
East-West J. Numer. Math., Vol. 0, No. 0, pp. 1–24 (2002)
c� VSP 2002 Prepared using jnm.sty [Version: 06.06.2001 v1.1]

A Fast Solver for Fredholm Equations of the Second Kind
with Weakly Singular Kernels

RAYMOND H. CHAN�, FU-RONG LINy, and CHI-FAI CHANz

Abstract — In this paper, we consider solutions of Fredholm integral equations of the second kind
where the kernel functions are asymptotically smooth or products of such functions with highly os-
cillatory coefficient functions. We present a scheme based on polynomial interpolation to approxi-
mate matrices A from the discretization of these integral operators. Our approximation matrix B is
obtained by partitioning the domain on which the kernel function is defined into subdomains of dif-
ferent sizes and approximating the kernel function at each subdomain by interpolation polynomial
at the Chebyshev points. Although B is dense, it can still be constructed in O�nk� operations, re-
quires O�nk� storage and the product By can be obtained in O�nk logn� operations, where n is
the size of the matrix and k is the degree of the interpolation polynomial used. We prove that the
Frobenius norm kA�BkF � � if k is of O�log ���� for smooth kernels (including log jx� tj) and of
O�log logn�log ���� for weakly singular kernels such as jx�tj����. Comparison with the wavelet-
like method by Alpert et. al. [2] shows that our method requires less memory and is more accurate.
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1. INTRODUCTION

In this paper, we consider the fast solutions of Fredholm integral equation of the
second kind:

f�x��d�x�

Z �

�
a�x�t�f�t�dt� g�x�� x � ������ (1.1)

where the kernel function a�x�t� is in L������� and is analytic except at x = t, and
the unknown function f�x� and the right hand side function g�x� are in L������.
We assume that the coefficient function d�x� can be oscillatory but bounded. These
equations lie between the equations with smooth kernels and those with arbitrary
oscillatory kernels.
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It is well-known that an integral operator with weakly singular kernel is a com-
pact operator ([11], Theorem 2.21) and that the product of a bounded operator and
a compact operator is still compact ([14], Theorem 4.18). Therefore the integral
d�x�

R �
� a�x�t�f�t�dt in (1.1) defines a compact operator. Hence for integral equa-

tions of the second kind, they are either singular or well-conditioned. Using quadra-
ture rules such as the trapezoidal rule, (1.1) becomes a linear system

�I�DA�f � g� (1.2)

where I is the identity matrix, D is a diagonal matrix and A is a dense matrix
corresponding to the quadrature rule and quadrature points used in discretization of
the integral in (1.1).

Various direct and iterative methods have been proposed for solving (1.2), see
[7] for instance. However, one overriding drawback of these methods is the high
cost of working with the associated dense matrices A. For problems discretized
with n quadrature points, direct methods such as Gaussian elimination method re-
quire O�n�� operations to obtain the numerical solutions. For iterative methods such
as the conjugate gradient type methods, each iteration requires matrix-vector mul-
tiplications of the form Ay, see [8]. Therefore even for well-conditioned problems,
such as the second kind integral equations, the methods require O�n�� operations,
which for large-scale problems is often prohibitive.

In recent years, a number of fast algorithms for (1.2) have been developed, see
for instance [9, 13, 3, 2]. The fast multipole method proposed in [9] combines the
use of low-order polynomial interpolation of the kernel functions with a divide-
and-conquer strategy. For kernel functions that are Coulombic or gravitational in
nature, it results in an order O�n� algorithm for the matrix-vector multiplications.
In [13], the integral equation is discretized at the Chebyshev points and the resulting
matrix is approximated by a low-rank modification of the identity matrix which
can be obtained in O�n logn� operations. However, the solution of the discretized
system still requires O�n�� operations to obtain if the solution is not smooth. In
[3], an O�n logn� algorithm is developed by exploiting the connections between
the use of wavelets and their applications on Calderon-Zygmund operators. In [2],
wavelet-like bases are used to transform the dense discretization matrices into sparse
matrices, which are then inverted by the Schulz method. The complexity of the
resulting algorithm is bounded by O�n log�n�.

In this paper, we present a fast matrix-vector multiplication scheme based on
polynomial interpolation technique. We partition the discretization matrix A into
sub-blocks of different sizes as in [2]. Then, a degree k interpolation polynomial
is used on each of the sub-blocks to obtain an approximation matrix B. We show
that the approximation matrix B can be constructed in O�nk� operations and only
requires O�nk� storage to represent. We also show that for any vector y, the product
By can be obtained in only O�nk logn� operations. Therefore, for integral equa-
tions of the second kind, the approximated systems can be solved by the conjugate
gradient type methods in only O�nk logn� operations.

We then discuss the accuracy of B with respect to the degree k of the interpola-
tion polynomial used in the approximation. We will concentrate on kernel functions
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that are asymptotically smooth, i.e.,

jDma�x�t�j� �m�m�jx� tj��m� form� ��

where � � �, � � � and Dm is the mth-order partial derivative of x or t or both
(see [16]). (We note that for problems in higher dimensional spaces, one can use a
more general definition as given in [15].) For such kernel functions, we prove that
kA�BkF � � if the degree k of interpolation polynomial satisfies

k �

��
�

O�log ����� �� ��
O�log ����	O�log logn�� ��� � � ��
O�log ����	O�logn�� � ���	

(1.3)

In particular, for smooth kernel functions (�� �) that include the function log jx�tj,
k is independent of the matrix size n. Hence our method requires only O�n log����
storage and O�n logn log���� operations to solve the corresponding integral equa-
tions. For weakly singular kernel functions (�� � � � �) such as jx� tj����, the
memory requirement is O�n�log logn	log ����� and the computational complexity
is O�n logn�log logn	log �����. We note that the methods in [1, 16] both require
O�n logn log ���� memory for the same accuracy for log jx� tj and other weakly
singular kernel functions.

The outline of this paper is as follows. In x2, we derive our fast multiplication
scheme and analyze its complexity. We will show that our approximation matrix
B can be obtained in O�nk� operations and requires O�nk� storage. Moreover,
the cost for matrix-vector multiplication By is just O�nk logn�. In x3, we analyze
the accuracy of B and give a proof of (1.3). Numerical results are given in x4 to
illustrate the efficiency, accuracy and stability of our approximation scheme. We
will also compare the storage requirement and accuracy of our method with that in
[2]. The results show that our method is more accurate and requires less storage.
Finally, concluding remarks are given in x5.

2. THE APPROXIMATION

In this section, we present our fast matrix-vector multiplication scheme for the dis-
cretization matrix A of (1.1). The idea of the scheme is to take advantage of the
smoothness of the kernel function a�x�t� away from the singularity where we can
use low degree polynomials to approximate the function accurately. As an example
mentioned in [2], for any c � �, the function logx can be approximated within 
��

accuracy on �c��c� by using polynomials of degree at most 7. In our approximation,
we partition the domain ������ on which the discretization matrix A is defined into
subdomains of different sizes and approximate the kernel function a�x�t� on each
subdomain by a low degree polynomial.
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Figure 1. Partition of the Matrix A

2.1. The Partition

For simplicity, we let the size of A be n��lk. Here k is a fixed integer that depends
on the smoothness of a��� �� and the given accuracy �. Theorem 2 in x3 will give an
estimate of k. We partition A into blocks of different sizes as shown in Figure 1. Our
partition is the same as that in [2]. The blocks near the diagonal are of size k-by-k,
those next remote are of size �k-by-�k and up to the largest size �l��k-by-�l��k.

By grouping the block matrices with the same size into one matrix, we see that
A can be written as the sum of a sequence of block matrices

A�A���	A���	 	 	 		A�l���	 (2.1)

Here A�u�, u� �� 	 	 	 � l��, contains only size �uk-by-�uk block matrices. We can
see from 1 that the number of nonzero blocks in A�u� is given by

vu �

�
� ��l�
� u� ��
���l���u���� u� �� 	 	 	 � l��	

(2.2)

We will denote the nonzero blocks in A�u� by A�u�v� for v � �� 	 	 	 �vu. The
numbered blocks in Figure 1 give the non-zero blocks in A��� and each numbered
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Figure 2. Partition of the Domain ������

block A���v�, v � �� � � � �
�, is a �k-by-�k matrix. In a similar fashion, we partition
the domain ������ on which a��� �� (and hence A) is defined. More precisely, we let
S�u�v� be the sub-domain in ������ on which the matrix A�u�v� is defined. We will
call S�u�v� the �u�v�-subdomain. As an illustration, the numbered subdomains in
Figure 2 are S���v� for v � �� 	 	 	 �
�.

Clearly, for a given u, S�u�v� is of the same size for each v, and the side is of
length du � �
�l�u, u � �� � � � � l� �. From the solid line in Figure 2, it is easy to
see that all �x�t� in S����� satisfy jx� tj� j�d��d�j� d�. In general, we have

jx� tj� du �
�

�l�u
� ��x�t� � S�u�v�	 (2.3)

Equation (2.3) is required for the error analysis in x3.

2.2. The Sampling and the Interpolation

Our approximation matrix B of A is constructed by approximating each block
A�u�v� in A�u� by a rank k matrix B�u�v�. The matrix B�u�v� is obtained by tak-
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ing k� samples in S�u�v� at the Chebyshev points and then interpolating a�x�t� at
these sample points. For notation simplicity, we will use the Nyström method with
uniformly-spaced points to discretize (1.1) here. But we will see later that if other
quadrature rules are used, our approximation scheme still works.

Thus let the entries of A�u�v� be defined as

�A�u�v��i�j �
�

n��
a�x

�u�v�
� 	�i���h�t

�u�v�
� 	�j���h�� �� i� j � �uk� (2.4)

where h� �
�n���. Here A�u�v� is defined on

S�u�v� � �x
�u�v�
� �x

�u�v�
� 	��uk���h�� �t

�u�v�
� � t

�u�v�
� 	��uk���h�	

The approximation matrix B�u�v� is obtained by interpolating the kernel function
a��� �� on S�u�v� at the Chebyshev points. We note that the idea to use interpolation
at the Chebyshev points was also considered earlier in [12]. For a given domain
�������� �������, the Chebyshev points of degree k are defined by�

xr � ��	
�����

� ��	 cr��
ts � ��	

�����
� ��	 cs��

(2.5)

where

cr � cos

�
��r���


�k

�
� r � �� � � � �k

are the roots of the kth degree Chebyshev polynomial on the interval ������.

Let �x�u�v�r � t
�u�v�
s � (r�s� �� � � � �k) be the Chebyshev points on S�u�v�. Using the

Lagrange polynomials as basis functions, we get

a�x�t��
kX

r��

kX
s��

a�x�u�v�r � t�u�v�s �pr�x�x
�u�v�
� �ps�t� t

�u�v�
� �� ��x�t� � S�u�v�	

(2.6)

Here the Lagrange polynomial pr�x�x
�u�v�
� � is defined as

pr�x�x
�u�v�
� � �

kY
s��
s��r

�x�x
�u�v�
s �

�x
�u�v�
r �x

�u�v�
s �

�
�r���	

��x�x
�u�v�
� �

��uk���h �

�r�cr�
� (2.7)

where

�r�x� �

kY
s��
s��r

�x� cs�	 (2.8)
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The Lagrange polynomial ps�t� t
�u�v�
� � is defined similarly.

Combining (2.4) and (2.6), we get the approximation B�u�v� of A�u�v� as follows:

�A�u�v��i�j

�
�

n��
a�x

�u�v�
� 	�i���h�t

�u�v�
� 	�j���h�

� �

n��

kX
r��

kX
s��

a�x�u�v�r � t�u�v�s �pr�x
�u�v�
� 	�i���h�x

�u�v�
� � �

�ps�t�u�v�� 	�j���h�t
�u�v�
� �

� �B�u�v��i�j

for �� i� j � �uk. In matrix terms, B�u�v� is given by

B�u�v� � L�u���u�v��L�u��T � (2.9)

where the k-by-k matrix ��u�v� and the �uk-by-k matrix L�u� are defined respec-
tively by

���u�v��r�s �
�

n��
a�x�u�v�r � t�u�v�s �� �� r�s� k (2.10)

and

�L�u��i�j � pj�x
�u�v�
� 	�i���h�x

�u�v�
� � �

�j���	 ��i���
��uk���h�

�j�cj�
� (2.11)

for �� i� �uk and �� j � k. An important observation here is that the matrix L�u�

does not depend on v.
We remark that to construct the approximation matrix B�u�v�, we only need to

evaluate the kernel function a��� �� at the k� sample points. There is no need to form
the whole submatrix A�u�v�. From (2.6), we see that our scheme still works if other
compound k-point quadrature rule, such as the k-point Gaussian rule, is used to
discretize (1.1). All we need is to change the entries of L�u� in (2.11) according to
the quadrature points used.

2.3. The Approximation Matrix B

From (2.11), we know that the matrix L�u� is independent of the index v. By this
property, we observe from Figure 1 and (2.9) that the approximation matrix B�u� of
A�u� is of the form

B�u� � �I�l�u 	L�u�� ���u� � �I�l�u 	 �L�u��T �� u� �� 	 	 	 � l���
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where I�l�u is the identity matrix of size �l�u and	 is the Kronecker tensor product.
Here ��u� has the same block structure as A�u� but each block ��u�v� in ��u� is of
size k-by-k, see (2.10). In contrast, each block A�u�v� in A�u� is of size �uk-by-�uk
and that is where our saving in memory comes from. It follows from (2.1) that the
approximation matrix B of A is

B � A���	B���	B���	 	 	 		B�l���

� A���	

l��X
u��

�I�l�u 	L�u�� ���u� � �I�l�u 	 �L�u��T �	 (2.12)

In the next subsection, we study the storage requirement for B and the cost of
matrix-vector multiplications By by using (2.12).

2.4. Complexity Analysis

In this subsection, we show that the approximation matrix B can be constructed in
O�nk� operations and requires only O�nk� storage. Moreover, the product By can
be done in O�nk logn� operations. Here n� k�l is the number of quadrature points
used. In the following, we only count the number of multiplications as the number
of additions is of the same order.

Theorem 2.1. Let B be defined as in (2.12), where A���, L�u� and ��u� are
defined in (2.1), (2.11) and (2.10) respectively. We have

(i) The storage requirement for representing B is less than �	�nk.

(ii) A���, L�u� and ��u� can be constructed in �nk multiplications and �nk func-
tion evaluations.

(iii) For any vector y, the product By can be obtained in �� log�n	��nk opera-
tions.

Proof. (i) By using (2.12) to represent B, we only need to store A���, L�u� and
��u� for u� �� 	 	 	 � l��. Their storage requirements are summarized in Table 1.

Thus the total storage requirement is

�� ��l�
�k�	
l��X
u��

n
���l���u���k�	�uk�

o
� �	� ��lk� � �	�nk	

(ii) From (2.2), we see that the matrix A is partitioned into

�� ��l�
�	
l��X
u��

���l���u��� � � ��l��l�
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Table 1.

Storage Requirement

Matrix Storage Explanation

A��� �� ��l�
�k� A��� consists of �� � �l � 
� blocks and each of
them is of size k-by-k, see (2.2).

��u� ���l���u���k� ��u� is a block matrix with ���l���u��� nonzero
blocks and each nonzero block ��u�v� is of size k-
by-k, see (2.2) and (2.10).

L�u� �uk� L�u� is a �uk-by-k matrix, see (2.11).

blocks. For each block, we require k� samples of a��� ��, see (2.10). Hence we need

�� ��l��l�
�k� � �nk

function evaluations for constructing A��� and ��u� for u� �� � � � � l��.

Now let us discuss the cost of constructing L�u�. It can be done by the following
steps:

(a) Calculate the denominator f�j�cj�gkj�� in (2.11). By (2.8), totally k�k� ��
operations are required.

(b) Construct the numerators �j�xi� of L�u� in (2.11) column by column. Here
xi � �� 	 ��i���
��uk���. It is clear that ���xi� can be computed in
�uk�k� �� operations. Since �j	��xi� � �j�xi��xi� cj�
�xi� cj	��, each
column other than the first requires � � �uk operations. Therefore, we need
�u	�k�k��� operations to form the remaining k�� columns.

(c) Finally, we can obtain the �i� j�th-entry of L�u� by dividing the numerators
with the denominators, see (b) and (c). The cost is �uk� operations.

Therefore, the construction of L�u�, u� �� 	 	 	 � l��, requires

k�k���	
l��X
u��

f�uk�k���	�u	�k�k���	�uk�g� � ��lk� � �nk

multiplications.
(iii) By (2.12), we have

By �A���y	
l��X
u��

h
I�l�u 	L�u�

i
���u� �

h
I�l�u 	 �L�u��T

i
y	
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Table 2.
Examples of Asymptotically Smooth Functions

a�x�t� Inequality � � �

log jx� tj jDma�x�t�j�m�jx� tj�m 1 0 0
jx� tj��� jDma�x�t�j� ��	m�jx� tj����m 0.5 0 0.5
jx� tj���� jDma�x�t�j� ��	m�jx� tj�����m 0.5 0 ���	

By using the tensor structure,
�
I�l�u 	 �L�u��T

	
y can be obtained in �lk� opera-

tions. Since there are ���l���u��� sub-blocks of size k-by-k in ��u� (see (2.2)), it
can be easily checked that the total number of multiplications required to form By
is

�� ��l�
�k�	
l��X
u��

n
���l���u���k�	� ��lk�

o
� ��l	���lk� � ��log�n	��nk	

Numerical experiments in x4 show that our approximation matrices B are ac-
curate and stable and our multiplication scheme indeed attains the said complex-
ity. Recall that Fredholm integral equations of the second kind are in general well-
conditioned and hence can be solved by conjugate gradient type methods without
preconditioning. The main cost in each iteration is the matrix-vector multiplica-
tion, see [8]. Thus using our scheme, the approximate equations can be solved in
O�nk logn� complexity. In the next section, we will give the error analysis of our
approximation scheme. In particular, we will give an estimate of k, the degree of the
interpolation polynomial that we should use.

3. ERROR ANALYSIS

In this section, we present the error analysis of our approximation scheme. In the
following, we use Dm to denote the mth-order partial derivative of variable x or t
or both. We also use the symbols Dm

x and Dm
t for partial derivatives on the single

variable x and t respectively. As in [16], we consider kernel functions a�x�t� that
are asymptotically smooth, i.e.,

jDma�x�t�j� �m�m�jx� tj��m� (3.1)

where � � �� � � � and � are constants. This assumption is quite general and here
are some typical examples:

Before we start, we recall that if q�x� is an interpolation polynomial of a func-
tion f�x� � Ck������� at the k Chebyshev points of degree k (see (2.5)), then

sup
x�
������

jf�x�� q�x�j� �

�k��k�
sup

���x���

jf �k��x�j
�
�����

�

�k

� (3.2)
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see [10] (pp.284–287) for instance. For �-dimensional interpolation polynomials at
the Chebyshev points, we have the following result.

Lemma 3.1. Let the function a�x�t� be a function such thatDkxDk
t a�x�t� is con-

tinuous in the domain �������� �������. Let q�x�t� be the interpolation polynomial
at the k� Chebyshev points in �������� ������� defined by (2.5). Then

ka� qk �
�

�k��k�



kDk

t ak
�
�����

�

�k

	kDk
xak

�
�����

�

�k
�

	
kDk

tDk
xak

��k��k���

�
�����

�

�k������
�

�k

�

where k � k is the supremum norm in �������� �������.

Proof. First of all, we define the �-variable interpolation polynomial for a �-
dimensional function a�x�t� as

Ixa�x�t� �
kX

j��

a�x�tj�pj�t���� (3.3)

and

Ita�x�t� �
kX

i��

a�xi� t�pi�x�����

where pj�t���� is the Lagrange polynomial defined by the Chebyshev points t�� t��
	 	 	 � tk in ������� and pi�x���� is the Lagrange polynomial defined by the Chebyshev
points x��x�� 	 	 	 �xk in �������, see (2.7). Obviously, the interpolation polynomial
q�x�t� of a�x�t� on the mesh �xi� tj� (i� j � �� � � � �k) is given by

q�x�t� � Ixta�x�t� �
kX

i��

kX
j��

a�xi� tj�pi�x����pj�t����	

It is not difficult to see that Ixta� It�Ixa� � Ix�Ita�.
By the triangular inequality ka�qk� ka�Ixak	kIxa�Ixtak, we only have

to estimate ka�Ixak and kIxa�Ixtak. By applying (3.2) to (3.3), we get

ka�Ixak� kDk
t ak

�k��k�

�
�����

�

�k

	 (3.4)

Applying (3.2) to Ixa, we also have

kIxa�Ixtak� kIxa�It�Ixa�k� kDk
x�Ixa�k
�k��k�

�
�����

�

�k

	 (3.5)
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From (3.3) we see that Dk
xIxa� IxDk

xa and hence by (3.4) we get

kDk
xa�Dk

xIxak� kDk
xa�IxDk

xak�
kDk

tDk
xak

�k��k�

�
�����

�

�k

	

Therefore

kDk
xIxak� kDk

xak	
kDk

t Dk
xak

�k��k�

�
�����

�

�k

	 (3.6)

Combining (3.4), (3.5) and (3.6), we finally get

ka� qk � ka�Ixak	kIxa�Ixtak

�
kDk

t ak
�k��k�

�
�����

�

�k

	
�

�k��k�

�
�����

�

�k
�
kDk

xak	
kDk

t Dk
xak

�k��k�

�
�����

�

�k


	

We now return our discussion to the accuracy of the approximation matrix B.
Let the kernel function a�x�t� satisfy assumption (3.1). We note that each subdo-
main S�u�v� on which A�u�v� is defined is a square of length du (see (2.3)) and all
points �x�t� in S�u�v� satisfy jx� tj� du. Therefore, by (3.1) and Lemma 1, we get

sup
S�u�v�

ja� q�u�v�j� ��k�k��du�
���k�

�k��k�

�
du
�

�k

	
���k����k���du�

����k�

��k��k���

�
du
�

��k

�

where q�u�v� is the interpolation polynomial of a�x�t� at the Chebyshev points on the
S�u�v� and is given by the right hand side of (2.6). Noting that ��k��
�k��k���� � �
(which can easily be proved by mathematical induction), we have

sup
S�u�v�

ja� q�u�v�j� �du�
�

�
��k�

��k��
	

����k��

��k

�
� �du�

� ����k�
�

��k
� �du�

� ek�

(3.7)

where ek � ����k��
��k . With the estimate (3.7), we have the following main re-
sult.

Theorem 3.1. Let the kernel function a�x�t� satisfy (3.1). Then for any � � �,
kA�BkF � � if the degree k of the interpolation polynomial satisfies

k �

��
�

c�	log���
���� �� ��

c�	log���
���	 �

� log� log�n� ��� � � ��
c�	log���

���	 �
� log� log�n	 �

������� log�n� � ���	
(3.8)

Here ci are constants depend on � and � only.
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Proof. We have

kA�Bk�F �
l��X
u��

kA�u��B�u�k�F �
l��X
u��

vuX
v��

kA�u�v��B�u�v�k�F 	

Since A�u�v� and B�u�v� are �uk-by-�uk matrices and �A�u�v��i�j �
�

n��a��� �� (see
(2.4)), by (2.2) and (3.7), we get

kA�Bk�F �
�

�n����

l��X
u��

���l���u�����uk���du�
�e�k�

Recall from (2.3) that du � �u�l, we have

kA�Bk�F �
�k�e�k
�n����

l��X
u��

��l���u�����u���u�l�	

We consider the following three cases:

(i) � � �: Note that ���u�l� � �, we have

kA�Bk�F �
�k�e�k
�n����

l��X
u��

��l���u�����u

�
n���nk	
k�

�n����
e�k

�
�n��k���k�

�n����
e�k � e�k	 (3.9)

In order that ek � ����k��
��k � �, we can first choose a constant c� � c���� such
that for all k � c�, k�
�k � �. Clearly k � log�����

��� log� � is equivalent to
����
�k � �. Thus (3.8) follows with

c� �max�c�� log�����
���	 (3.10)

(ii) ��� � � �: Note that ���u�l� � ���u�l�, we have

kA�Bk�F �
�k�e�k
�n����

l��X
u��

��l���u�����u���u�l�

�
�k�e�k
�n����

l��X
u��

���l��� �
�k�e�k
�n����

�l�����l

� ��l����
n

n��
��e�k � �le�k	 (3.11)
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By part (i), in order that
p
�lek � �, we need

k � c�� log���

p
�l� � c�	

�

�
log� �	

�

�
log� log�n� log� �	

Hence (3.8) follows with c� � c�	
�
� log� �.

(iii) � ���: Note that ���	��u � �, we have

kA�Bk�F �
�k�e�k
�n����

l��X
u��

��l���u�����u���u�l�

�
�k�e�k
�n����

l��X
u��

������l���	��u

� ��l����
n

n��
���������le�k � �l�������le�k	 (3.12)

Similar to part (ii), in order that
p
�l�������l��ek � �, we need

k � c�� log���
�
p
�l�������l����

� c�	
�

�
log� �	

�

�
log� log�n	

��� �

�
log�n� log� �	

Hence (3.8) follows with c� � c� � c�	
�
� log� �.

We note that the constants ci in Theorem 2 are often small numbers. For ex-
ample, for log jx� tj, we have � � �, � � � and � � �. It follows from (3.10) that
c� � log� �� �	�.

By Theorem 2, for a given accuracy �, we can choose one k that satisfies (3.8)
for all matrix sizes if the kernel has �� �. For weakly singular kernels (��� � � �),
then k will increase like �

� log� log�n as the matrix size n increases. If the singularity
is such that � ���, then k increases like j�j log�n. Moreover, if �� �, we can see
from (3.9), (3.11) and (3.12) that for a fixed l, we have

kA�BkF �O�ek� �O����k�	 (3.13)

These facts will be illustrated by numerical examples in x4.
Summarizing the results in Theorems 1 and 2, we have the Table 3.
These counts are better than those in [1, 16] which are of order

O�n log����� logn� for weakly singular kernels.

4. NUMERICAL EXAMPLES

In this section, we consider numerical solutions of Fredholm integral equations of
the second kind. Since the second kind integral equations are well-conditioned in
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Table 3.
Complexity in Achieving kA�Bk� �

Case � 

� � �

Case � 

��� � � �

Case � 

� ���

Memory
requirement


�	n�n
c��log���

���
o


�	n�n
c��log���

���

� �

�
log� log�n

o


�	n�n
c��log���

���

� �

�
log� log�n

� �

�
������ log�n

o

Construction
cost

��n�n
c��log���

���
o

��n�n
c��log���

���

� �

�
log� log�n

o

��n�n
c��log���

���

� �

�
log� log�n

� �

�
������ log�n

o

Cost of
B �y

�� log�n�	�n�n
c��log���

���
o

�� log�n�	�n�n
c��log���

���

� �

�
log� log�n

o

�� log�n�	�n�n
c��log���

���

� �

�
log� log�n

� �

�
������ log�n

o

general, we can solve them by using conjugate gradient type methods, see [8]. The
main computational task in each iteration is the matrix-vector multiplication of the
form Ay. As the discretization matrix A is dense, the cost is O�n��. In the following,
we overcome this difficulty by replacing A with our approximation matrix B given
in (2.12). We will examine the accuracy of B and its storage requirement. Moreover,
we will compare our method with the wavelet-like method in [2].

As in [2], we discretize (1.1) by the following formulae

�A�i�j �

�
�

n��a�
i��
n�� �

j��
n��� i 
� j

� i� j

and

�D�i�i � d

�
i��

n��

�
� i� �� 	 	 	 �n

to obtain the matrix equation (1.2). The formulae correspond to a primitive,
trapezoidal-like quadrature discretization of the integral equation. We test our algo-
rithm for the following six kernel functions:

(i) log jx� tj,
(ii) cos�xt�� log jx� tj,

(iii) cos�xt��jx� tj����,

(iv) cos�xt��jx� tj���,
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Figure 3. k against log�kA�BkF 	kAkF � for l� � (left) and l� �� (right)

(v) ��	 �
� sin����x�� log jx� tj, and

(vi) sin����x� log jx� tj.

The kernel functions (i) to (v) are examples tested in [2]. We note that the
wavelet-like method in [2] is not applicable to (vi) as sin����x� is not a positive
function. For (i) to (v), the coefficient function d�x� � � and hence the matrix D in
(1.2) is the identity matrix. For (v) and (vi), d�x� are highly oscillatory but bounded.
All the numerical results are computed by MATLAB on a Sun Enterprise 4000 work-
station.

4.1. Accuracy of the Approximation Matrix B

We measure the accuracy of our approximation matrix B by computing its relative
error kA�BkF 
kAkF . Since the kernel functions (i), (v) and (vi) give the same
approximation matrix B, we only give the results for kernel functions (i)–(iv) in
this subsection.

(i) The accuracy of B vs k when l is fixed.
Figure 3 gives the log of the relative error of B against k for l � 
 and l �

��. For other l, the results are similar and hence omitted. We note that the relative
error of B for the kernel functions log jx� tj and cos�xt�� log jx� tj are almost
the same. Recall that the size of the matrices is n � �lk. Thus the largest matrix
we tested is of size 16384-by-16384. We observe from Figure 3 that for a fix l,
log�kA�BkF 
kAkF � is a linear function of k, therefore the relative error of B is
of the order O�e�k�. This result well matches our error estimate (3.13).

(ii) The accuracy of B vs l when k is fixed.
In Figure 4, we plot the log of the relative error against l for k � 
 and �.
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Figure 4. l against log�kA�BkF 	kAkF � for k � � (left) and k � � (right)

The results for other k are similar and hence omitted. From the figure, we see that
the error for smooth kernels (e.g. cos�xt��jx� tj��� with � � �
� and log jx� tj
with � � �) is almost constant independent of l. For kernels with a negative � (e.g.
cos�xt��jx� tj���� with � = ��
�), the error increases slowly with l, indicating
that we should use larger k for larger n. This is in accord with Theorem 2.

4.2. The Conjugate Gradient Method

In the following, we test the complexity of using the conjugate gradient method to
solve our approximation matrix equation �I�DB�y � b.

(i) Cost per iteration.
The cost per iteration of the conjugate gradient method will depend mainly on

the matrix-vector multiplications. Clearly, for the original matrix A, Ay will require
O�n�� operations, whereas by Theorem 1, the cost for By is only O�nk logn�.
In Figure 5, we plot the log of the costs of forming the products (in Kilo-flops)
against l. From the slopes of the lines, we clearly see that our method attains the
said complexity.

(ii) Convergence rate.
We solve the system �I �DB�y � b by the CGLS method which is based on

solving the normal equation of the given equation by the conjugate gradient method,
see [4]. We choose a random vector as our right hand side and the zero vector as our
initial guess. The stopping criterion is krqk�
kr�k�� �����, where rq is the residual
vector at the qth iteration. The numbers of iterations required for convergence are
given in Table 4.

Since the kernel functions we tried are at most weakly singular, we see from
Table 4 that the convergence rate is linear as expected. As the product By can be
formed in O�nk logn� operations, the total cost of solving each of these systems
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Table 4.
Numbers of Iterations Required for Convergence

kernel function l k � � k � � k � �� k � �� k � ��

cos�xt��jx� tj���� 4 20 23 25 26 26
6 26 29 32 36 33
8 33 32 32 32 32

10 32 33 33 33 33

cos�xt��jx� tj��� 4 9 9 9 9 8
6 8 8 8 8 8
8 8 8 8 8 8

10 8 8 8 8 8

log jx� tj 4
��� �

�
sin����x�� log jx� tj 6 converges within 12 to 14 iterations

cos�xt�� log jx� tj 8 for all 4 kernel functions
sin����x� log jx� tj 10
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is of O�nk logn� operations. We emphasize again that in order to get the solution,
we only have to form the factors of B which require only O�nk� operations (see
Theorem 1) and there is no need to form A.

4.3. Comparison of Accuracy and Storage Requirement

We now compare the accuracy and storage requirement of our method with those
of the wavelet-like method [2]. We choose a fixed random vector y (by using
rand(’seed’,37) in MATLAB) as the true solution and construct the right hand
side b from �I�DA�y � b. We then solve

�I�DB�z � b

by the CGLS method, where B is our approximation to A as given in (2.12).
For the wavelet-like method, we obtain the sparse representation S of D

�
�AD

�
�

by using the algorithm in [2] to get the discretization matrix in the wavelet-like co-
ordinates and then throwing away entries smaller than the threshold � in absolute
value. (Thus we see that the wavelet-like method is not applicable to kernel func-
tions such as (vi) where D is indefinite.) Then we solve

D
�
� �I�S�D� �

� z � b

by the CGLS method. We remark that the z so obtained is more accurate than that
obtained by the Schulz method in [2] because their method will throw away small
entries in the inverse of �I�S�.

Tables 5–6 show the storage requirement for the approximation matrices B and
S and the accuracy of the solutions. The relative errors ky� zk�
kyk� of the solu-
tions are given under the column “Error”. The column “�” gives the bandwidth
of the matrices which is defined to be the storage/n. We note that by Theorem
1, the bandwidth of our matrix B is bounded by �	�k (the number enclosed by
parenthesis in Tables 5–6), and is independent of the kernel functions. In contrast,
the bound for S is c logn, where the constant c depends on the threshold � and
the kernel function considered, see [2]. We remark further that in the wavelet-like
method, additional storage of O�nk� is required to store the wavelet-like bases ma-
trix U � UlUl�� � � �U�, see [2]. However, these counts are not added in Tables 5–6
for clarity.

From Tables 5–6 we observe the following:

1. For the same k, the solution obtained by our method is always more accurate
than that of the wavelet-like method. The reasons are that the interpolation
polynomial on Chebyshev points is more accurate than that on uniformly-
spaced points, and the wavelet-like method discards small entries to get the
sparse representation S. In Table 5, we tried two different thresholds � to
show that the accuracy of the wavelet-like method is not improved much by
using a smaller � . We note that it will be very expensive to use Chebyshev
points in the wavelet-like method.
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Table 5.
Bandwidth 
 and Relative Error for log jx� tj

Our Method Wavelet-Like Method

k l 
 Error � 
 Error � 
 Error

4 4 29.8 3.19e-5 ���� 26.2 6.89e-5 ���� 33.3 7.06e-5
5 33.1 3.23e-5 28.7 6.61e-5 39.7 6.85e-5
6 35.2 3.10e-5 29.0 6.11e-5 42.1 6.42e-5
7 36.4 3.00e-5 26.0 6.22e-5 40.9 6.35e-5
8 37.1 2.88e-5 22.3 6.14e-5 38.5 6.22e-5

(� 38.0)

5 4 36.9 2.62e-6 ���� 34.5 6.49e-6 ���� 40.8 6.51e-6
5 41.3 2.67e-6 39.1 5.85e-6 49.4 5.90e-6
6 43.9 2.76e-6 40.2 5.99e-6 53.1 5.88e-6
7 45.5 2.88e-6 38.8 6.30e-6 53.4 6.07e-6
8 46.4 2.91e-6 36.3 6.08e-6 51.8 5.92e-6

(� 47.5)

6 4 44.3 3.30e-7 ���� 43.6 1.55e-6 ���� 48.7 1.55e-6
5 49.5 3.58e-7 49.9 1.43e-6 59.7 1.46e-6
6 52.7 4.14e-7 53.3 1.47e-6 66.5 1.52e-6
7 54.6 4.11e-7 53.4 1.40e-6 67.4 1.47e-6
8 55.6 4.13e-7 51.0 1.40e-6 65.9 1.44e-6

(� 57.0)

7 4 51.6 4.03e-8 ���� 52.1 1.78e-7 ���	 57.6 1.80e-7
5 57.8 4.06e-8 60.6 1.66e-7 70.3 1.66e-7
6 61.5 4.41e-8 65.1 1.61e-7 78.2 1.61e-7
7 63.7 4.36e-8 66.8 1.61e-7 80.6 1.61e-7
8 64.9 4.37e-8 65.7 1.56e-7 80.0 1.58e-7

(� 66.5)

8 4 59.5 6.04e-9 ���	 60.1 4.54e-8 ����� 65.7 4.54e-8
5 66.3 6.56e-9 72.2 4.53e-8 81.1 4.53e-8
6 70.4 6.93e-9 77.7 4.56e-8 91.4 4.57e-8
7 72.8 6.81e-9 80.1 4.38e-8 95.7 4.41e-8
8 74.2 6.83e-9 80.5 4.34e-8 96.5 4.37e-8

(� ����)
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Table 6.
Bandwidth and Relative Error for Kernel Functions (iii) cos�xt��jx� tj���� and (v) ���
�

�
sin����x�� log jx� tj

Our Method Wavelet-Like Method

kernel (iii) (v) (iii) (v)

k l 
 Error Error � 
 Error 
 Error

4 4 29.8 5.67e-5 3.25e-5 ���� 32.3 1.46e-4 34.7 7.45e-5
5 33.1 7.71e-5 3.15e-5 37.9 1.68e-4 39.8 7.29e-5
6 35.2 7.21e-5 3.10e-5 41.1 1.72e-4 32.6 6.53e-5
7 36.4 1.18e-4 3.06e-5 41.6 2.14e-4 29.5 6.69e-5
8 37.1 2.57e-4 2.98e-5 41.7 8.63e-4 25.3 6.43e-5

(�38.0)

5 4 36.9 4.66e-6 2.88e-6 ���� 41.2 1.30e-5 44.5 6.40e-6
5 41.3 7.10e-6 2.89e-6 48.7 1.89e-5 51.1 5.92e-6
6 43.9 8.03e-6 2.97e-6 53.4 1.63e-5 46.3 5.94e-6
7 45.5 7.70e-6 3.08e-6 55.4 7.76e-5 44.4 6.69e-6
8 46.4 7.57e-6 3.12e-6 55.7 5.19e-5 40.5 7.04e-6

(�47.5)

6 4 44.3 7.46e-7 3.45e-7 ���� 49.9 4.20e-6 54.2 1.59e-6
5 49.5 8.97e-7 3.53e-7 60.4 4.88e-6 62.2 1.45e-6
6 52.7 1.40e-6 4.18e-7 66.6 6.17e-6 62.3 1.43e-6
7 54.6 4.65e-6 4.19e-7 69.6 2.03e-5 60.3 1.35e-6
8 55.6 1.83e-6 4.22e-7 70.8 9.59e-6 56.0 1.34e-6

(�57.0)

7 4 51.6 9.43e-8 4.32e-8 ���� 59.0 4.43e-7 64.2 1.75e-7
5 57.8 1.18e-7 4.26e-8 71.2 4.92e-7 73.8 1.58e-7
6 61.5 1.25e-7 4.67e-8 79.1 1.38e-6 75.6 1.58e-7
7 63.7 2.15e-6 4.65e-8 83.7 2.82e-5 74.9 1.55e-7
8 64.9 1.33e-7 4.64e-8 85.3 9.55e-7 71.5 1.54e-7

(�66.5)

8 4 59.5 1.71e-8 6.02e-9 ���	 68.0 1.43e-7 73.7 4.63e-8
5 66.3 2.15e-8 6.73e-9 83.0 1.73e-7 85.6 4.26e-8
6 70.4 3.28e-8 7.04e-9 93.2 1.97e-7 89.9 4.25e-8
7 72.8 9.43e-8 7.20e-9 99.3 7.33e-7 89.7 4.07e-8
8 74.2 2.88e-8 7.18e-9 103.0 2.61e-7 86.9 4.01e-8

(�76.0)
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Figure 6. Accuracy versus Bandwidth for log jx� tj
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2. The bandwidth � of the sparse matrix S in the wavelet-like method increases
more than linearly with respect to log����� for fixed l. To illustrate this more
clearly, we plot in Figures 6–7 the accuracy (log(Error)) against the band-
width � for both methods. For clarity, we plot only the case where l�
�� and
8. We see from the figures that the storage requirement of our method grows
linearly with increasing accuracy (cf. (3.13)), whereas that of the wavelet-like
method increases more than linearly. Moreover, the increment (slope) grows
more rapidly with increasing l for the wavelet-like method.

Finally we remark that in order to get numerical solution of high order accu-
racy, it is useful to apply the Kantorovitch method in conjunction with higher-order
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Table 7.
Errors

l 4 5 6 7

T 0.0208 0.0117 0.0065 0.0036
KT 1.9577e-5 4.5975e-6 1.1019e-6 2.6813e-7
KTA 1.9569e-5 4.6954e-6 1.1013e-6 2.6769e-7

quadrature rules, say, trapezoidal rule. For instance, we can write (1.1) as�
��d�x�

Z �

�
a�x�t�dt

�
f�x��d�x�

Z �

�
a�x�t��f�t��f�x��dt� g�x��

for all x � �����, and compute
R �
� a�x�t�dt accurately and discretize the integral

operator
R �
� a�x�t��f�t��f�x��dt by trapezoidal rule. As an example, we consider

the equation

f�x��
Z �

�
log jx� tjf�t�dt� g�t�� x � ����� (4.1)

where g�t� is chosen such that the exact solution is given by f�x� � x�.
Let T denote that the integral operator

R �
� log jx� tjf�t�dt is discretized by

trapezoidal rule directly. Let KT denote that (4.1) is discretized by Kantorovitch
method in conjunction with trapezoidal rule. Let KTA denote the combination of
KT and our approximation scheme (k � 
). Define the errors in a numerical solu-
tion fc by pPn

i���fc�xi��f�xi���pPn
i���f�xi��

�
	

The errors of the three methods are shown in Table 7. From the results we see that
the method KTA is quite accurate.

5. CONCLUDING REMARKS

We have developed a fast multiplication scheme for integral equations of the second
kind in this paper. Theorems 1 and 2 indicate that for a given accuracy, the memory
requirement of our method is of order O�nk�, where k is fixed for smooth kernels
(including log jx� tj) and grows like O�log logn� for weakly singular kernel func-
tions. Numerical results show that our scheme is more accurate and requires less
storage than that of the wavelet-like method in [2].

We remark that our scheme can be extended straightforwardly to Fredholm
integral equations of the first kind. For these problems, a main issue is the ill-
conditioned nature of the operators. If the problem is not too ill-conditioned, such
as in the cases of potential equations or Helmholtz equations in integral form, then
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it can be overcome by preconditioning. Our approximation matrix B given in the
form of (2.12) makes it easy to construct optimal circulant preconditioners for B,
see [5]. In fact, for potential equations in integral form, where the condition number
of the problem is O�n�, we have proved that using the optimal circulant precondi-
tioner for B, the preconditioned system is well-conditioned with condition number
O���, see [6].
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