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Abstract In this paper, we propose a two-phase approach
to restore images corrupted by blur and impulse noise. In
the first phase, we identify the outlier candidates—the pixels
that are likely to be corrupted by impulse noise. We consider
that the remaining data pixels are essentially free of outliers.
Then in the second phase, the image is deblurred and de-
noised simultaneously by a variational method by using the
essentially outlier-free data. The experiments show several
dB’s improvement in PSNR with respect to the typical vari-
ational methods.

Keywords Deblurrind · Impulse noise · Two-phase
methods

1 Background

We consider how to recover a digital image x ∈ R
m×m when

the observed image y is blurred and corrupted with impulse
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noise. Degradation by blur is almost unavoidable in imaging
systems while corruption with impulse noise comes from
bit errors in transmission, wrong pixels and faulty memory
locations in hardware. A review of the importance of this
kind of degradations can be found e.g. in [6, 12]. Under this
degradation model, our observation y is of the form

y = Np(ỹ) where ỹ = Hx. (1)

Here, Np represents an impulse noise while H models the
blurring effect. We assume that the blurring kernel of H is
known. Two main models for the impulse noise are used in
a wide variety of applications: salt-and-pepper and random-
valued impulse noise. Denote the dynamic range of ỹ to be
[dmin, dmax], i.e. dmin ≤ ỹij ≤ dmax for all (i, j). Then the
models are defined by

• Salt-and-pepper noise: the gray level of y at pixel location
(i, j) is

yij =

⎧
⎪⎪⎨

⎪⎪⎩

dmin, with probability s/2,

dmax, with probability s/2,

ỹij , with probability 1 − s,

(2)

where s determines the level of the salt-and-pepper noise.
• Random-valued impulse noise: the gray level of y at pixel

location (i, j) is

yij =
{

dij , with probability r,

ỹij , with probability 1 − r,

where dij are identically and uniformly distributed ran-
dom numbers in [dmin, dmax] and r defines the level of the
random-valued noise.
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Fig. 1 Lena image blurred by the out-of-focus kernel of radius 3 and
contaminated by different noise patterns, where s and r are the levels
of the salt-and-pepper (SP) and the random-valued noise, respectively.

The figures correspond to (from left to right): s = 10%; s = 70%;
r = 10%; r = 40%

Fig. 2 Lena image blurred with out-of-focus kernel of radius 3, and
then corrupted by impulse noise. Both images are restored by minimiz-
ing (3) with β = 0.01. From left to right: The blurred image corrupted

by s = 1% salt-and-pepper noise and its restoration; the blurred image
corrupted with r = 1% random-value impulse noise and its restoration

Examples of images blurred with an out-of-focus kernel
of radius 3 and corrupted with different noise patterns are
shown in Fig. 1. Blurring oversmooths images and thus it en-
tails a loss of high-frequency information. It is well-known
that the inverse problem—the inversion of the blurring oper-
ator H—is ill-posed [10, 17, 19]. Since [18], a large variety
of regularization methods have been conceived in order to
cope with perturbations dues to numerical errors and noise.
Usually they are based on an �2 data-fitting term which from
a statistical point of view means that they are adapted to deal
with Gaussian noise.

One can try to deblur images corrupted by impulse noise
by applying the classical methods developed for Gaussian
noise. These usually amount to defining the restored image
as a minimizer of a functional of the form

Fy(x) = ‖Hx − y‖2
2 + β

∑

(i,j)∈A

∑

(k,l)∈Vij

ϕ(|xij − xkl |), (3)

where β is the regularization parameter, Vij is the set of
the four closet neighbors of pixel location (i, j) and ϕ is
a function that models the priors on the sought-after im-
age. As seen in Fig. 2, the result is hopeless: even for very
small noise ratio say 1% of impulse noise, the method gives
very poor results that contain numerous spurious concentric
rings.

A natural alternative is to preprocess the data using some
classical de-spiking tools such as rank-order (i.e. median-
based) filters [6] and then to restore the image using a varia-
tional method of the form (3). This approach is illustrated
in Fig. 3. The salt-and-pepper noise and the random im-
pulse noise were smoothed by the adaptive median filter
(AMF) [13] and the adaptive center-weighted median fil-
ter (ACWMF) respectively [14]. They are chosen accord-
ing to some previous experiments in [8, 9] and provide a
good compromise between simplicity and robustness. As in
Fig. 2, spurious circles occur in Fig. 3, especially near the
edges.

Since the �1-data fitting in regularized energies is known
for its robustness to removing outliers [15, 16], another pos-
sible method for deblurring under impulse noise is to solve

Fy(x) = ‖Hx − y‖1 + β
∑

(i,j)∈A

∑

(k,l)∈Vij

ϕ(|xij − xkl |), (4)

where ϕ is chosen to be edge-preserving. This approach
provides meaningful results and its various aspects were
explored in [2–5], where usually ϕ corresponds to the
Mumford-Shah functional. Let us notice that the resultant
energy is nonconvex and may have numerous local minima.
In our previous paper [7], a two-phase approach was used
for impulsive noise deblurring. The second phase of that
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Fig. 3 Lena image blurred with out-of-focus kernel of radius 3, and
then corrupted by impulse noise. The image is restored by first applying
a median-type filter and then minimizing (3) with ϕ(t) = √

t2 + 10−4

and β = 0.01. From left to right: The output of AMF when s = 30%,

and the deblurred image based on the output of AMF; the output of
ACWMF when r = 25%, and the deblurred image based on the output
of ACWMF

two-phase approach can be seen as a special variant of the
method in [2–5], and uses nonconvex energies which may
leads to numerous local minima. In this paper, we propose a
new two-phase approach—described in the section below—
which is much simpler. The new two-phase approach uses
convex energies. Therefore, it is relatively easier to find a
global minimun than the method in [7]. The experiments
show that the new two-phase approach considerably im-
proves the results.

2 Two-Phase Deblurring Approach

The essence of our approach is to first detect those possi-
ble corrupted pixels and then, at a second phase, to restore
the image by using only those pixels that are surely not cor-
rupted. The 2-phase idea comes from our two-phase denois-
ing methods in [8, 9]. However, in [8, 9], the restoration is
done only for corrupted pixels using the restored values of
the outliers. Here the inherent ill-posedeness of deblurring
makes it impossible to use any restored values for the out-
liers since they are likely to be fake. A specialized minimiza-
tion functional is hence necessary for deblurring. Therefore,
in [7], a two-phase deblurring approach was proposed. It
consists of the following two phases:

1. Accurate detection of the location of outliers (the noise
candidates) using a median-type filter.

2. Edge-preserving restoration that deblur using only those
data samples that are not noise candidates.

These phases are explained in details below.

2.1 Noise Detection

Since H is a smoothing operator, edges and other high fre-
quency features are not that prominent in the blurred image
Hx, as given in (1). This suggests that median-type filtering
can efficiently detect the locations of the data pixels cor-
rupted by impulse noise. Which median-type filter is chosen

as detector depends on the kind of the impulse noise. An
overview of median-type filters can be found e.g. in [1, 6,
12]. Based on the experiments in [7–9], we use the adaptive
median filter (AMF) [13] to detect salt-and-pepper noise and
the adaptive center-weighted median filter (ACWMF) [14]
for random-valued impulse noise. Even though other im-
pulse noise filters—e.g., ROAD statistic [11]—can be used,
our choices provide a good compromise between simplicity
and robustness. Let us emphasize that any other filter (usu-
ally a median-type filter) that provides a good detection of
outliers can also be employed in this phase.

Denote by z ∈ R
m×m the result obtained by applying the

median-type filter to the blurred and noisy image y. The fil-
tered data z will only be used to determine the noise candi-
date set N —the data samples that are likely to be contami-
nated with impulse noise.

• For salt-and-pepper noise:

N = {
(i, j) ∈ A : zij �= yij and yij ∈ {dmin, dmax}

}
, (5)

• For random-valued impulse noise:

N = {
(i, j) ∈ A : zij �= yij

}
. (6)

Accordingly, the set of data samples that are likely to be
uncorrupted is defined as

U = A \ N .

Clearly random-valued impulse noise are more difficult to
detect than salt-and-pepper noise. We can hence expect more
difficulties with random-valued noise.

2.2 Restoration Using a Variational Method

The data samples yij with (i, j) ∈ N do not carry proper
information of the true image. Their estimates zij provided
by any median-type filter combine in some way the values
of the neighboring pixels, so they inevitably contain errors
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that do not fit the model for Gaussian noise in ỹ, assumed in
(1). Their use in the deblurring stage can only be harmful.
Indeed, the harmful effect they produce on the solution can
be observed in Figs. 3(b) and (d). The best we can do is to
ignore all yi,j with (i, j) ∈ N . The restoration is then done
using only the incomplete data set yij with (i, j) ∈ U .

These data samples may still contain a few outliers of
small amplitude as no median-type filter is a perfect noise
detector. The resultant inverse problem is heavily ill-posed,
but it is based on the most reliable data samples that we
could find. We solve it by a variational method inspired by
(4). The functional we minimize is convex and reads
∑

(i,j)∈U

∣
∣[Hx − y]ij

∣
∣ + β

∑

(i,j)∈A

∑

(k,l)∈Vij

|xij − xkl |. (7)

It corresponds to choosing ϕ(t) = t in (4) with the data-
fitting term being restricted only to the samples belonging
to U —which is the crucial difference with (4) and also the
functionals in [8, 9]. A more convenient and equivalent ex-
pression for our functional is
∑

(i,j)∈A

∣
∣χij [Hx − y]ij

∣
∣ + β

∑

(i,j)∈A

∑

(k,l)∈Vij

|xij − xkl |, (8)

where χ is the characteristic function of the set U , namely

χij =
{

1 if (i, j) ∈ U ,

0 otherwise.

Notice that in [7], in the second phase, we minimize a
functional consisting of an �1 fidelity and a Mumford-Shah
regularization term as follows

∑

(i,j)∈U

∣
∣[Hx − y]ij

∣
∣ + β

∫

�\�
|∇x|2 + α

∫

�

dσ. (9)

By comparing (7) and (9), we see the advantages of the for-
mer over the latter. First, (7) is convex while (9) is non-
convex. Thus, there exist numerous local minimums of (9),
while any local minimum of (7) is its global minimum. Sec-
ondly, it is well known that the Mumford-Shah functional in
(9) is difficult to handle. One may use Gamma-convergence
as we have done in [7]. Therefore, it is difficult to implement
the algorithm for (9). However, for (7), as we will see in the
next section, we can use a fixed point iteration that is very
easy to program. Finally, as illustrated in Sect. 4, the com-
putational time for minimizing (7) is much smaller than that
for (9).

3 Numerical Implementation

In order to approximate the nonsmooth optimization prob-
lem in (8), we introduce a weak smooth regularization, as it

is customarily done in the literature:

F (x) =
∑

(i,j)∈A

√

χij [Hx − y]2
ij + η

+ β
∑

(i,j)∈A

∑

(k,l)∈Vij

√

|xij − xkl |2 + η, (10)

where η � 0. Let G be the difference matrix such that
(Gx)ij,kl = xij − xkl for (i, j) ∈ A and (k, l) ∈ Vij . Then
the gradient of F is given by

∇F (x) = H ∗ χ ◦ (Hx − y)
√[Hx − y]2 + η

+ βG∗ Gx
√[Gx]2 + η

, (11)

where ◦, [·]2 and ·
· are entrywise multiplication, square,

and division respectively, and H ∗ and G∗ are the adjoint
of H and G respectively. Since F is convex, minimizing
F (x) is equivalent to solving ∇F (x) = 0. Following [20]
and many other authors, we minimize (10) by a fixed-point
iteration method. The basic idea is to linearize the gradient
of F at each iteration. Given xp , we get xp+1 by solving x

in the equation:

H ∗ χ ◦ (Hx − y)
√[Hxp − y]2 + η

+ βG∗ Gx
√[Gxp]2 + η

= 0. (12)

Since (12) is a linear equation, it can be solved efficiently by
linear solvers.

4 Experiments and Comparisons

In this section, numerical examples are presented to illus-
trate the effectiveness of our two-phase deblurring method
by comparing it with the full variational method (4) with
ϕ(t) = t , and with the two-phase deblurring method in [7],
i.e., minimizing (9) in the second phase.

The simulations are performed in Matlab 7.01 (R14) on a
PC. To assess the restoration performance quantitatively, we
evaluate the peak signal to noise ratio (PSNR, see 6) defined
as

PSNR = 10 log10
2552

1
n2

∑
(i,j)∈A(x̂ij − xij )2

, (13)

where x̂ij and xij are the pixel values of the restored image
and of the original image, respectively. The test images are
all 256-by-256 gray level images. We fix η = 1. The remain-
ing parameter β is chosen empirically such that it gives the
best restoration measured in PSNR.
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Fig. 4 Lena image blurred with out-of-focus kernel of radius 3, and
then corrupted by salt-and-pepper noise with noise levels 30%, 50%,
70%, and 90% respectively. Top: The noisy blurred image. Middle: The
restored image by the two-phase approach, and the parameters we used

are all β = 2 × 10−5. Bottom: The restored image by the full varia-
tional method, and the parameters we used are β = 0.02,0.05,0.2,0.5
respectively

Table 1 The PSNR(dB) and
computing time (in seconds)
comparisons of the two-phase
method and the full variational
method. The blurring kernel is
the out-of-focus of radius 3

Image s Two-phase method Two-phase method in [7] Full variational method

PSNR Time #Iter PSNR Time PSNR Time #Iter

Phase 1 Phase 2 Phase 1 Phase 2

Lena 30% 37.5 0.2 187 6 35.9 0.2 504 30.0 71.6 18

50% 33.7 0.3 212 7 32.7 0.3 496 27.8 81.0 25

70% 30.7 0.5 239 9 30.1 0.5 488 25.6 124 33

90% 27.1 10.5 335 14 26.7 10.5 623 21.6 192 40

Bridge 26.4 0.6 241 10 26.2 0.6 514 22.6 129 34

Baboon 24.7 0.7 223 10 24.7 0.7 452 22.5 85.0 26

Boat 70% 27.7 0.6 231 9 26.7 0.6 488 23.4 103 30

Goldhill 28.8 0.5 208 9 28.4 0.5 402 25.3 99.6 29

First we discuss the case with salt-and-pepper noise. The
comparisons of our method and the full variational deblur-
ring method (4) are shown in Fig. 4 and Table 1. In the
first phase of our method, the noise candidate set N , de-
fined in (5), is detected by the AMF algorithm [13]. The

maximum window size we used in AMF is 19 throughout
the test. Obviously, our two-phase deblurring method is bet-
ter than the variational method. In general, the PSNR of the
restoration by our method is about 2 to 7 dB higher than
that by the variational method, and our two-phase method
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Fig. 5 Restoration of our method for images blurred with out-of-focus kernel of radius 3, and then corrupted by salt-and-pepper noise s = 70%.
The parameters used are the same as in Fig. 4 for s = 70%

Fig. 6 Lena image blurred with out-of-focus kernel of radius 3, and
then corrupted by random-valued noise with noise levels are 10%,
25%, 40%, and 55% respectively. Top: The noisy blurred image. Mid-
dle: The restored image by the two-phase approach, and the parameters

we used are β = 0.005,0.01,0.02,0.1 respectively. Bottom: The re-
stored image by the full variational method, and the parameters we
used are β = 0.01,0.02,0.02,0.1 respectively

can handle noise level as high as 90%, while the variational
method fails. Comparing the two-phase methods in this pa-
per with in [7], we see that: the computational time for the
method in this paper is less than half of that for the method in
[7], while the PSNRs of the restored images for the method
in this paper is greater than that for the method in [7]; see
Table 1.

Next we discuss the case of random-valued impulse
noise. The noise is detected by ACWMF [14], which is suc-
cessively performed 4 times with different parameters for
one image. The parameters are chosen to be the same as
those in [8]. Once the 4 steps of ACWMF are performed,
we define the noise set N by (6), and then perform the sec-
ond phase. Again we compare our two-phase method with
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Fig. 7 The restorations of our method for images blurred with out-of-focus kernel of radius 3, and then corrupted by random-valued impulse noise
with r = 40%. The parameters used are the same as in Fig. 6 when s = 40%

Table 2 The PSNR(dB) and
computing time (in seconds)
comparisons of the two-phase
method and the full variational
method. The blurring kernel is
the out-of-focus of radius 3

Image s Two-phase method Two-phase method in [7] Full variational method

PSNR Time #Iter PSNR Time PSNR Time #Iter

Phase 1 Phase 2 Phase 1 Phase 2

Lena 10% 35.6 7.1 65.3 12 38.7 7.1 584 33.5 67.1 14

25% 32.8 7.1 65.6 15 34.4 7.1 606 30.6 72.1 18

40% 30.5 7.1 68.3 19 31.2 7.1 739 27.3 107 24

55% 27.2 7.1 104 30 27.8 7.1 784 24.7 127 35

Bridge 26.4 7.0 80.5 23 27.3 7.0 726 24.4 101 25

Baboon 24.7 7.1 63.6 21 25.3 7.1 635 23.9 80.7 22

Boat 40% 27.7 7.1 90.6 22 28.2 7.1 709 25.6 92.6 22

Goldhill 28.8 7.0 63.5 19 29.5 7.0 705 26.8 108 26

the variational method. The results are shown in Fig. 6 and
Table 2. We can see from the figures that our method is again
much better than the variational method. The PSNR of the
restoration by our method is about 1 to 3 dB higher than
that by the variational method. Even for blurred images cor-
rupted by 55% random-valued noise, our method can give
a very good restoration, while the variational method fails.
Comparing the two-phase methods in this paper with in [7],
we see that our method is more computationally efficient.
Our method takes only about 1/8 CPU time of that by the
method in [7]. However, the PSNRs of the restored image
by our method are not as good as those given by [7].

We note that in all the cases tested, there are no cir-
cles appearing in our restored images which are common
in other approaches (see Figs. 2 and 3). We can also see that
in general the two-phase method for salt-and-pepper noise
performs better than for random-valued noise: it can han-
dle salt-and-pepper noise as high as 90% but random-valued
noise for about 55%. The main reason is that the former is
more easy to detect than the latter in the first phase. In fact,
AMF is a very good detector for salt-and-pepper noise, and
almost all the noise positions can be detected even when the
noise ratio is very high. In addition, with salt-and-pepper
noise, most of the noisy pixels are much more dissimilar to
regular pixels, hence are easier to detect. However, there is

no good detector for random-valued noise when the noise
ratio is high. The performance for random-valued noise can
be improved if a better noise detector can be found in the
first phase.
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