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CHAPTER 28

MAXIMUM ENTROPY METHOD FOR
COMPOSITION VECTOR METHOD
(RAYMOND H.-F. CHAN, ROGER W.
WANG, JEFF C.-F. WONG)

28.1 INTRODUCTION

In the past few decades, a large volume of molecular sequences has
been collected, from which the evolution and traits of the related liv-
ing organisms are investigated. These sequences all look simple; for
instance, the DNA sequence, no matter how long it is, contains only
four different nucleotides A, C, G and T; so it is not surprising that on
the surface these sequences themselves cannot tell us much. In order to
reveal the hidden information, the use of the so-called sequence compar-
ison is an essential tool. Sequence comparison methods can be divided
into two main categories: alignment-based [16, 18, 38, 39, 44, 52] and
alignment-free [27, 30, 42, 45, 54].

The alignment-based methods use the dynamic programming (DP)
method to “align” the sequences and then find the similarity and dis-
similarity after the alignment. To compare two sequences of length
n by any alignment-based method, both the computational cost and
the memory requirement are O(n2) [56]. Because of the accuracy of
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the DP method, the alignment-based methods are widely used for an-
alyzing gene sequences. However, different gene sequences may give
different evolutionary results. For instance, based on the 16rRNA se-
quences, birds, which are more closely related to crocodilians, were
grouped with mammals [58]. In addition, based on the gene sequences
for MHG-CoA reductase, Archaeoglobus fulgidus, a definite archaean,
was assigned into the bacteria group [15]. Nowadays, with the advent
of sequence techniques, whole genome sequences have been generally
accepted as excellent tools for the study of species differences and evo-
lution [17]. However, aligning the whole genomes is a very challenging
problem, since every species has its own gene content and gene order,
and we do not know which two genes can be truly aligned. Further-
more, as the length of the genome sequences are usually very long,
it is impossible to align the genome sequences due to the cost of the
computational time and the memory requirement.

The alignment-free methods, in turn, are developed for overcoming
the difficulty of the analysis of the whole genome phylogeny. They can
be divided into three classes:

• the gene content method [45],

• the data compression method [26], and

• the composition vector (CV) method [27, 42].

For the gene content method, the distance between two species is
defined by their number of common genes divided by the total number
of genes in the genome sequences. The data compression method uses
the distance between the compressed information from the genome se-
quences as the distance between the species. For the CV method,
the composition vector is first constructed for each species based on
its whole genome sequence, and the distance between the composition
vectors is used as the distance between species. In this chapter, we
shall only shed some light on the CV method.

The CV method was proposed by Hao et al. [27] for the phylogeny of
bacteria, and it was very successful. The CV method generally consists
of four steps as follows:

1. Construct the frequency vectors — different methods for con-
structing the frequency vectors are discussed based on the differ-
ent types of biological sequences that are input.

2. Construct the composition vectors — the composition vectors
are constructed with each entry being the signal-to-noise ratio.
Several kinds of models are introduced for estimating the noise.
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3. Compute the distance between composition vectors — several
distance measures are introduced and analyzed.

4. Build the phylogenetic trees — we use the neighbor-joining method
to draw the phylogenetic trees.

As we shall see below, there is a link between the maximum entropy
optimization and some existing denoising formulas. Maximum entropy
is being increasingly used as a general and powerful technique for mak-
ing the classification of species through the biological sequences from
noise itself when the data in the signal is obscured by noise and bias
(e.g., [28]). Entropy can be justified in information-theoretic terms.
Not only will we present some denoising formulas and suggest which
one is the optimal one, but we will also introduce several models for the
CV method and show that the CV method can also be applied success-
fully for phylogenetic analysis of tetrapod, hepatitis B virus, mammal
and chorophlast. We even show that the CV method can provide some
reasonable results where the alignment methods failed (see Example
1).

This chapter is divided into four sections. Section 1 gives the intro-
duction. Section 2 includes the general formulation of the CV method.
Section 3 presents the results using the CV method with different de-
noising formulas and compares them with other existing results. Sec-
tion 4 gives the concluding remarks.

28.2 MODELS AND ENTROPY OPTIMIZATION

In Section 28.2.1, a list of formal definitions for the biological terms
is introduced. In Section 28.2.2, two of the most common denoising
formulas in literature are revisited: that advocated by Hao et al.’s
formula [27, 42] and Yu et al.’s formula [60]. In particular, under the
framework of the constrained optimization problem with the maximum
entropy approach, we provide three new denoising formulas by means
of the CV method, cf., (28.14), (28.16) and (28.17). Based on the
angle-based distance approach, various types of distance formulas are
also introduced in Section 28.2.3. Phylogenetic tree construction is
described in Section 28.2.4.
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28.2.1 Definitions

Definition 1 Consider a molecular sequence (DNA∗/RNA† sequence
or peptide/amino acid sequence) of length N . Any consecutive k
molecules within the sequence are called a k-string, where 1 ≤ k ≤ N .

Definition 2 The observed frequency f(α1α2 · · ·αk) of a k-string α1α2 · · ·αk

is defined as

f(α1α2 · · ·αk) =
g(α1α2 · · ·αk)

N − k + 1
, (28.1)

where g(α1α2 · · ·αk) is the number of times that α1α2 · · ·αk appears
in the sequence.

Let us define the frequency vector for the gene sequence and genome
sequence, respectively.

Definition 3 For a gene sequence, whether a DNA sequence or a RNA
sequence, there are 4k possible k-strings. A vector is constructed with
the frequency defined in (28.1) for each entry, and is called the frequency

vector.

Consider the following nucleotide sequence that consists of A, C, G,

T such that

GACTACTACT.

∗Deoxyribonucleic acid
†Ribonucleic acid
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Set k = 3 and N − k + 1 = 8. The total number of possible different 3-
string sequences is then 43 and the frequency vector is given as follows:
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It is worth mentioning that a window of the length of k-string is used
that slides it through the sequences by shifting one window at a time
to look for the frequencies of each k-string.

There are three kinds of sequences available from the whole genome
sequence:

1. The whole DNA sequence

For the whole DNA sequence, the frequency of appearance of a
k-string is also defined in (28.1).

2. The protein-coding DNA sequences

Definition 4 For the protein-coding DNA sequences, the ob-
served frequency of a k-string α1α2 · · ·αk in the whole sequence
is defined as [42]

f(α1α2 · · ·αk) =

m
∑

j=1
gj(α1α2 · · ·αk)

m
∑

j=1
(Nj − k + 1)

, (28.2)
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where m is the number of protein-coding gene sequences from
the whole genome, gj(α1α2 · · ·αk) is the number of times that
α1α2 · · ·αk appears in the jth DNA sequence, and Nj is the length
of the jth DNA sequence. A frequency vector is then constructed
with each entry containing all the frequencies defined in (28.2).

3. The amino acid sequences of all protein-coding sequences

For the amino acid sequences of all protein-coding sequences, the
frequency vector can be constructed similarly, with each entry
defined in (28.2). A vector of length 20k is then constructed.

28.2.1.1 Signal-to-Noise Ratio It is generally accepted that the phylo-
genetic signals in the biological sequence data are often obscured by
noise and bias [10]. The relation between the signal and the noise can
be formulated as a single mathematical formula, referred to as the com-
position vector. Given M molecular sequences, M frequency vectors of
the same length |Ω|k were defined earlier, where

|Ω| =

{

4, if the sequence is the DNA/RNA type,
20, if the sequence is the peptide/amino acid type.

(28.3)

Definition 5 For each f(α1α2 · · ·αk), the frequency of appearance of
the k-string α1α2 · · ·αk defined in (28.1), we will estimate its noise and
denote it by q(α1α2 · · ·αk). Then the composition vector of one species
is the |Ω|k-vector, where each nonzero entry equals

f(α1α2 · · ·αk) − q(α1α2 · · ·αk)

q(α1α2 · · ·αk)
,

the signal-to-noise ratio of the k-string α1α2 · · ·αk.

28.2.2 Denoising formulas

Let us review some existing denoising formulas for removing noises in
the phylogenetic signals.
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28.2.2.1 Hao’s Formula Given any molecular sequence, Hao et al. [27,
42] employed the following formula

qHao(α1α2 · · ·αk) =







f(α1 · · ·αk−1)f(α2 · · ·αk)

f(α2 · · ·αk−1)
, if f(α2 · · ·αk−1) 6= 0,

0, otherwise.

(28.4)
to estimate the noise of the k-string α1 · · ·αk, where f(u) is the fre-
quency of appearance of any string u in the sequence. To find the
noise of the k-string by (28.4), using the (k − 2)th order Markov as-
sumption (together with the joint and conditional probability) [36], the
appearance frequencies of the (k − 1)-string and the (k − 2)-string are
established. If the denominator in (28.4) f(α2 · · ·αk−1) is found to be
zero, then it means that the (k − 2)-string does not appear in the se-
quence. Obviously the (k−1)-strings α1 · · ·αk−1 and α2 · · ·αk will also
not appear in the sequence, and then

f(α1 · · ·αk−1) = f(α2 · · ·αk) = 0.

When this degeneracy case happens, one can simply let

qHao(α1 · · ·αk) = 0.

Formula (28.4) is derived from the observed frequency f(·) that rep-
resents the probability. It was Brendel et al. [4] in 1986 who originally
introduced (28.4) for revealing the functional and evolutionary related-
ness of word sequence. Hao et al. [27, 42] used formula (28.4) for the
phylogenetic analysis of prokaryotes, based on whole genome sequences.

28.2.2.2 Yu’s Formula Given any molecular sequence, Yu et al. [60]
proposed the following formula

qYu(α1α2 · · ·αk) =
f(α1)f(α2 · · ·αk) + f(α1 · · ·αk−1)f(αk)

2
(28.5)

to find the noise of the k-string α1α2 · · ·αk, where f(u) is the appear-
ance frequency of any string u in the sequence. A salient feature of
(28.5) is that it takes the average of the sum of two independent events
with respect to f(α1)f(α2 · · ·αk) and f(α1 · · ·αk−1)f(αk).

Formula (28.5) is taken from the observed frequency f(·) that rep-
resents the probability. Application of (28.5) was common in the area
of complex and dynamic systems, e.g., [59]. Yu et al. [60] used for-
mula (28.5) for the phylogenetic analysis of prokaryotes, chloroplasts
and other phylogenetic problems, based on whole genome sequences.
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28.2.2.3 Establishing denoising formulas using the maximum entropy principle

For the sake of simplicity, we only consider DNA/RNA sequences in
our formulation, but the amino acid sequences can be used in a similar
fashion.

Let us consider the following constraints [28]:
{

q(vA) + q(vC) + q(vG) + q(vT) = f(v),
q(Av) + q(Cv) + q(Gv) + q(Tv) = f(v),

(28.6)

where q(·) is the frequency to be maximized from the entropy when the
observed frequency f(v) for all (k−1)-strings v are given. The solution
of the optimization problem is (28.4). We assume that the noises of the
k-strings are related to (28.6), i.e., q(vA) + q(vC) + q(vG) + q(vT) and
q(Av) + q(Cv) + q(Gv)+ q(Tv) are known functions of v, and we assume
that the two sums are not identical to each other since their values can
be changed and will lead to different denoising formulas as we shall see
below.

28.2.2.4 Formulation of the optimization problem Let us propose our noise
model as follows: The noise q(·) of the 4k’s k-strings satisfies

{

q(vA) + q(vC) + q(vG) + q(vT) = l(v),

q(Av) + q(Cv) + q(Gv) + q(Tv) = r(v),
(28.7)

where l(v) and r(v) are given non-negative numbers for each (k − 1)-
string v, and the right hand sides of (28.7) are obtained from the ob-
served frequencies of any given sequence. Note that in (28.7), depend-
ing on the choice of (k − 1)-strings, there are (2 · 4k−1) constraints and
4k unknowns. Thus, when the number of constraints is fewer than the
number of unknowns, the system is under-determined and the solution
is not unique.

To obtain the unique q(u), we maximize their entropy. More pre-
cisely, let qi ≡ q(ui) be the noise of the k-string ui, then we obtain qi

by solving the constrained maximisation problem:

maximize −
4k

∑

i=1
qi log qi

subject to

{

qi satisfies (28.7),
qi ≥ 0 for all i.

(28.8)

We note that −qi log qi is the entropy of qi.

28.2.2.5 Solution of the optimization problem According to Pevzner [41],

the best k-string for a sequence of length N is log4

[N(N−1)
2

]

. Thus if
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N = 1000, then the best k-string is about 10. Hence the optimization
problem (28.8) will have about one million unknowns, and it is seem-
ingly difficult to solve such a constraint problem. However, we have
the following useful result.

Lemma 1 For k ≥ 2, the problem (28.8) is decoupled into 4k−2 sub-
problems of size 8-by-16 each.

Proof

• Let us first see the structure/pattern of the coefficient matrix in
(28.8) when k = 3. The other choice of k can be used similarly. As

0 10 20 30 40 50 60

0

5

10

15

20

25

30

nz = 128

Figure 28.1 The pattern of the coefficient matrix in (28.8).

shown in Figure 28.1, the matrix is sparse and binary (containing
0 and 1 only), and the nonzero entries can be divided into two
categories: the nonzero entries located on the “diagonal part” of
the matrix form one category while the rest of the nonzero entries
form the other category. To decouple these two categories, one
simply rearranges the order of the equations:
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– put the original odd-order equations first and

– locate the even-order equations later.

The pattern of the new coefficient matrix is shown in Figure 28.2.

0 10 20 30 40 50 60

0

5

10

15

20

25

30

nz = 128

Figure 28.2 The pattern of the coefficient matrix after the permutation.

• In Figure 28.2, there are only four unknown variables q1, q2, q3

and q4 in the first row, and these four variables are also contained,
respectively in four other rows of the matrix: the 17th, 18th, 19th
and 20th. After carefully examining these four rows, we find that
the following 16 variables

q16∗(i−1)+j , ∀ i, j = 1, 2, 3, 4,

will not be found anywhere else but are totally contained in the
following eight constraints, given in ascending order:

Constraint : 1, 5, 9, 13, 17, 18, 19, 20.

These eight constraints are clearly divorced from other constraints.
Moreover, the 3-strings are contained in the above eight con-
straints if and only if they can be written in the following form

LAR, ∀ L, R ∈ {A, C, G, T}.
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Similarly, three groups of eight constraints are formed if and only
if we also have the following cases:

LCR, ∀ L, R ∈ {A, C, G, T},
LGR, ∀ L, R ∈ {A, C, G, T},
LTR, ∀ L, R ∈ {A, C, G, T}.

Now we conclude that the original system can be decomposed into
four sub-systems (see Figure 28.3) and the 3-strings are contained
in each sub-system if and only if the 3-strings can be written in
any of the four forms.

Figure 28.3 The figure for the decoupling of the permuted coefficient matrix.

With this idea, we now consider the general formulation of the
equality constraints when k ≥ 3. Let us rewrite the k-strings in
the left hand sides of (28.7) as LwR, where w is a (k−2)-string. By
exhausting different combinations of L and R, we obtain a system
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of the following constraints for each w:
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q(AwA) + q(AwC) + q(AwG) + q(AwT) = l(Aw),

q(CwA) + q(CwC) + q(CwG) + q(CwT) = l(Cw),

q(GwA) + q(GwC) + q(GwG) + q(GwT) = l(Gw),

q(TwA) + q(TwC) + q(TwG) + q(TwT) = l(Tw),

q(AwA) + q(CwA) + q(GwA) + q(TwA) = r(wA),

q(AwC) + q(CwC) + q(GwC) + q(TwC) = r(wC),

q(AwG) + q(CwG) + q(GwG) + q(TwG) = r(wG),

q(AwT) + q(CwT) + q(GwT) + q(TwT) = r(wT).

(28.9)

From (28.9), one notices that the right hand side cannot be set
arbitrarily but must satisfy

l(Aw) + l(Cw) + l(Gw) + l(Tw) =
∑

L,R∈{A,C,G,T}

q(LwR)

= r(wA) + r(wC) + r(wG) + r(wT).
(28.10)

Inspection of (28.9) also indicated that for each w a decoupled
system is formed. In fact, for each wi, the unknowns q(LwiR)
for different L and R can only occur in the constraints (28.9) for
that particular wi, and will never occur in the constraints for wj,
j 6= i. This is because LiwiRi can never be equal to LjwjRj for
any possible Li, Lj, Ri, and Rj . Obviously the objective function
in (28.8) is already decoupled for each wi as each term in the
objective function involves only one q(LwiR). Hence we see that
the optimization problem (28.8) can be decoupled into 4k−2 sub-
problems of the form (28.9). �

Problem (28.8) can now be solved readily. To solve the subproblems,
let us rewrite them as:

maximize −
4
∑

i,j=1
pij log pij

subject to

{

pi1 + pi2 + pi3 + pi4 = li, i = 1, 2, 3, 4
p1j + p2j + p3j + p4j = rj, j = 1, 2, 3, 4

and pij ≥ 0, i, j = 1, 2, 3, 4,
(28.11)

where pij are the unknowns q(LwR) to be sought in (28.9).
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Theorem 2 [8] The solution to (28.11) is

pij =

{

lirj

σ
, if σ 6= 0,

0, if σ = 0,
(28.12)

where σ ≡ l1 + l2 + l3 + l4 = r1 + r2 + r3 + r4 (c. f. (28.10)).

28.2.2.6 Denoising formulas In this section, we derive some new de-
noising formulas that maximize the entropy. Two approaches are in-
troduced:

1. The first approach is to apply existing formulas such as (28.4)
and (28.5) in the left hand side of (28.9) to derive the right hand
side functions l(·) and r(·), respectively.

2. The second approach is to apply existing formulas directly to the
right hand side of (28.9).

For the first approach, two formulas are obtained.

Corollary 3 [8] For any 1-strings Y and Z and any (k − 2)-string w,

q(YwZ) =
f(Yw)f(wZ)

f(w)
. (28.13)

Formula (28.13) is identical to (28.4). Thus we have formally proved
the claim in [28] that formula (28.4) satisfies the maximum entropy
principle.

Let us examine Yu’s formula (28.5) to see whether a new denoising
formula can be derived.

Corollary 4 [8] For any 1-strings Y and Z and any (k − 2)-string w,

q(YwZ) =
1

4σ

[

f(Yw) + f(Y)
∑

R

f(wR)

] [

f(wZ) + f(Z)
∑

L

f(Lw)

]

,

(28.14)
where

σ =
1

2

[

∑

L

f(Lw) +
∑

R

f(wR)

]

.

This formula, which satisfies the maximum entropy principle, is dif-
ferent from (28.5).

Our second approach to create new formulas stem from the following
observation.
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Lemma 5 [8] For all (k−1)-strings w and 1-strings L and R, let l(Lw) =
αq(Lw) and r(wR) = βq(wR), where α and β are treated as normalization
constants to fulfill the equality condition of (28.10). Then by (28.12),

q(LwR) =
q(Lw)q(wR)

q(w)
. (28.15)

To obtain two other new formulas, all we have to do is to substitute
formulas (28.4) and (28.5) into the right hand side of (28.15). One can
easily check that (28.15) satisfies (28.10).

Corollary 6 [8] Let w be YxZ, where x is a (k− 4)-string, and Y and Z

are 1-strings. Then by using Hao’s formula (28.4), (28.15) becomes

q(LYxZR) =







f(LYx)f(YxZ)f(x)f(YxZ)f(xZR)
[

f(Yx)
]2[

f(xZ)
]2 , if f(Yx)f(xZ) 6= 0,

0, otherwise.
(28.16)

Corollary 7 [8] Let w be YxZ, where x is a (k− 4)-string, and Y and Z

are 1-strings. Then by using Yu’s formula (28.5), (28.15) becomes

q(LYxZR) =















[f(L)f(YxZ) + f(LYx)f(Z)][f(Y)f(xZR) + f(YxZ)f(R)]

2[f(Y)f(xZ) + f(Yx)f(Z)]
,

if f(Y)f(xZ) + f(Yx)f(Z) 6= 0,

0, otherwise.

(28.17)

We remark that only nucleotide sequences were considered here. The
decoupled constraint matrices of the optimization problem are thereby
of size (2 · 4k−1)-by-4k. If amino acid sequences are considered, the
decoupled systems will be of size (2 ·20k−1)-by-20k. However, denoising
formulas can still be derived similarly and their forms will be the same.

As observed, different right hand side functions l(v) and r(v) in
(28.9) provide different denoising formulas. In this work, we provide
two approaches for defining them. For the four data sets tested in this
work, formula (28.16) and formula (28.17) each have their own merits.
We note that only Hao’s formula (28.4) and Yu’s formula (28.5) were
used in constructing the right hand sides. One may use other existing
formulas to construct new denoising formulas via our two approaches.

28.2.3 Distance measure

Let n = 4k be the length of the composition vector, and S be the
set of composition vectors. To find the evolutionary distance between
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two species A and B, we will compute the distance d(a,b) between
their composition vectors a = (ai)

n
i=1 and b = (bi)

n
i=1 ∈ S, respec-

tively. This distance is then used to represent the distance between
their corresponding species. Assume the reciprocal of the length of the
composition vector is computable, and assume there are no composition
vectors c and d in S such that

c = −d. (28.18)

This assumption is reasonable as (28.18) will be rarely occur in real
applications (e.g., see (28.21)).

Once the conversion of sequences into frequency vectors was estab-
lished, a variety of distances d(a,b) were immediately calculated. In
the following, we will introduce some of angle-based distance measures
which are widely utilized in practice [3, 27, 42, 49, 50, 54, 55]. We
remark that those distances must satisfy the following conditions:

(1) (Non-negativity) 0 ≤ d(a,b) < +∞ for all a and b ∈ S.

(2) (Identity of indiscernibles) d(a,b) = 0 if and only if a = b.

(3) (Symmetry) d(a,b) = d(b,a) for all a and b ∈ S.

But the “triangle inequality” of the “metric distance”

d(a,b) ≤ d(a, c) + d(c,b), ∀a,b, c ∈ S, (28.19)

is not required for those distances.

28.2.3.1 Angle-based distance To measure the distance between the
composition vectors a and b ∈ S, it is common to employ the cosine of
their angle as defined below [2],

cos θ =
aTb

‖a‖ · ‖b‖
, (28.20)

where ‖ · ‖ is the Euclidean vector norm (i.e., ‖a‖ =
√

∑n
i=1(ai)2 ).

It was Stuart et al. [49, 50] who were the first to introduce the angle
distance for the phylogenetic analysis. A formula is given by

dStuart(a,b) = − log

(

1 + cos θ

2

)

= − log

[

1

2

(

1 +
aTb

‖a‖ · ‖b‖

)]

.

(28.21)
Formula (28.21) is a distance on the set S. Using the Cauchy-Schwarz
inequality, one can show that dStuart satisfies the first and the second
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conditions of a distance. Moreover, dStuart satisfies the third condition.
Because of characteristics of the logarithm function, dStuart(a,b) can
be sufficiently large if the angle between a and b is large enough. For
this reason, this distance can be utilized for the phylogenetic analysis
of the data set where the species are far away from each other. In
fact, Formula (28.21) has been applied successfully for the phylogenetic
analysis of whole genomes of bacteria and vertebrates [47, 48, 49, 50,
57].

Hao et al. [27, 42] proposed the following formula

dHao(a,b) =
1 − cos θ

2
=

1

2

(

1 −
aTb

‖a‖ · ‖b‖

)

. (28.22)

One can verify that this measure is a distance satisfying the three
conditions. Since the cosine value computed by (28.20) varies between
−1 and 1, the function value dHao(a,b) is normalized to the interval
(0, 1). Formula (28.22) is widely utilized and achieved great success
in the phylogenetic analysis of whole genomes of bacteria, viruses, and
vertebrates [11, 12, 21, 22, 31, 42, 60].

Although Hao’s distance is defined based on the cosine of the angle,
it has a close relationship with the Euclidean distance. To see how it
works, let us take two vectors c and d ∈ R

2. The angle θ is a one-to-one
mapping of the following vector

c

‖c‖
−

d

‖d‖
.

Moreover, for the length of this vector, we have by the law of cosines
[6] that

∥

∥

∥

∥

c

‖c‖
−

d

‖d‖

∥

∥

∥

∥

2

= 2 − 2 cos θ.

Generally, we have the following property for Hao’s distance (28.22).
Given any vectors a and b ∈ S, their Hao’s distance relates to the
Euclidean distance between their normalized vectors a

‖a‖ and b

‖b‖ as

follows:

dHao(a,b) =
1

4

∥

∥

∥

∥

a

‖a‖
−

b

‖b‖

∥

∥

∥

∥

2

. (28.23)

It can be observed from (28.23) that Hao’s distance is the square of a
Euclidean distance and thereby does not satisfy the triangle inequality.
If the triangle inequality is further required for the distance, we can
define

dNUD(a,b) =
1

2

∥

∥

∥

∥

a

‖a‖
−

b

‖b‖

∥

∥

∥

∥

, (28.24)
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i.e., the Euclidean distance between their normalized vectors. This
distance satisfies all the conditions of a “metric distance”, and is the
square root of Hao’s distance. In addition, we can directly use the angle
to measure the distance. Define

dangle(a,b) =
1

π
arccos

( aTb

‖a‖ · ‖b‖

)

. (28.25)

We see

dangle(a,b) ∈ (0, 1),

for all vectors a, b ∈ S, and dangle(a,b) is a “metric distance”. Newly
defined distances (28.24) and (28.25) will be tested on more realistic
data sets (e.g., see Example 4).

28.2.4 Phylogenetic tree construction

Given the molecular sequences for any n species C1, C2, · · · , Cn, n ≥ 4,
we construct their frequency vectors, and then the composition vectors
c1, c2, · · · , cn. The distance dij , i, j = 1, 2, · · · , n, between any two
composition vectors ci and cj can be obtained by the angle-based dis-
tance measure described in Section 28.2.3. A distance matrix consists
of the collection of the pairwise distances for all n species and is given
by

C1 C2 C3 · · · Cn

C1

C2

C3
...
Cn















0 d12 d13 · · · d1n

d21 0 d23 · · · d2n

d31 d32 0 · · · d3n

...
...

...
. . .

...
dn1 dn2 dn3 · · · 0















.

Any distance-based phylogenetic tree construction method may be
employed to build the tree, for instance, the Fitch-Margoliash (FM)
method [20], the Unweighted Pair Group Method with Arithmetic
Mean method (UPGMA) [53], the neighbor-joining (NJ) method [43],
etc. It is worth mentioning that the FM method is not feasible when
the number of species is larger than 100, and the information about
the branch length of the tree is not available if the UPGMA method
is used. In this work, all the trees will be drawn by the NJ method.
This algorithm is available in several software packages, for instance,
PHYLIP [19], SPLITSTREE [29], MEGA [51], etc.
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28.3 APPLICATION AND DICUSSION

Four worked examples are given. Until otherwise stated, for the pur-
pose of distance measurement, Equation (28.23) is used throughout all
the computational experiments. All the figures are produced by MEGA
and SPLITSTREE.

28.3.1 Example 1

The phylogenetic relationship among tetrapods has been widely dis-
cussed in the area of phylogeny and evolution. One early topic was
whether birds are more closely related to crocodilians or to mammals.
Based on the traditional classification and the results that stemmed
from a large amount of molecular, morphological and paleontological
data, birds are thought to be grouped with crocodilians. However,
many studies based on 18S rRNA sequences supported the grouping of
birds and mammals [58]. Using the CV method without denoising, and
with each of the five denoising formulas, every taxa were grouped to
their corresponding amphibian, reptile, bird or mammal clade. How-
ever, inspection of Figure 28.4 indicated that with the denoising for-
mula (28.16), the bird and reptile clades were grouped together, and
the two oryctolaguses of the mammal clade are well-grouped. When
the CV method was used without denoising, or with the denoising
formulas (28.4), (28.5), (28.14), or (28.17), birds were grouped with
mammals, and the two oryctolaguses were not grouped together. For
further discussion, see [9].

28.3.2 Example 2

The characteristics of hepatitis B virus (HBV) genotype C subgroups
in Hong Kong and their relationship with HBV genotype C in other
parts of Asia were investigated by Chan et al. [7]. The full genome
nucleotide sequences of 49 HBV genotype C isolated from Hong Kong
local patients, together with 69 published HBV genotype C and 12
well-known HBV non-genotype C were first collected.

The multiple sequence alignment method [52] was used to align those
sequences and the distance matrix was then obtained. One phylogenetic
tree, called the “NJ tree”, was thereby constructed by the NJ method
[43, 51]. In their NJ tree, the HBV genotype C were divided into 2
subgroups:

• the genotype Ce,
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• the genotype Cs.

Using the CV method without denoising, or with any denoising for-
mula (28.4), (28.5), (28.14) or (28.17) respectively, every HBV of dif-
ferent genotype was correctly grouped to its corresponding genotype
subgroup. In particular, the 49 genotype C isolated from Hong Kong
were identically separated into 2 subgroups, genotype Ce and genotype
Cs, where 39 isolates (∼ 80%) belonged to the genotype Cs subgroup,
and 10 isolates (∼ 20%) belonged to the genotype Ce subgroup. Using
(28.13), (28.14) and (28.17), the phylogenetic tree is the same. The
CV tree with denoising formulas (28.14) was shown in Figure 28.5.

28.3.3 Example 3

In our third set of computational experiments, we have applied two de-
noising formulas (28.14) and (28.17) to the set of 20 complete mtDNA
sequences, including 6 Primates, 8 Ferungulates (artiodactyls + cetaceans
+ perissodactyls + carnivores), 2 Rodents, and 3 outgroups (marsupi-
als and monotremes), which is the same set of species as (e.g., [5]).

The phylogenetic relationship among mammals has been a long stand-
ing problem in the area of phylogeny and evolution. Using (28.14) and
(28.17), the phylogenetic tree is the same. Figure 28.6 shows the phy-
logenetic trees calculated by (28.17) with k = 14. The result of (28.17)
is identical to the one done in [5]. In Figure 28.6, four trees among pri-
mates, ferungulates, rodents and the outgroup are well-grouped using
the CV method.

28.3.4 Example 4

In our last computational experiments, we have applied a denoising for-
mula (28.17) to the set of 34 choroplast genomes (or complete protein
genome sequences), including 2 Archaea, 7 Chlorophyte s.l., 8 Eubacte-
ria, 3 Eukaryote, 1 Glaucophyte, 4 Rhodophyte s.l., and 9 Seed plants,
which is the same set of species as [12, 60].

Figure 28.7 shows the phylogenetic trees calculated by (28.17) with
k = 6. The result of (28.17) mostly agrees with the one done in [60].
Some salient features of Figure 28.7 can be summarized as follows:

• Based on the widely accepted endosymbiotic theory that chloro-
plasts sprang from a cyanobacteria-like ancestor [24, 25, 35], all
the chloroplast genomes yield a clade branched in the domain of
Eubacteria and are diverged from a most recent common ances-
tor at cyanobacteria. Our denoising formula is able to identify
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cyanobacteria as the most closely related prokaryotes of chloro-
plasts, even though massive gene transfering from the endosym-
biont to the nucleus of the host cell was found [32, 33, 34].

• The chloroplasts are divided into two major clades:

1. The green plants sensu lato, or chlorophytes s.l. [40] include
all taxa with a chlorophyte chloroplast, both primary and
secondary endosymbioses in origin.

2. The glaucophyte Cyanophora and members of rhodophytes
s.l. refer to rhodophytes (or red algae, Cyanidium and Por-
phyra in the tree) and their secondary symbiotic derivatives
(the heterokont Odontella and the cryotphyte Guillarida).

• Inspection of Figure 28.7 shows that cyanophora is mixed into
rhodophytes s.l.. These findings have been reported in [14, 46],
despite the fact that the glaucophyte (cyanophora is grouped into
glaucophyte) represents the earliest branch in chloroplast evolu-
tion with the green plants s.l. and rhodophytes s.l. as sister taxa
[1, 33, 34, 37]

• In chlorophyte s.l., the green algae (i.e., Chlorella, Mesostigma,
and Nephroselmis) and Euglena are basal to that lineage and the
seed plants cluster together as a derived group. But, the rela-
tionships among the other taxa (i.e., Marchantia, Psilotum, and
Chaetosphaeridium) deviate slightly from our traditional under-
standing, probably because of limited taxon sampling in these
primitive green plants [60].

• Similar to the result of [12], Chlorella is connected between Eu-
glena and a clade of Mesostigma and Nephroselmis.

As a check, different distance formulas (28.21), (28.23), (28.24) and
(28.25), were used and the results of each formula shown no sizable
differences. In addition, they yielded the same phylogenetic tree.
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Figure 28.4 The CV tree (k = 10) based on the 18S rRNA dataset of tetrapods
analyzed by Xia et al. [58].
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Figure 28.5 The CV tree (k = 11) based on the dataset of complete nucleotide
sequences of HBV analyzed by Chan et al. [7].
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Figure 28.6 The CV tree (k = 14) based on the dataset of complete mtDNA
sequences of mammal analyzed by Cao et al. [5].



24 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD (R. H.-F. CHAN, R. W. WANG, J. C.-F. WONG)

Figure 28.7 The CV tree (k = 6) based on the dataset of complete protein genome
sequences of choroplast analyzed by Yu et al. [60].
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28.4 CONCLUDING REMARKS

In this chapter, one kind of alignment-free method, namely, the com-
position vector (CV) method, was introduced. Compared with the
multiple sequence alignment methods which are widely employed, the
CV method has several advantages. For instance, it can be used for
phylogenetic analysis of whole genome sequences of bacteria, viruses,
etc. [12, 42, 60], where the sequence alignment methods all failed. Our
denoising formulas worked well in the classification of HBV, mammal
and chloroplast. As a systematic method for studying the classifica-
tion of species, no scoring matrix or gap penalty [56] was required by
the CV method. For computing the distance between two species, its
operation cost is O

(

N log N
)

and the memory requirement is O(N),
where N is the length of the longer sequence. With the development
of sequence techniques, more and more complete genome sequences are
available, and these advantages are becoming more important or even
necessary for sequence comparison methods.

The method described in this work has been written in MATLAB
for the preparation of input data and in FORTRAN 90 for the rest
of the numerical computations. The program is distributed by R. W.
WANG and J. C.-F. WONG and can be obtained by anonymous ftp
from our ftp size at the following internet website:
http://www.math.cuhk.edu/∼jwong. For example, the current version
of the program allows a maximum of 34 library species to be analyzed
on 64-byte machines (compilers).
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