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Abstract

High�resolution image reconstruction refers to reconstructing a higher resolution image from
multiple low�resolution samples of a true image� In ���� we considered the case where there are
no displacement errors in the low�resolution samples� i�e� the samples are aligned properly� and
hence the blurring operator is spatially invariant� In this paper� we consider the case where there
are displacement errors in the low�resolution samples� The resulting blurring operator is spatially
varying and is formed by sampling and summing di�erent spatially invariant blurring operators�
We represent each of these spatially invariant blurring operators by a tensor product of a lowpass
	lter which associates the corresponding blurring operator with a multiresolution analysis of
L
�
R� �� Using these 	lters and their duals� we derive an iterative algorithm to solve the problem

based on the algorithmic framework of ���� Our algorithm requires a nontrivial modi	cation to
the algorithms in ���� which apply only to spatially invariant blurring operators� Our numerical
examples show that our algorithm gives higher peak signal�to�noise ratios and lower relative errors
than those from the Tikhonov least squares approach�

� Introduction

In ���� we introduced wavelet algorithms for solving general deconvolution problems and applied them
to high�resolution image reconstruction problems where higher resolution images are reconstructed
from multiple low�resolution samples of the true images with the low�resolution sensors aligned
properly� The blurring operator thus formed is spatially invariant and can be represented by a
tensor product of a lowpass �lter that generates a multiresolution analysis of L�	R�
� The low�
resolution samples are viewed as the high resolution image passed through the blurring operator�
Since the blurring operator is spatially invariant� the reconstruction is essentially a deconvolution
problem�

This paper considers the high�resolution image reconstruction from low�resolution sensors that
have subpixel displacement errors� i�e� the sensors are not aligned properly� The resulting blurring
operator is spatially varying and is formed by sampling and summing di�erent spatially invariant
blurring operators� Previous work in ��� 
� reduces the problem to a system of linear equation and
solves it by the preconditioned conjugate gradient method�
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Here� we represent the di�erent spatially invariant blurring operators by tensor products of dif�
ferent lowpass �lters� To take advantage of the ideas developed in ���� we �rst design a dual �lter for
each lowpass �lter associated with the corresponding blurring operator� Using the simple structure
of these �lters� we then modify the algorithms in ��� to obtain an algorithm for the spatially varying
case� We note that although the algorithmic framework laid out in ��� still applies� the modi�cation
is nontrivial since the problem itself is no longer a simple deconvolution problem� Numerical exper�
iments indicate that our algorithm gives higher peak signal�to�noise ratios and lower relative errors
than those of the Tikhonov least squares method�

The outline of the paper is as follows� In x�� we recall the mathematical model of the high�
resolution image reconstruction problem� In x�� �lters are designed and our wavelet algorithm is
presented� Numerical experiments follow in x��

� The Mathematical Model

Here we give a brief introduction to the mathematical model of the high�resolution image recon�
struction� Details can be found in ��� ��� Let the intensity function of an underlying continuous
image be f	x�� x�
� Our model assumes that an image at a given resolution is obtained by means of
averaging f over the pixels which have size corresponding to that resolution� We note that higher
the resolution� smaller in size are the pixels� Our mathematical problem is� given several averages
of f at a low resolution� how can we deduce a good approximation to an average of f at a higher
resolution� In what follows� we will make these notions more precise�

Suppose the image of a given scene can be obtained from sensors with N� � N� pixels� Let
the actual length and width of each pixel be T� and T� respectively� We will call these sensors
low�resolution sensors� The scene we are interested in� i�e� the region of interest� can be described
as�

S �
�
	x�� x�
 � R

� j � � x� � T�N�� � � x� � T�N�

�
�

Our aim is to construct a higher resolution image of S by using an array of K� �K� low�resolution
sensors� i�e� we want an image of S with M��M� pixels� where M� � K�N� and M� � K�N�� Thus
the length and width of each of these high�resolution pixels will be T��K� and T��K� respectively�
To maintain the aspect ratio of the reconstructed image� we consider only K� � K� � K�

Let f	x�� x�
 be the intensity of the scene at any point 	x�� x�
 in S� By reconstructing the
high�resolution image� we mean to �nd or approximate the values

K�

T�T�

Z �i���T��K

iT��K

Z �j���T��K

jT��K
f	x�� x�
dx�dx�� � � i � M�� � � j � M��

which is the average intensity of all the points inside the 	i� j
th high�resolution pixel��
i
T�
K
� 	i � �


T�
K

�
�

�
j
T�
K
� 	j � �


T�
K

�
� � � i � M�� � � j � M�� 	�


In order to have enough information to resolve the high�resolution image� there are subpixel
displacements between the sensors in the sensor arrays� Ideally� the sensors should be shifted from
each other by a value proportional to the length and the width of the high�resolution pixels� However�
in practice there can be small perturbations around these ideal subpixel locations due to imperfection
of the mechanical imaging system� Thus� for sensor 	k�� k�
� � � k�� k� � K with 	k�� k�
 �� 	�� �
�
its horizontal and vertical displacements dxk�k� and dyk�k� with respect to the 	�� �
 reference sensor
are given by

dxk�k� �
�
k� � �xk��k�

� T�
K

and dyk�k� �
�
k� � �yk��k�

� T�
K
�

�
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Figure �� Sensors without and with displacement error when K � � 	left and right respectively
�

Here �xk��k� and �yk��k� are the horizontal and vertical displacement errors respectively� They can be
obtained by the manufacturers during camera calibration� Figure � shows the case when we have a
�� � sensor array� We assume that

j�xk��k� j �
�

�
and j�yk��k� j �

�

�
� 	�


For if not� the low resolution images from two di�erent sensor arrays will be overlapped so much that
the reconstruction of the high resolution image is rendered impossible� For example� in Figure �� if
�x � ���� then the three high�resolution pixels on the left hand side are not covered by the lower�
resolution pixel at all whereas the three high�resolution pixels on the right hand side are covered
twice by two adjacent lower�resolution pixels�

For sensor 	k�� k�
� the average intensity registered at its 	n�� n�
th pixel is modeled by�

gk�k� �n�� n�� �
�

T�T�

Z T��n�������dxk�k�

T��n�������dxk�k�

Z T��n�������d
y
k�k�

T��n�������d
y
k�k�

f	x�� x�
dx�dx� � �k�k� �n�� n��� 	�


Here � � n� � N� and � � n� � N� and �k�k� �n�� n�� is the noise� see ���� Examples of low�resolution
images are given in Figures �	a
 and �	a
� We intersperse all the low�resolution images gk�k� to form
an M� �M� image g by assigning

g�Kn� � k��Kn� � k�� � gk�k� �n�� n��� 	�


The image g is called the observed high�resolution image� It is already a better image than any one
of the low�resolution samples gk��k� themselves� see Figures �	b
 and �	b
�

To obtain an even better image than g� one will have to solve 	�
 for f � According to ���� we solve
it by �rst discretizing 	�
 using the rectangular quadrature rule� which is an approximation to the
physics of the CCD arrays� Equivalently� we assume that for each 	i� j
th high�resolution pixel given
in 	�
� the intensity f is constant and is equal to f �i� j� for every point in that pixel� Then carrying
out the integration in 	�
� and using the re�ordering 	�
� we obtain a system of linear equations
relating the unknown values f �i� j� to the given low�resolution pixel values g�i� j�� This linear system�
however� is not square� This is because the evaluation of gk�k� �n�� n�� in 	�
 involves points outside

�



S� For example� g������ �� in 	�
 requires the value of f �������� Thus we have more unknowns than
given values� and the system is underdetermined�

To resolve this� one can impose boundary conditions on f for points outside S� A standard way
is to assume that f is periodic outside�

f	x� iT�N�� y � jT�N�
 � f	x� y
� i� j � Z� 	�


see for instance ��� x������� Using 	�
 and ordering the discretized values of f and g in a column�by�
column fashion� the blurring matrix corresponding to the 	k�� k�
th sensor can be written as

L	�xk� � �
y
k�

 � L	�xk��k�
� L	�yk��k�
 	�


where � is the Kronecker tensor product and L	�xk��k�
 is an M� �M� circulant matrix with the
middle row given by

�

K
��� �� � � � � ��

�

�
� �xk��k� � �� � � � � �	 
z �

K��

�
�

�
� �xk��k� � �� � � � � ��� 	�


Since we are using the rectangular rule in 	�
� the entries in 	�
 are just the area of the high�
resolution pixels which fall inside the low�resolution pixel under consideration� cf� Figure �� The
M� � M� blurring matrix L	�yk��k�
 is de�ned similarly� We note that there are other boundary
conditions that one can impose on the image� see for instance ��� ���� In this paper� we will only
consider the periodic boundary condition�

The blurring matrix for the whole sensor array is made up of matrices from each sensor�

L	�x� �y
 �

K��X
k���

K��X
k���

Dk��k�L	�
x
k��k� � �

y
k��k�


 �

K��X
k���

K��X
k���

Dk��k� �L	�
x
k��k�
� L	�yk��k�
�� 	�


Here both �
x and �

y are K �K matrices� and Dk��k� are the sampling matrices� which are diagonal
matrices with diagonal elements equal to � if the corresponding component of g comes from the
	k�� k�
th sensor and zero otherwise� see 	�
 or ��� for more details� Because of the sampling matrices�
L	�x� �y
 is spatially variant and has no tensor structure or Toeplitz structure� Furthermore� since
	�
 is an averaging process� it is ill�conditioned and susceptible to noise� To remedy this� we can
employ the Tikhonov regularization which solves the system

	L	�x� �y
�L	�x� �y
 � 	R
f � L	�x� �y
�g 	



for f � Here f and g are the column vectors formed by f and g respectively� R is a regularization
operator 	usually chosen to be the identity operator or some di�erential operators
 and 	 is the
regularization parameter� see ��� x�����

The normal equation 	

 is derived from the least squares approach� In the next section� we will
derive an algorithm by using the wavelet approach�

� Filter Design and the Algorithm

Since 	�
 is an averaging process� the blurring matrix L	�xk��k� � �
y
k��k�


 corresponding to the 	k�� k�
th
sensor can be considered as a lowpass �lter acting on the image f � From 	�
 and 	�
� this lowpass
�lter is a tensor product of the univariate re�nement masks

�

K
	
�

�
� �� �� � � � � �	 
z �

K��

�
�

�
� �
� 	��


�



where the parameters � are di�erent in the x and y directions for each sensor�
For simplicity� we consider K � � in this section� The general case can be analyzed similarly�

Recall that a function 
 in L�	R
 is re�nable if it satis�es


 � �
X
��Z

m	�

	� � ��
�

The sequence m is called a re�nement mask� or lowpass �lter� The symbol of the sequence m is
de�ned as bm	�
 �

P
��Zm	�
e�i�� � The function 
 is stable if its shifts form a Riesz system� i�e��

there exist constants � � c � C �	� such that for any sequence q	�
 � ��	Z
�

ckqk� �

�����
�����
X
��Z

q	�

	� � �


�����
�����
�

� Ckqk��

Stable functions 
 and 
d are called a dual pair when they satisfy

h
� 
d	� � �
i �



�� � � ��
�� � � Z n f�g�

We will denote the re�nement mask of 
d by md�
For a given compactly supported re�nable stable function 
 � L�	R
� de�ne S	

 
 L�	R
 to be

the smallest closed shift invariant subspace generated by 
 and de�ne Sk	

 �� fu	�k�
 � u � S	

g�
k � Z� Then the sequence Sk	

� k � Z� forms a multiresolution of L�	R

�
� Here we recall that
a sequence Sk	

 forms a multiresolution when the following conditions are satis�ed� 	i
 Sk	

 

Sk��	

� 	ii
 �k�ZS

k	

 � L�	R
 and �k�ZS
k	

 � f�g� 	iii
 
 and its shifts form a Riesz basis of

S	

� see ���� The sequence Sk	
d
� k � Z� also forms a multiresolution of L�	R
�
The biorthonormal wavelets 
 and 
d are de�ned by


 �� �
X
��Z

r	�

	� � ��
� and 
d �� �
X
��Z

rd	�

d	� � ��
�

where r	�
 �� 	��
�md	���
� and rd	�
 �� 	��
�m	���
 are the wavelet masks� see for example
��� for details� From the wavelet theory 	see e�g� ���
� the re�nement masks m� md and the wavelet
masks r� rd satisfy the perfect reconstruction equation�

cmd bm� brdbr � �� 	��


The existence of a biorthogonal wavelet pair for a given re�nement mask is the basis of our
analysis in ���� In the next subsection� we therefore �rst construct wavelet masks corresponding to
the lowpass �lters in 	��
�

��� Filter design

Our wavelet algorithm depends on the existence of wavelet masks corresponding to the lowpass
�lters of the low�resolution sensors� When there are no displacement errors� the lowpass �lters are
the tensor product re�nement masks of 	�� �

�
� �

�
�
 for the �� � sensor array� and 	�	 �

�
� �

�
� �

�
� �

�
	
 for the

�� � sensor array� cf� 	�
 with �xk��k� � �� Thus the �lters from di�erent sensors are the same and so
are the corresponding wavelet masks�

When there are displacement errors� the lowpass �lters of the sensors are perturbations of the
above �lters� They are tensor products of the �lter in 	��
 and are di�erent for di�erent sensors�

�



However� we can still identify their re�nement masks� their corresponding dual re�nement masks
and the wavelet masks� We note that since the blurring matrix of the whole sensor array is made
up by adding the individual blurring matrix from each sensor 	see 	�

� there does not exist a tensor
product bivariate �lter corresponding to the whole sensor array�

As examples� we give below the re�nement masks and wavelet masks for each sensor for K � �
and K � �� Again� for simplicity� we give only the univariate masks� The actual masks for each
sensor are obtained by taking the tensor product�

Example �� For K � �� the corresponding mask ���� is

m	��
 �
�

�
	
�

�
� �
� m	�
 �

�

�
� m	�
 �

�

�
	
�

�
� �
�

and m	�
 � � for all other �� It has many dual masks� The nonzero terms of one of its dual masks
are

md	��
 � �
�

�
�
�

�
� md	��
 �

�

�
� md	�
 �

�

�
� md	�
 �

�

�
� md	�
 � �

�

�
�
�

�
�

The dual pair of the wavelet masks are

r	�
 �� 	��
�md	�� �
� and rd	�
 �� 	��
�m	�� �
�

It can be shown� by applying Theorem 	��
 in ���� �also see �
��� that if j�j � �
� �i�e� ��� holds�� then

m and md are the re�nement masks of a dual pair of stable functions 
 and 
d with dilation ��

When � � �� Example � is the well�known biorthogonal linear spline �lter 	see ��� p�����
�

Example �� For K � �� the corresponding mask ���� is

m	�
 �
�

�
	
�

�
� �
�

�

�
�
�

�
�
�

�
�
�

�
	
�

�
� �
� � � ��� � � � � ��

with m	�
 � � for all other �� The nonzero terms of a dual re�nement mask of m is

md	�
 � �
�

��
�
�

�
�
�

�
�
�

��
�
�

�
�
�

�
�
�

��
�
�

�
�
�

�
��

�

��
�
�

�
� � � ��� � � � � ��

The nonzero terms of the corresponding wavelet masks are

r�	�
 � �
�

�
�
�

�
��

�

�
�
�

�
�
�

�
�
�

�
�
�

�
� � � ��� � � � � ��

r�	�
 � �
�

��
�
�

�
��

�

�
�
�

��
�
�

�
��

�

�
�
�

��
�
�

�
��

�

�
��

�

��
�

�

�
� � � ��� � � � � ��

r
	�
 �
�

��
�
�

�
�
�

�
��

�

��
�

�

�
� ��

�

��
�
�

�
��

�

�
��

�

��
�
�

�
� � ��� � � � � ��

The dual highpass �lters are

rd�	�
 � 	��
���r
	�� �
� rd�	�
 � 	��
���m	�� �
� rd
	�
 � 	��
���r�	�� �
�

for appropriate �� Again� if j�j � �
� � then m and md are the re�nement masks of a dual pair of the

stable functions 
 and 
d with dilation ��

�



��� The Algorithm

In this subsection� we present our algorithm� For simplicity� we let K � �� Since the blurring matrix
from each sensor is a tensor product 	see 	�

� it su�ces to consider the one�dimensional case� i�e�
the � � � sensor array� The general case of K �K sensors can be derived similarly by taking the
tensor products� For simplicity� we denote the number of low�resolution pixels by N and the number
of high�resolution pixels by M	� �N
�

For the �� � sensor array� the blurring matrix for the whole sensor array is given by

L	�
 � D�L	��
 �D�L	��
�

Here D� are the sampling matrices 	by factor �
� i�e� D� � IN � diag	e�
 where e� denotes the �th
column of the ��� identity matrix and � � 	��� ��
� The M �M matrices L	�k
� k � �� � are de�ned
in 	��
 below� They are the blurring matrices corresponding to the kth sensor with displacement
error �k� In matrix forms� all the matrices corresponding to sensor k are the circulant matrices
generated by the corresponding masks� They are�

Ld	�k
 � circulant	
�

�
�
�

�
��

�

�
�
�k
�
� �� � � � � ���

�

�
�
�k
�
�
�

�

�

L	�k
 � circulant	
�

�
�
�

�
	
�

�
� �k
� �� � � � � ��

�

�
	
�

�
� �k

� 	��


Hd	�k
 � circulant	
�

�
�
�k
�
� �� � � � � ��

�

�
�
�k
�
��

�

�

�

H	�k
 � circulant	
�

�
��

�

�
�
�

�
�
�

�
�
�k
�
� �� � � � � ��

�

�
�
�k
�

�

Here circulant	c�� � � � � cM 
 denotes the M �M circulant matrix with 	c�� � � � � cM 
 as the �rst row�
For each sensor k 	k is � or �
� the matrices Ld	�k
� L	�k
� H

d	�k
� and H	�k
� satisfy

Ld	�k
L	�k
 �Hd	�k
H	�k
 � I� 	��


because of 	��
� Our iterative algorithm starts from this identity� Suppose that at Step n� we have
the nth approximation fn� Then 	��
 gives

Ld	�k
L	�k
fn �Hd	�k
H	�k
fn � fn�

Assume that L	�k
f is available� then we replace L	�k
fn by L	�k
f to improve the approximation�
By this� we de�ne

fn�� � Ld	�k
L	�k
f �Hd	�k
H	�k
fn� 	��


For the case with no displacement error� i�e� �� � �� � �� we have L	��
 � L	��
 � L	�
�
We have analyzed 	��
 in ��� through multiresolution analysis by using the lowpass and highpass
�lters that generate the matrices L	�
� Ld	�
� H	�
 and Hd	�
� We showed that the blurred image
can be represented by a function in the low resolution space� the reconstructed image is in a high
resolution space� and Hfn is the high frequency component of fn which can be represented by a
function in the wavelet space� At each iterate� the term L	�
f is always chosen to be g which is the
low frequency content of the original image and is given by the observed image� The high frequency
content of the original image is updated by the high frequency content of the previous iterate� It
was further shown in ��� that the sequence of functions corresponding to the high resolution images
at each iteration converges to the function corresponding to the original image f in L��norm� When

�



g contains noise� then fn has noise brought in from the previous iteration� To build a denoising
procedure into the algorithm� we further decompose the high frequency component H	�
fn via the
standard wavelet decomposition algorithm� This gives a wavelet packet decomposition of fn� Then�
applying a wavelet thresholding denoising algorithm to this decomposition and reconstructing H	�
f
back via the standard reconstruction algorithm leads to a denoising procedure for fn� The details of
this algorithm and its analysis can be found in ����

For the case with displacement errors� the blurred image g has error from the displacement and
the matrices di�er from one sensor to the other� To implement 	��
� we need to approximate L	�k
f �
the �rst term on the right�hand side of 	��
� 	As we have seen in the previous paragraph� for the
case with no displacement error� L	�
f is simply g
� For the case with displacement error� we may
simply ignore the di�erent matrices used at the two sensors and �x on only one set of matrices� say
Ld	��
� L	��
� H

d	��
 and H	��
� Then we apply 	��
 with L	�
f � g as the 	approximation of
 the
observed image� This gives an algorithm close to Algorithm � of ��� and it converges independent of
the choice of �� But doing this will ignore the displacement errors between the sensors�

In order to take into the consideration the displacement errors and use our algorithm 	��
� we
modify it by updating the approximation of L	�k
f through exploring the available information at
each iterate� More precisely� we divide the 	n� �
th iteration into the following two steps�


 Choose gn� �

�

� D�g �D�L	��
fn and de�ne

fn� �

�

� Ld	��
gn� �

�

�Hd	��
H	��
fn�


 Choose gn�� � D�L	��
fn� �

�

�D�g and de�ne

fn�� � Ld	��
gn�� �Hd	��
H	��
fn� �

�

�

Since L	��
f � D�L	��
f � D�L	��
f and D�g � D�	D�L	��
 � D�L	��

f � D�L	��
f � we only
need to approximate D�L	��
f in order to get an approximation of L	��
f � Thus� in the �rst step
of 	n � �
th iteration� we use D�L	��
fn to approximate D�L	��
f � Similarly� in the second step of
	n� �
th iteration� we use D�L	��
fn� �

�

to approximate D�L	��
f �

When g contains noise� the wavelet thresholding algorithm can be built in naturally again as in
���� To do it� we �rst introduce a truncation operator�

D�		x�� � � � � xl� � � � 

T 
 � 	x��jx�j��� � � � � xl�jxlj��� � � � 


T �

Here �jxj�� equals to � if jxj � �� and � otherwise� Then for any given L	�
� Ld	�
� H	�
 and Hd	�

satisfying 	��
� and a data vector v with noise� we de�ne the thresholding operator�

TJ�		v
 � 	Ld	�

J 	L	�

Jv �

J��X
j��

	Ld	�

jHd	�
D�

�
H	�
Lj	�
v

�
� J � �� �� � � � �

The thresholding operator TJ�	 consists of three steps� The �rst step is a translation invariant
wavelet transformation with L	�
 and H	�
� Let v be a function at certain level of multiresolution
analysis representing the data v� The operator TJ�	 transforms the data v into 	L	�

Jv� which is
the coe�cients of the representation of a coarse approximation of v at J�th level down and contains
mainly low frequency content of v� and H	�
Lj	�
v� j � �� � � � � J � �� the detailed parts of v at level
j that are the wavelet coe�cients of v and contain high frequency contents of v�

�



The second step in TJ�	 is noise removal by thresholding� To guarantee that the thresholded
D�

�
H	�
Lj	�
v

�
keeps the original information of v� a proper � must be selected� Here we choose

� � �
p
� log	M
 which was shown to be an optimal threshold from a number of perspectives ��� ���

and � is the variance of v estimated numerically by the method in ����
The third step is the inverse transformation of the translation invariant wavelet transformation

with Ld	�
 and Hd	�
� The thresholding step enables us to discriminate the information between
signal and noise� and therefore obtain a good approximation of v with less noise from the original
data v after applying the third step�

Our algorithm is now given as follows�

Wavelet Algorithm�

�i� Choose an initial approximation f� �e�g� f� � g��

�ii� Iterate on n until convergence�

��� take gn� �

�

� D�g �D�L	��
fn and do

fn� �

�

� Ld	��
gn� �

�

�Hd	��
TJ�	� 	H	��
fn
 �

��� take gn�� � D�L	��
fn� �

�

�D�g and do

fn�� � Ld	��
gn�� �Hd	��
TJ�	�

�
H	��
fn� �

�

�
�

�	� increase n to n� � and go to Step ����

�iii� Let fn� be the �nal iterate from Step �ii�� The �nal solution of our Algorithm is

fc � TJ��	fn�
�

The computational complexity of our algorithm depends on the number of iterations required
for convergence� In each iteration� we essentially go through a J�level wavelet decomposition and
reconstruction procedure K times� therefore it needs O	M
 � O	KN
 operations� As for the value
of J � the larger it is� the �ner the wavelet packet decomposition of fn and fn� �

�

will be before it

is denoised� This leads to a better denoising scheme� However� a larger J will cost slightly more
computational time� From our numerical tests� we �nd that it is already good enough to choose J to
be either � or �� The variances �n�k are estimated by the method given in ��� which uses the median
of the absolute value of the entries in the vector H	�k
fn� k

�

� Hence the cost of computing �n�k is

O	M log	M

� see for instance ����� Finally� the cost of Step 	iii
 is less than one additional iteration
of Step 	ii
� As a comparison� each iteration of the preconditioned conjugate gradient method used
in �
� would require the same amount of work� i�e� O	M log	M

 operations� One nice feature of our
algorithm is that it is parameter�free if we choose � � �

p
� log	M
� We then do not have to choose

the regularization parameter 	 as in the Tikhonov method 	

�
As shown above� one of the key facts used in our algorithm is 	��
� the matrix form of the �perfect

reconstruction� identity from the masks� The equation was derived under the periodic boundary
assumption we imposed on the images� Since the masks� which are determined by the lowpass �lters
of the sensors� are not symmetric� one cannot obtain 	��
 if one imposes the symmetric boundary
condition instead�






� Numerical Experiments

In this section� we implement the wavelet algorithm developed in x��� and compare it with the
Tikhonov least squares method 	

� We evaluate the methods using the relative error 	RE
 and the
peak signal�to�noise ratio 	PSNR
 which compare the reconstructed image fc with the original image
f � They are de�ned by

RE �
kf � fck�
kfk�

and PSNR � �� log��
����N�

kf � fck��
�

where the size of the restored images is N �N �
We use the �Boat� image of size ������� shown in Figure � as the original image in our numerical

tests� To simulate the real world situations� the pixel values of the low�resolution images near the
boundary are obtained from the discrete equation of 	�
 by using the actual pixel values of the �Boat�
image� No periodic boundary conditions are imposed on these pixels� For the Tikhonov method 	

�
we will use the identity matrix I as the regularization operator R� The optimal regularization
parameter 	� is chosen by trial and error so that they give the best PSNR values for the resulting
equations� For our algorithm� we stop the iteration as soon as the values of PSNR peaked� We
use J � � in our algorithm as it incurs the least cost and the result is already better than that of
the Tikhonov method� In case that PSNR is not available� we stop the iteration� when the two
consecutive iterants are less than a given tolerance�

Figure �� The original �Boat� image�

��� �� � Sensor Array

For ��� sensor arrays� the bivariate �lter for the blurring process is the tensor product of the lowpass
�lter given in Example �� By applying the matrix L�	�

x� �y
 of size ��� � ��� on the true �Boat�
image and then adding white noise� the resulting image is then chopped to size ��� � ��� to form
our observed high�resolution image g� We note that the four ���� ��� low�resolution frames can be
obtained by downsampling g by a factor of � in both the horizontal and the vertical directions�

In what follows� all images are viewed as column vectors by reordering the entries of the images
in a column�wise order� The blurring matrices and the wavelet matrices are formed by the tensor

��



product� see 	�
� In particular� we have

Lk��k�	�
x
k��k�

� �yk��k�
 � L	�xk��k�
� L	�yk��k�
�

Hk��k�������	�
x
k��k�

� �yk��k�
 � L	�xk��k�
�H	�yk��k�
�

Hk��k�������	�
x
k��k�

� �yk��k�
 � H	�xk��k�
� L	�yk��k�
�

Hk��k�������	�
x
k��k�

� �yk��k�
 � H	�xk��k�
�H	�yk��k�
�

Ld
k��k�

	�xk��k� � �
y
k��k�


 � Ld	�xk��k�
� Ld	�yk��k�
�

Hd
k��k�������

	�xk��k� � �
y
k��k�


 � Ld	�xk��k�
�Hd	�yk��k�
�

Hd
k��k�������

	�xk��k� � �
y
k��k�


 � Hd	�xk��k�
� Ld	�yk��k�
�

Hd
k��k�������

	�xk��k� � �
y
k��k�


 � Hd	�xk��k�
�Hd	�yk��k�
�

for k�� k� � �� �� Here L	�
� Ld	�
� H	�
� and Hd	�
 are given by 	��
�	��
� In our test� the � � �
parameter matrices �x and �

y are randomly chosen to be

�
x �

�
������ ������
������ ������

�
� �

y �

�
������ ������
������ ����
�

�
�

Table � gives the PSNR and RE values of the reconstructed images for di�erent Gaussian noise
levels� the optimal regularization parameter 	� for the Tikhonov method and also the number of
iterations required for Step 	ii
 in our algorithm� We see that our algorithm is better than the
Tikhonov method� Figure � depicts the reconstructed high�resolution image with noise at PSNR �
��dB� The values of the parameter � used in our algorithm are given in Table � for reference�

Least Squares Model Our Algorithm
SNR	dB
 PSNR RE 	� PSNR RE Iterations

�� ����� ������ ������ ���
� ������ �
�� ����� ������ ������ ����� ������ �

Table �� The results for the �� � sensor array with the periodic boundary condition�

SNR	dB
��� SNR	dB
���

First Iteration First Iteration

	���
 sensor ���
���� ������
� �����
��� �������� �������� �����
�

	���
 sensor ����
��� ��

���� ����
��� �����
�
 �������� ����
��

	���
 sensor ���
���� �������� �������� �������� �������� ��������
	���
 sensor �������� �������� �������� �����
�� �������� ��������

Second Iteration Second Iteration

	���
 sensor ���
���
 �������� ����
��� �������� �������� ���
����
	���
 sensor ���
�
�� ������
� �������� ���
���� �������� ��
��
��
	���
 sensor �������
 ���
���� ����
��� �������� �������� ��������
	���
 sensor ��
�
��� �������� ����
�
� �������� �������� ��������

Table �� The values of � used for the �� � sensor array with the periodic boundary condition�

��� 	� 	 Sensor Array

We have done similar tests for � � � sensor arrays� The bivariate �lters are the tensor prod�
ucts of the �lters in Example �� The observed high�resolution image g is generated by applying

��
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Figure �� 	a
 Low�resolution ���� ��� image from the 	�� �
th sensor� 	b
 Observed high�resolution
��� � ��� image 	with white noise at SNR���dB added
� 	c
 Reconstructed ��� � ��� image from
the least squares method with periodic boundary condition� 	d
 Reconstructed ������� image from
our algorithm with periodic boundary condition�

the bivariate lowpass �lter on the true �Boat� image� Again� true pixel values are used and no
boundary conditions are assumed in generating g� After adding white noise� the vector g is then
used in the Tikhonov method and our algorithm to recover f � The matrices Lk��k�	�

x
k��k�

� �yk��k�
�

Ld
k��k�

	�xk��k� � �
y
k��k�


� Hk��k��
	�
x
k��k�

� �yk��k�
 and Hd
k��k��


	�xk��k� � �
y
k��k�


� � � Z
�
� n f	�� �
g can be gener�

ated by the corresponding �lters in Example � like what we did in x���� In our test�

�
x �

�
���

������ ������ ������ �����

������ ������ ������ ����
�
������ ������ ������ ������
������ ����
� ���
�� �����


�
��� � �

y �

�
���

������ �����
 ����
� ������
������ ������ ������ ���

�
������ ������ ���

� ������
������ �����
 �����
 ������

�
��� �

From Table �� we see that the performance of our algorithm is again better than that of the least
squares method� Figure � depicts the reconstructed high�resolution image with noise at SNR � ��dB�
Since the problem is more di�cult than the �� � case� we see that the algorithm requires few more
iterations to get to the solution�

��



Least Squares Model Our Algorithm
SNR	dB
 PSNR RE 	� PSNR RE Iterations

�� ����� ������ ����
� ����� ������ �
�� ����� ������ ������ ����� ������ �

Table �� The results for the �� � sensor array with the periodic boundary condition�
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Figure �� 	a
 Low�resolution �� � �� image from the 	�� �
th sensor� 	b
 Observed high�resolution
��� � ��� image 	with white noise at SNR���dB added
� 	c
 Reconstructed ��� � ��� image from
the least squares method with periodic boundary condition� 	d
 Reconstructed ������� image from
our algorithm with periodic boundary condition�
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