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Abstract— Recently, a two-phase scheme for removing salt-
and-pepper impulse noise has been proposed [14]. In the first
phase, an adaptive median filter is used to identify pixels which
are likely to be contaminated by noise (noise candidates). In the
second phase, the image is restored by minimizing a specialized
regularization functional that applies only to those selected noise
candidates. As an extension of this work, we propose an efficient
method to accomplish the second phase. The speed of our method
can be double as that of the method proposed in [14] for images
contaminated by 30% salt-and-pepper noise and will be faster
for higher noise level.

Index Terms— Impulse noise, adaptive median filter, edge-
preserving regularization, Newton’s method, continuation.

I. INTRODUCTION

Impulse noise is caused by malfunctioning pixels in camera
sensors, faulty memory locations in hardware, or transmission
in a noisy channel. See [4] for instance. Two common types of
impulse noise are the salt-and-pepper noise and the random-
valued noise. For images corrupted by salt-and-pepper noise
(respectively random-valued noise), the noisy pixels can take
only the maximum and the minimum values (respectively any
random value) in the dynamic range. There are many works
on the restoration of images corrupted by impulse noise. See,
for instance, the nonlinear digital filters reviewed in [1]. The
median filter was once the most popular nonlinear filter for
removing impulse noise, because of its good denoising power
[4] and computational efficiency [11]. However, when the
noise level is over 50%, some details and edges of the original
image are smeared by the filter [16].

Different remedies of the median filter have been proposed,
e.g. the adaptive median filter [12], the multi-state median filter
[7], or the median filter based on homogeneity information
[8], [17]. These so-called “decision-based” or “switching”
filters first identify possible noisy pixels and then replace them
by using the median filter or its variants, while leaving all
other pixels unchanged. These filters are good at detecting
noise even at a high noise level. Their main drawback is that
the noisy pixels are replaced by some median value in their
vicinity without taking into account local features such as the
possible presence of edges. Hence details and edges are not
recovered satisfactorily, especially when the noise level is high.
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For images corrupted by Gaussian noise, least-squares meth-
ods based on edge-preserving regularization functionals [3],
[5], [6], [18] have been used successfully to preserve the
edges and the details in the images. These methods fail in
the presence of impulse noise because the noise is heavily
tailed. Moreover the restoration will alter basically all pixels
in the image, including those that are not corrupted by the
impulse noise. Recently, non-smooth data-fidelity terms (e.g.
ℓ1) have been used along with edge-preserving regularization
to deal with impulse noise [13].

In [14], a two-stage scheme which combines the variational
method proposed in [13] with the adaptive median filter
[12] is proposed. More precisely, the noise candidates are
first identified by the adaptive median filter, and then these
noise candidates are selectively restored using an objective
function with an ℓ1 data-fidelity term and an edge-preserving
regularization term. Since the edges are preserved for the noise
candidates, and no changes are made to the other pixels, the
performance is much better than that of either one of the
methods. Salt-and-pepper noise with noise ratio as high as
90% can be cleaned quite efficiently. With slight modification,
the method also applies to random-valued noise with noise
level as high as 50%, see [15].

In this paper, we propose an efficient method for solving the
minimization problem in phase two of the algorithm proposed
in [14]. The outline of this paper is as follows. In Section II,
we give a brief review of the two-phase method proposed in
[14]. In Section III, we modify the functional proposed in [14]
so that it is more easier to be minimized without affecting
the restoration performance. In Section IV, we describe our
method to minimize the edge-preserving regularization func-
tional. In Section V, we give some experimental results. In
Section VI, we conclude the paper.

II. REVIEW OF THE TWO-PHASE METHOD

In [14], a two-phase method for detecting and removing
salt-and-pepper is proposed. The first phase is the detection
of noise by adaptive median filter [12] while the second
phase is the restoration of the noisy image by variational
method [13]. See [12] or [14] for a detailed description of
adaptive median filter and [13] for a detailed description of the
variational method. The two-phase algorithm in [14] combines
the advantages of both methods and we will give a brief
description here. In the following, we let xi,j , for (i, j) ∈ A ≡
{1, . . . ,M}×{1, . . . , N}, be the gray level of a true M -by-N
image x at pixel location (i, j), Vi,j be the set of four closest
neighbors of (i, j), not including (i, j), and [smin, smax] be the
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dynamic range of x, i.e. smin ≤ xi,j ≤ smax for all (i, j) ∈ A.
Denote by y a noisy image contaminated by salt-and-pepper
noise. That is

yi,j =











smin, with probability p,

smax, with probability q,

xi,j , with probability 1− p− q,

where r = p + q defines the noise level and yi,j is the
gray value of y at pixel location (i, j). The restored image
is denoted by x̂.

Algorithm:

1. (Noise detection): Denote by ỹ the image obtained by
applying an adaptive median filter to the noisy image
y. Noticing that noisy pixels take their values in the set
{smin, smax}, we define the noise candidate set as

N = {(i, j) ∈ A : ỹi,j 6= yi,j and yi,j ∈ {smin, smax}} .

The set of all uncorrupted pixels is N c = A \ N .
2. (Restoration): Since all pixels in N c are detected as

uncorrupted, we naturally keep their original values, i.e.,
x̂i,j = yi,j for all (i, j) ∈ N c. Let us now consider
a noise candidate, say, at (i, j) ∈ N . Each one of its
neighbors (m,n) ∈ Vi,j is either a correct pixel, i.e.,
(m,n) ∈ N c and hence x̂m,n = ym,n; or is another
noise candidate, i.e., (m,n) ∈ N , in which case its value
must be restored. The neighborhood Vi,j of (i, j) is thus
split as Vi,j = (Vi,j ∩ N c) ∪ (Vi,j ∩ N ). In [13], noise
candidates are restored by minimizing a functional of
the form (1), restricted to the noise candidate set N :

Fy,α

∣

∣

N
(u) =

∑

(i,j)∈N

[

|ui,j − yi,j |+
β

2
(S1

i,j + S2
i,j)

]

(1)

where u ∈ [0, 255]M ,M , #N ,

S1
i,j =

∑

(m,n)∈Vi,j∩N
c

2 · ϕα(ui,j − ym,n),

S2
i,j =

∑

(m,n)∈Vi,j∩N

ϕα(ui,j − um,n),

and ϕα is an edge-preserving potential function having
the parameter α. Examples of such ϕα(x) are:

ϕα(x) =
√

α + x2, α > 0, (2)

ϕα(x) = |x|α, 1 < α ≤ 2. (3)

See [2], [3], [6], [10] and [14].

III. MODIFICATION OF THE REGULARIZATION

FUNCTIONAL

It has been shown in [13] that the term |ui,j − yi,j | in (1)
allows noisy pixels to be detected, but it also introduces a small
bias on the restoration of corrupted pixels. In our method, the
set of all noisy pixels is detected at its first phase. At the
restoration phase, this term is hence no longer necessary. This

suggests we drop it from (1). So we may only consider the
functional of the following form:

Fy,α(u) =
∑

(i,j)∈N

(

S1
i,j + S2

i,j

)

(4)

where S1
i,j , S2

i,j are defined as above. Let us mention that a
major difference with straightforward restoration approaches
such as those in [13] is that in (4), data-fitness and regulariza-
tion use the same potential function ϕα. This choice comes
from the analysis developed in [13].

IV. MINIMIZATION OF THE FUNCTIONAL

The first phase of the denoising algorithm can be done
quite effectively by using adaptive median filter [12]. The
problem remaining is to find an effective way to minimize
the functional (4). Clearly, minimizing the functional Fy,α is
equivalent to solving the following equation:

Gy,α(u) , ▽Fy,α(u) =
(

S
′1
i,j + S

′2
i,j

)

(i,j)∈N
= 0 (5)

where S
′1
i,j and S

′2
i,j are respectively the derivatives of S1

i,j and
S2

i,j with respect to ui,j .
It is well-known that to achieve better edge-preserving

result, the potential function ϕα should be close to |x| while
being differentiable at zero in order to avoid stair-caising
effect. So for ϕα in (2), α should be close to 0 and for ϕα

in (3), α should be close to 1. However, if α is set in this
way, ϕ′α will have a sharp increase near the solution, mean-
ing that Newton’s method will diverge easily. Therefore, we
apply Newton’s method with continuation as described in the
following subsection, see also [5]. For simplicity, we describe
the method for ϕα(x) =

√
α + x2. With slight modification,

the method can be applied to other edge-preserving potential
functions as well.

Newton’s Method with Continuation:

1. Initially, we set α to a very large number α1 (in our tests,
we set α1 = 160, 000). Since α1 is large, the function
Gy,α1

(u) is smooth. Therefore Newton’s method con-
verges with a wide range of initial guesses. We just take
the restored image by the adaptive median filter to be
the initial guess. Let xα1

be the solution obtained by
applying Newton’s method to (5) with α = α1.

2. Next we solve (5) by Newton’s method for a smaller α2

(in our tests, α2 = 5, 000). For α2, Gy,α2
(u) becomes

less smooth and we need a better initial guess so that
Newton’s method can converge. Here we use xα1

as
initial guess, and we denote the solution to Gy,α2

(u) = 0

by xα2
.

3. We repeat this process and reduce α each time, namely
the solution to Gy,αi

(u) = 0 is used as initial guess for
Gy,αi+1

(u) = 0 until we have finally decreased α to our
desired value.

From our tests, if α is reduced using the choices

160000
÷32−→ 5000

÷4−→ 1250
÷4−→ 312.5

÷2−→
156.25

÷2−→ 78.125
÷2−→ 39.0625

÷2−→ · · ·
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Fig. 1. Restoration results of different algorithms: (a) Corrupted Lena image
with 70% salt-and-pepper noise (6.7 dB), (b) Adaptive Median Filter (23.3
dB), (c) Algorithm proposed in [14] (27.3 dB), (d) Our algorithm (27.2 dB),
and (e) The original image Lena.

then Newton’s Method will always converge. We remark that
the Jacobian matrix systems within the Newton Method is
solved by the conjugate gradient method with MILU precon-
ditioner [19]. Next we give the test results.

V. SIMULATIONS

As our method performs essentially the same as that in
[14], we omit the details on the denoising performance of our
algorithm and focus on its speed. Figure 1 shows the results
of applying the adaptive median filter, the algorithm proposed
in [14], and our algorithm to the image Lena of resolution
256× 256 corrupted by 70% salt-and-pepper noise. The peak
signal to noise ratio [4] is also listed there.

Tables I and II show the time required for the whole
denoising process for the adaptive median filter, the algorithm
proposed in [14] and our algorithm on the images contam-
inated by salt-and-pepper noise of different noise levels. In

TABLE I

COMPARISON OF DENOISING TIME IN SECONDS FOR 256× 256 Lena.

Noise Adaptive Median Algorithm in Our
Level Filter [14] Algorithm
10% 2.4 6.4 5.4
30% 3.0 22.4 11.2
50% 4.1 53.4 19.5
70% 6.2 96.8 30.7
90% 11.6 241.9 65.6

TABLE II

COMPARISON OF DENOISING TIME IN SECONDS FOR 512× 512 Lena.

Noise Adaptive Median Algorithm in Our
Level Filter [14] Algorithm
10% 10.9 29.2 22.8
30% 16.7 94.3 51.5
50% 32.7 259.6 98.6
70% 64.5 446.2 170.3
90% 130.5 1897.0 256.7

order to test the speed of the algorithms more fairly, the
experiments are repeated 10 times and the average of the 10
timings is given here. We can see from the tables that our
algorithm is twice faster than the algorithm proposed in [14]
at 30% noise level and as the noise level becomes higher, our
algorithm denoises more faster than the algorithm proposed in
[14].

VI. CONCLUSION

In this paper, we propose an efficient way to minimize
the regularization functional to achieve fast and excellent
denoising result. The two-phase algorithm proposed in [14]
gives a good method for denoising, and we improve it by
our efficient algorithm. With slight modification, our proposed
algorithm can apply equally well to random-valued impulse
noise (cf. [15]).
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