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Abstract

In this paper, we first give the solvability condition for the following inverse eigen-
problem (IEP): given a set of vectors {x;}", in C* and a set of complex numbers
{A\i}*,, find a centrosymmetric or centroskew matrix C' in R**" such that {x;},
and {\;}2, are the eigenvectors and eigenvalues of C respectively. We then consider
the best approximation problem for the IEPs that are solvable. More precisely, given
an arbitrary matrix B in R"*"  we find the matrix C' which is the solution to the
IEP and is closest to B in the Frobenius norm. We show that the best approximation
is unique and derive an expression for it.
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1 Introduction

Let J, be the n-by-n anti-identity matrix, i.e, J,, has 1 on the anti-diagonal and
zeros elsewhere. An n-by-n matrix C' is said to be centrosymmetric (or persym-
metric) if C = J,C'J,, and it is called centroskew (or skew-centrosymmetric) if
C = —J,CJ,. The centrosymmetric and centroskew matrices play an impor-
tant role in many areas [7,16] such as signal processing [8,11], the numerical
solution of differential equations [2], and Markov processes [17].

In this paper, we consider two problems related to centrosymmetric and cen-
troskew matrices. Both problems are on numerical and approximate computing
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but here we solve them algebraically, based on some explicit expressions for
the solutions of overdetermined linear systems of equations. The first problem
is an inverse eigenproblem. There are many applications of structured inverse
eigenproblems, see for instance the expository paper [5]. In particular, the in-
verse eigenproblem for Toeplitz matrices (a special case of centrosymmetric
matrices) arises in trigonometric moment problem [10] and signal processing
[9]. The inverse eigenproblem for centrosymmetric Jacobi matrices also comes
from inverse Sturm-Liouville problem [19, p.70]. There are also different types
of inverse eigenproblem, for instances multiplicative type and additive type
[19, Chapter 4]. Here we consider the following type of inverse eigenproblem
which appeared in the design of Hopfield neural networks [4,13].

Problem I. Given X = [x1,Xg,...,Xp] in C™ and A = diag(A,... , \n)
in C™™ find a centrosymmetric or centroskew matrix C in R**" such that

CX = XA.

The second problem we consider in this paper is the problem of best approx-
imation:

Problem II. Let £° be the solution set of Problem I. Given a matrix B €
R>" find C* € L% such that

|B—C*|| = min ||B —C]|,
ceLs
where || - || is the Frobenius norm.

The best approximation problem occurs frequently in experimental design, see
for instance [14, p.123]. Here the matrix B may be a matrix obtained from
experiments, but it may not satisfy the structural requirement (centrosym-
metric or centroskew) and/or spectral requirement (having eigenpairs X and
A). The best estimate C* is the matrix that satisfies both requirements and
is the best approximation of B in the Frobenius norm. In addition, because
there are fast algorithms for solving various kinds of centrosymmetric and
centroskew matrices [12], the best approximate C* of B can also be used as
a preconditioner in the preconditioned conjugate gradient method for solving
linear systems with coefficient matrix B, see for instance [1].

Problems I and IT have been solved for different classes of structured matrices,
see for instance [18,20]. In this paper, we extend the results in [18,20] to the
classes of centrosymmetric and centroskew matrices. We first give a solvability
condition for Problem I and also the form of its general solution. Then in the
case when Problem I is solvable, we show that Problem II has a unique solution
and we give a formula for the minimizer C*.



The paper is organized as follows: In §2 we first characterize the class of
centrosymmetric matrices and give the solvability condition of Problem I over
this class of matrices. In §3, we derive a formula for the best approximation
of Problem II, give the algorithm for finding the minimizer, and study the
stability of the problem. In §4 we give an example to illustrate the theory. In
the last section, we extend the results in §§2-3 to centroskew matrices.

2 Solvability Condition for Problem I

We first characterize the set of all centrosymmetric matrices. For all positive
integers k, let

I, O I,

% 1 | e Ik i K 1 0 V3 0
2% = —= an 2k+1 = —=
V2| g —J, VR

Jp. 0 —J,

Clearly K, is orthogonal for all n. The matrix K, plays an important role in
analyzing the properties of centrosymmetric matrices, see for example [6]. In
particular, we have the following splitting of centrosymmetric matrices into
smaller submatrices using K,,.

Lemma 1 [6] Let C,, be the set of all centrosymmetric matrices in R"*™. We

have
E  FJ
Cor, = ‘| | BFer),
J.F J.EJ,
FE a FJk
Cori1 =4 |B” ¢ bl | | B FeR** abeR, ceR

JkF Jka JkEJk
Moreover, for all n = 2k and 2k + 1, we have

G, 0
Co=3K,| | KD |GLeRPX0R G, e REFY (1)

0 Gy

Before we come to Problem I, we first note that we can assume without loss
of generality that X and A are real matrices. In fact, since C,, C R"*", the
complex eigenvectors and eigenvalues of any C' € C, will appear in complex
conjugate pairs. If @ & 3v/—1 and x & /—1y are one of its eigenpair, then we



have Cx = ax — fy and Cy = ay + 3x, i.e.

@
B«

Clx,y] = [x,y]

Hence we can assume without loss of generality that X € R**™ and

A:diag(q)l,d)g,... ,(I)l,’}/l,... 7’7m72l) ERme, (2)
a; B

where ®; = with a;, 3; and 7; in R.
—Bi oy

Next, we investigate the solvability of Problem I. We need the following lemma
where U™ denotes the Moore-Penrose pseudo-inverse of U.

Lemma 2 [15, Lemma 1.3] Let U,V € R*"™ be given. Then YU =V s
solvable if and only if VUTU = V. In this case the general solution is

Y =VU"+Z(1I-UU"),
where Z € R"™™ s arbitrary.
In the remaining part of the paper, we will only give the theorems and the
proofs for even n. The case where n is odd can be proved similarly. Thus we
let n = 2k.
Theorem 1 Given X € R™™ and A as in (2), let

KT,{X = | ~ ) (3)
Xy

where Xo € RE¥™ . Then there exists a matriz C € Cp, such that CX = XA if
and only if

XlAXf“XI == XlA and XZAX;XQ = XQA (4)
In this case, the general solution to CX = XA s given by

Zi(L,r — X, X 0
O, — o 4 &, | D1k = AT |xn )
0 Zy(Iy — X, X5)



where 7, € R=K)x(n=k) 4nd 7, € RF** are both arbitrary, and

XAXT 0

C10 = Kn - -
0 XAXS

K, . (6)

Proof: From (1), C' € C, is a solution to Problem I if and only if there exist
G, € Rv=F)x(n=k) and Gy € R¥*F such that

Gi 0
C=K,| ' |KT (7)
0 Gy
and
G, 0 -
K, KT | X = XA. (8)
0 Gy
Using (3), (8) is equivalent to
Gle = XlA and GQXQ = XQA (9)

According to Lemma 2, equations (9) have solutions if and only if equations
(4) hold. Moreover in this case, the general solution of (9) is given by

GIZXIAXT—FZI(IH,]C —X1X1+), (10)

where 7, € R"=0)*(=k) and Z, € R¥**¥ are both arbitrary. Putting (10) and

(11) into (7), we get (5). ]

3 The Minimizer of Problem II

Let C2 be the solution set of Problem I over C,. In this section, we solve
Problem II over C; when C3 is nonempty.

Theorem 2 Given X € R™™ and A as in (2), let the solution set C3 of
Problem I be nonempty. Then for any B € R"*™ the problem émc%”B -
S



has a unique solution C* given by

By (L, — X, X 0
C*=Cy+ K, 1 (g = X3.X7) i | KT (12)
0 BQQ(Ik — XQX;—)

Here X1, Xo, and Cy are given in (3) and (6), and By, and Boy are obtained
by partitioning K BK,, as
By, B
K'BE,=| " 7|, (13)
Bsi By

where Byy € RFXF.

Proof: When C3 is nonempty, it is easy to verify from (5) that C is a closed
convex set. Since R"*" is a uniformly convex Banach space under the Frobe-
nius norm, there exists a unique solution for Problem II [3, p. 22]. Moreover,
because the Frobenius norm is unitary invariant, Problem II is equivalent to

min | K BK — K'CK]|]*. (14)

cecs
By (5), we have

By — X{AX B ZP 0
|KiBK — KICK|P= ||~ 00t o m R T
B21 BQQ - XQAX;— 0 ZQQ
where
P=1I,;,-X,X; and Q=1 - X,X,. (15)

Thus (14) is equivalent to

min ||B11 — X,AXT - Z P>+ min ||322 — XLAXS — Z,Q||?.
Z1 R R (n k) Zy€Rxk

Clearly, the solution is given by Z; and Z, such that
Z1P = BH — XlAXf_ and ZQQ = BQQ — XQAX;_

Notice that by (15), P and @ are projection matrices, i.e. P? = P and Q% = Q.
Therefore Zl.P = (BH — XlAX+)P and ZQQ (322 — XQAXZ )Q Notice
further that because X; X1X1+ = Xf’, we have

(B — XAAXF)P= By — BuXi X7 — XIAXS + X AXF X, X7
—Bll - BIIX1X1 - BIIP



Similarly, ZoQ = (B — XoAX})Q = BypQ. Hence the unique solution for
Problem IT is given by (12). ]

Based on Theorem 2, we give the following algorithm for solving Problem II
for n = 2k.

ALGORITHM I

(a) Compute X; and X, by (3) and then compute X and X .

(b) If X;AX;P X, = XiA and XoAXS X, = XA, then the solution set C5 to
Problem I is nonempty and we continue. Otherwise we stop.

(c) Partition K7 B, as in (13) to get By; and Bay,.

(d) Compute

Wi =XAX{ + By — BuXi X7,
W2 :)(2/\)(2+ + 322 - BZQXZX;.

Wiy 0
(e) Then C* = K, KT,
0 W,

Next we consider the computational complexity of our algorithm. For Step (a),
since K, has only 2 nonzero entries per row, it requires O(nm) operations to
compute X; and X,. Then using singular value decomposition to compute X;
and X requires O(n?m+m?) operations. Step (b) obviously requires O(n?m)
operations. For Step (c¢), because of the sparsity of K,,, the operations required
is O(n?) only. For Step (d), if we compute B; X; X;" as [(B;X;)X;'], then the
cost will only be of O(n*m) operations. Finally, because of the sparsity of K,
again, Step (e) requires O(n?) operations. Thus the total complexity of the
algorithm is O(n*m + m?). We remark that in practice, m < n.

Before we end this section, we give a stability analysis for Problem II, that is,
we study how the solution of Problem II is affected by a small perturbation
of B. We have the following result.

Corollary 1 Given BY) € R i =1,2. Let C*) = arg éﬂic%||B(i) —C|| for
€ty

i =1,2. Then there exists a constant v independent of B® i = 1,2, such that

IC*® — "W < of| B® — BY. (16)



Proof: By Theorem 2, C*¥ is given by

BYPr 0

0 By

K i=1,2,

n?

where BY) are the blocks of KTBOK, as defined in (13), and P and Q are
given in (15). Thus we have

o BB e o
le"® = e =] K. ( ) o _ a0y | Kn
0 (BY - BY)Q
fsw-se o PO
B 0 By -BY|||lo@
PO
< KnT (3(2) _ B(l)) K”H <a ‘B(Q) — BW,
0@Q
where o = ||P]| + ||Q||- Thus (16) holds. []

4 Demonstration by an Example

Let us first compute the input matrices X and A for which Problem I has a
solution. We start by choosing a random matrix C' in C,:

[ 0.1749 0.0325 —0.2046 0.0932 0.0315 _
0.0133 —0.0794 —0.0644 0.1165 —0.0527
0.1741 0.0487 0.1049 0.0487 0.1741 | € Gs.
—0.0527 0.1165 —0.0644 —0.0794 0.0133

I 0.0315 0.0932 —0.2046 0.0325 0.1749 |

o
Il

Then we compute its eigenpairs. The eigenvalues of C are 0.15904-0.2841+/—1,
—0.1836, 0.1312, and 0.0304. Let x; + V—1x», X3,X4, and X5 be the corre-



sponding eigenvectors. Then we take

0.4815 0.2256 —0.2455 —0.7071 —0.1313 |
0.0118 0.1700 0.7071 —0.1427 —0.7071
X = [x1,X9,X3,X4,X5] = | 0.4322 —0.5120 0.2235 0 0

0.0118 0.1700 0.7071 0.1427 0.7071
04815 0.2256 —0.2455 0.7071 0.1313 |

and
0.1590 0.2841 0 0

—0.2841 0.1590 0 0
A= 0 0 0.0304 0
0 0 00.1312
0 0 0 0 —0.1836_

0
0
0
0

Given this X and A, clearly we have a solution to Problem I, namely C. Thus
Cy is nonempty. Next we perturb C' by a random matrix to obtain a matrix

B(e) ¢ Cs:

1.4886 —0.9173 1.2688 —0.1869 —1.0830—
1.2705 —1.1061 —0.7836 1.0132 1.0354
B(e) =C +e-| -1.8561 0.8106 0.2133 0.2484 1.5854
2.1343 0.6985 0.7879 0.0596 0.9157
1.4358 —0.4016 0.8967 1.3766 —0.5565_

Then we apply our algorithm in §3 to obtain C*(¢) corresponding to B(e).
In Figure 1, we plot the following two quantities for € between 10719 to 10'°:
logy, || B(€) — C*(€)|| (marked by “+”) and log,, [|C'— C*(¢)|| (marked by “+7).
We can see that as € goes to zero, C*(e) approaches B(e) as expected. Also
when € < 1071, C*(e) = C up to the machine precision (we use MATLAB which
has machine precision around 107'%).

5 Extension to the Set of Centroskew Matrices

In this section, we extend our results in §§2-3 to centroskew matrices, i.e.
matrices S such that S = —.J,S.J,. The results and the proofs are similar to
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Fig. 1. logyo || B(e) — C*(€)|| (“+”) and logyy [|C — C*(e)|| (“+”) versus logyg €.

the centrosymmetric case, and we only list the results for the case when n is
even and omit the proofs. Let n = 2k. Considering Problem I for S,,, we have
the following theorem.

Theorem 3 Given X € R™™ and A as in (2), let X, and X, be as defined
in (3). Then there exists S € S, such that SX = XA if and only if

XlAX;XQ == XlA and XZAXIJ“X] = XQA

In this case, the general solution to SX = XA is given by

0 Zi(I, — Xo X5
S, =S, + K, o 1(fl — XaXy) T
Zy(I, — X, X7) 0
where Zy € RE*F and Z, € R¥*F are both arbitrary, and
0 X)AXS
So=K,| ~_ 7| KT (17)
XoAX 0

For Problem IT over the solution set S; of Problem I for S,, we have the
following result.

Theorem 4 Given X € R™™ and A as in (2), let the solution set S5 of
Problem I be nonempty. Then for any B € R**™ the problem ;n}SI}HB -S|
S
has a unique solution S* given by
0 Bia (I, — X, X7)

~ n-

S* =5+ K, .
Boy (L, — X1 X7") 0

10



Here Xy, Xy, Bis, By, and Sy are given in (3), (13), and (17). Moreover S*
s a continuous function of B.
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