preserving potential function. Notice thatVij \ N (r) is composed of those

neighbors of(i, j) which at stepr have been detected as signal candidates. The minimizerŶ of

(4) is obtained by using the algorithm presented in [17], but restricted toN (r).

5. SetX(r+1) = Ŷ.

6. If r < rmax, setr = r + 1 and go back to Step 2.
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Possible choices forϕ in Step 4 are

ϕ(t) =
√

α + t2, α > 0,

ϕ(t) = |t|α, 1 < α ≤ 2,

ϕ(t) =











αt2
2 , if |t| ≤ 1

α ,

|t| − 1
2α , if |t| > 1

α ,
α > 0,

see [11], [5], [4], [6]. In Step 2, we use3× 3 windows and thresholds of the form

T (r)
k = s ·MAD(r) + δk + 20(rmax − r),

for 0 ≤ k ≤ 3, 0 ≤ r ≤ rmax, and0 ≤ s ≤ 0.6, cf. (1)–(3). In practice, four iterations are enough, i.e.,

rmax = 3 and the output isX(4).

IV. SIMULATIONS

In this section, we compare our method with ACWMF [9] and DPVM [17]. The 256-by-256 picture

of Lena is used as the true image. Then 30% and 50% of the pixels are corrupted by random noise

uniformly distributed on its dynamic range[nmin, nmax], see Figures 1(a) and 2(a). Henceforth, we use

the potential functionϕ(t) = |t|1.3. In the simulations, for each noise level, the parameterss in (2) and

β in (4) are chosen to give the best restoration in terms of peak-to-noise-ratio (PSNR), see [3, p. 556].

From Figures 1–2, we see that there are noticeable noise patches in the images restored by either

ACWMF or DPVM, especially when the noise ratio is 50%. In contrast, our method has successfully

suppressed the noise while preserving most of the details and the edges in both cases.

To assess the effectiveness of our method in processing various images, we tried four other 256-by-256

gray scale images. The parameterss andβ were chosen to be the same as in the previous simulations. The

results in terms of PSNR and the mean absolute error (MAE), see [3, p. 556], are summarized in Tables I–

II. From the tables, we see that our method are significantly better than the other two methods. Pictures of

the noisy images and the restored images can be found atwww.math.cuhk.edu.hk/˜rchan/paper/chn/ .

Overall, our restored images are significantly better than those restored by the other two methods.

We end by considering the complexity of our algorithm. Sincermax = 3, the algorithm requires four

applications of ACWMF and four applications of DPVM restricted to the set of the noisy pixelsN (r).

Like other medium-type filters, ACWMF can be done very fast. The application of DPVM is the most

time-consuming part as it requires the minimization of the functional in (4). For example, for 30%

noise, our method takes 30 times more CPU time than ACWMF. The timing can be improved by better

implementations of minimization routines for solving (4).
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(a) (b) (c) (d)

Fig. 1. (a) Image with 30% noise. Restored images by (b) ACWMF withs = 0.6, (c) DPVM with β = 0.19, and (d) our

method withβ = 2, s = 0.6 and 4 iterations.

(a) (b) (c) (d)

Fig. 2. (a) Image with 50% noise. Restored images by (b) ACWMF withs = 0.3, (c) DPVM with β = 0.19, and (d) our

method withβ = 2.3, s = 0.1 and 4 iterations.

TABLE I

ERRORS OFRESTOREDIMAGES AT 30% NOISE

bird bridge camera goldhill lena

Noise Image 15.85 13.98 13.79 15.23 14.48

PSNR ACWMF 32.06 22.21 24.35 26.57 27.18

DPVM 33.26 22.44 24.72 27.13 27.29

Our method 33.72 22.76 25.08 27.52 28.33

Noise Image 18.48 23.10 23.45 19.95 21.63

MAE ACWMF 1.61 8.43 4.17 4.36 3.32

DPVM 2.25 11.90 6.06 6.18 4.97

Our method 1.27 7.95 3.67 3.85 2.80
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TABLE II

ERRORS OFRESTOREDIMAGES AT 50% NOISE

bird bridge camera goldhill lena

Noise Image 13.62 11.82 11.59 12.99 12.28

PSNR ACWMF 25.36 19.53 20.43 22.74 22.40

DPVM 26.81 20.21 21.17 23.63 23.08

Our method 29.93 20.77 22.53 25.04 25.48

Noise Image 30.91 38.18 39.00 33.22 36.04

MAE ACWMF 4.96 14.87 9.88 9.05 8.26

DPVM 6.22 16.92 12.12 10.88 10.20

Our method 2.84 12.84 6.86 6.85 5.41
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