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§1 Introduction.

Preconditioned conjugate gradient methods have been used efficiently in solving large
matrix problems. The idea of using the method with circulant preconditioners for solving
symmetric positive definite Toeplitz systems T,z = b was proposed by Strang [16] and
Olkin [15] independently. The number of operations per iteration is of O(nlogn) as
circulant systems can be solved efficiently by fast Fourier transform (FFT) and the matrix-
vector multiplication Tj,v can also be computed by the FFT by first embedding T}, into a
2n-by-2n circulant matrix. The convergence rate of the preconditioned conjugate gradient
method depends on the whole spectrum of the preconditioned matrix. In general, the

more clustered the eigenvalues are, the faster the convergence rate will be.

There are many circulant preconditioners that can produce clustered spectra, see
Chan and Yeung [5]. One good example is T. Chan’s [9] circulant preconditioner which is
defined to be the minimizer of ||T;,, — C), || in Frobenius norm over all circulant matrices
C). One can consider this circulant preconditioner from the operator point of view. Given
any arbitrary n-by-n matrix A,,, we define an operator ¢y which maps A,, to the matrix
cr(A,) that minimizes || A, — Cy, || r over all circulant matrices C,,. This circulant operator

cr has been studied in Chan, Jin and Yeung [3].

In this paper, we generalize the idea to the case of block matrices. Our interest is
in solving systems T;,,x = b where T,,,, is an m-by-m block matrix with n-by-n Toeplitz
blocks. This kind of systems occur in a variety of applications, such as the two-dimensional
digital signal processing and the discretization of two-dimensional partial differential equa-
tions. Given such T,,,, we can use the mn-by-mn point-circulant matrix cg(T,,,) as a
circulant approximation to Ty,,, see T. Chan and Olkin [10] and Chan and T. Chan [8].
In this paper, however, we consider another approximation to T,,, that preserves the
block structure. The approximation is an extending to the one proposed by T. Chan
and Olkin [10]. We define the matrix cg,l)(Tmn) to be the minimizer of ||T,,,, — CrnllF

over all m-by-m block matrices C),,, with n-by-n circulant blocks. We will show that the
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operator cg,l) is well-defined for all mn-by-mn complex matrices A,,,. Some properties
of 05:1) are then discussed. In particular, we prove that if A,,, is positive definite, then

cg,l) (Ann) is also positive definite. We also show that the operator cg,l) has operator norms

1 1
Dl = Nl Nlr = 1.

lle

We then consider the cost of using the preconditioned conjugate gradient method
with the preconditioner c%l)(Amn) for solving block systems A,,,z = b. The convergence
rate of the method is then analyzed for two specific types of block systems. The first one
is the quadrantally symmetric block Toeplitz systems. We show that in this case, if the
generating sequence of the matrices is absolutely summable, then the method converges
in at most O(min{m,n}) steps. Next we consider block matrices that are of the form
A ® T, where A, is nonsingular and T;, is a Toeplitz matrix with a positive 2m-periodic
continuous generating function. We show that the resulting preconditioned system has
spectrum clustered around 1 and hence the method converges superlinearly. Our numerical

(1

experiments have shown that ¢’ (A,,,) is indeed a good preconditioner for solving these

block systems — the number of iterations is roughly a constant in both cases.

The outline of the paper is as follows. In §2, we first recall some properties of the point-
circulant operator ¢p. Then we introduce three different possible block preconditioners
that preserve the block structure of the given matrix. In §3, we consider the cost of using
c%l)(Amn) as a preconditioner for solving block systems A,,,z = b. The convergence rate

of the method is analysed in §4 and numerical results are then given in §5.

§2 Operators for Block Matrices.

Let us begin by introducing the operator for point matrices. Given an n-by-n unitary

matrix U, let

My ={U*A,U | A, is an n-by-n complex diagonal matrix},

where “x” denotes the conjugate transposition. We note that when U is equal to the
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Fourier matrix F, Mp is the set of all circulant matrices, see Davis [11]. Let §(A,)
denote the diagonal matrix whose diagonal is equal to the diagonal of the matrix A,,. The
following Lemma was first proved by Chan, Jin and Yeung [3] for the case U = F' and was

extended to the general unitary case by Huckle [13].

Lemma 1. Let A, be an arbitrary n-by-n matriz and cy(Ay,) be the minimizer of
\W,, — AnllF over all W, € My. Then

(i) cu(Ay) is uniquely determined by A, and is given by
cuv(Ap) =US(UAUN)U . (1)

(ii) If A, is Hermitian, then so is cy(Ay). Furthermore, if Amin(:) and Amax(:) denote

the largest and the smallest eigenvalues respectively, then we have
)\min(An) < )\min (CU(An)) < Amax(CU(An)) < )\max(An) .

In particular, if A, is positive definite, then cy(A,) is also positive definite.
(iii) The operator cy is a linear projection operator from the set of all n-by-n complex

matrices into My and has the operator norms

lcolle = sup  |ler(An)|l2 =1
[|Ar|l2=1
and
llcvllr = sup |lev(An)||lF = 1.
[|An||F=1

(iv) When U is the n-by-n Fourier matriz F,

n—1

) =30 Y a)Q 2

j=0 p—g=j (mod n)

where Q) is the n-by-n circulant matriz

O
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The circulant matrix cg(A,,), first proposed by T. Chan [9], is a good preconditioner

for solving some Toeplitz systems by the preconditioned conjugate gradient method, see
Chan [6]. In the following, we call ¢y the point-operator in order to distinguish it from

the block-operators that we now introduce.

§2.1 Block-Operator cg}).

Let us now consider a general system A,,,z = b where A,,, is an mn-by-mn matrix

partitioned as

Al,l A1,2 e Al,m
A2,1 A2,2 T A2,m
Am,l Am,2 e Am,m

Here the blocks A; ; are square matrices of order n. We emphasize that we are interested
in solving block systems where the blocks A; ; are Toeplitz matrices. In view of the point

case, a natural choice of preconditioner for A,,, is

cr(A11) cr(Ar12) - cr(Aim)
B B CF(Az,l) CF(A2,2) CF(Az,m)
CF (Am,l) CF (Am,2) te CF(Am,m)

where the blocks c¢p(A; ;) are just the point-circulant approximations to A; ;, see (2). We
will show in §4 and §5 that F,,, is a good preconditioner for solving some block systems.
In the following, however, we first study some of the spectral properties of the matrix
Eonn.

Let 6(Y)(A4,,,) be defined by

0(A1,1)  0(A12) - 0(A1m)
0 (Apn) = ) 5(1,42’2) 6(A.2’m) : (5)
(A1) 6(Amz) - 5(Amm)

where each block 6(A4; ;) is the diagonal matrix of order n whose diagonal is equal to the
diagonal of the matrix A; ;. The following Lemma gives the relation between oax(Amn)

and opax (5 (1)(Amn)) where 0p,.x(+) denotes the largest singular value.
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Lemma 2. Given any mn-by-mn complex matriz A,,, partitioned as in (4), we have
Tmax (0 (Amn)) < Tmax(Amn). (6)
Furthermore, when A,,, is Hermitian, we have
Amin(Amn) < Amin (8Y (Amn)) < Amax (6 (Arnn)) < Amax(Armn) - (7)

In particular, if Ay, is positive definite, then 5V (Apy) is also positive definite.

Proof. Let (Ayn)i jik,i = (Ak1)i; be the (4, )th entry of the (k,I)th block of A,,,. Let P

be the permutation matrix that satisfies
(P*Amnp)k,l;i,j = (Amn)i,j;k,la 1< Z,j < n,l < k,l <m. (8)

Then it is easy to see that B,,, = P*6(Y (A,,,)P is of the form

B, 0 0
0 Byy - 0

Bin = : - . :
0 0 -+ Bpn

Clearly the matrices B,,, and 6" (A4,,,) have the same singular values and eigenvalues.

For each k, since By is a principal submatrix of the matrix A,,,, it follows that
Omax(Br,k) < Omax(Amn),
see for instance, Thompson [17]. Hence we have
Tmax (0 (Amn)) = Omax(Bumn) = max (Omax(Br.k)) < Tmasx(Amn) -

When A,,,, is Hermitian, by Cauchy’s Interlace Theorem, see Golub and van Loan [12],

we then have



A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS 7

In the following, we use D%)n to denote the set of all m-by-m block matrices where
each block is a complex diagonal matrix of order n, i.e. D%)n is the set of all matrices of

the form given by (5). Let
My ={I @ U)ARD (T U) | AL, € DY)}

where [ is the m-by-m identity matrix and U is any given n-by-n unitary matrix. We
then define the operator cg}) to be the mapping that maps every mn-by-mn matrix A,,,

to the minimizer of |W,,.,, — Apnl|F over all W,,,,, € MS). Some of the properties of this

operator are given in the following Theorem.

Theorem 1. For any arbitrary mn-by-mn complex matriz Ay, partitioned as in (4), let
cgjl)(Amn) be the minimizer of ||[Wimn — Amnllr over all W, € ngl). Then

(i) cgjl)(Amn) is uniquely determined by A, and is given by
S (Apn) = T @ U D [(I @ U) A (I @ U)*] (I @ V). (9)

(ii) cg})(Amn) is also given by

CU(A1,1) CU(Al,z) CU(Al,m)
iaea= [ S ST,
0(Ams) w(Amz) - cr(Amm)
where cy is the point-operator defined by (1).
(iii) We have
Omax () (Amn)) < Omax(Amn)- (11)

(iv) If Ay is Hermitian, then cgjl)(Amn) is also Hermitian and
Amin(Amn) < Amin (ngl) (Amn)) < Amax(cgjl) (Amn)) < Amax(Amn) .

In particular, if A, is positive definite, then cg)(Amn) is also positive definite.

(v) The operator 08) s a linear projection operator from the set of all mn-by-mn complex

matrices into MS) and has the operator norms

1= sup [ (A2 = 1
||Amn||2:1
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and
lele = sup el (Amn)lr = 1.
U U
Amn”le
Proof.

(i) Let Winn € MY be given by

(iii)

Win = (I @U)* A, (I @U) ,
where A%% € D%)n Since the Frobenius norm is unitary invariant, we have

“Wmn - AmnHF :“(I ® U)*Agrlng([ ® U) - Amn“F

Thus the problem of minimizing ||W,.,, — Amn||F over ngl) is equivalent to the
problem of minimizing ||A$7121 —(I®U)Ann(I @U)*||p over D,%)n Since Alp can
only affect the diagonal of each block of (IQU)A,,(I ®U)*, we see that the solution

for the latter problem is AL, =6 [(I ®U)Amn(I @ U)*|. Hence

S (Amn) = (TR UY SO [(I @ U) Ay (I @ U)] (I @ U)

is the minimizer of ||W,,, — Amn|lr. It is clear that A%L and hence cg})(Amn) are

uniquely determined by A,,,,.

Since
SUALUY)  S(UA1UY) - §(UALU)

SO [T o0 Amn(To0)] = | 0 A0l e 00 Aem T
SU A AU") (U Ay sU") - (U Ay U)

by (1) and (9), we see that 08)(Amn) is also given by (10).

For general mn-by-mn matrix A,,,, we have by (9) and (6)

Tmax (¢ (Amn)) =0max [0D (T @ U) A (I @ U)*)]

<Omax [(I @ U) Ay (I @ U)*] = 0max(Amn) -
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(iv) If A, is Hermitian, then it is clear from (10) and Lemma 1 (i) that c{}’(A,) is

also Hermitian. Moreover, by (7) and (9), we have
min [0 (T © U) A (T @ U))]
:Amin (ngl) (Amn)) S >\max (CE}) (Amn))
=Amax [0 (I @ U) A (I @ U)*)]

SAmax [(I ® U)Amn(I ® U)*] = Amax(Amn) .
(v) By (11), we have
1 (Ama)ll2 = Fmaxlet (Amn)] < Cmax(Amn) = || Amn l2-

However, for the mn-by-mn identity matrix I,,,, we have ||c§]1) (Lnn)ll2 = Hmnll2 = 1.

Hence Hcg ) l2 = 1. For the Frobenius norm, we also have

e (Amn) |7 = 16D [(I © U) A (I © U)*] ||

< “(I® U)Amn(I® U)*HF = “Amn“F .

Since ||y’ (i L)l F = i1 Emnllr = 1, it follows that [ef || = 1. [

§2.2 Block-Operator 55/1).

For matrices A,,, partitioned as in (4), we can define another block approximation

to them. Let 0™ (A,n,) be defined by

Aip 0 0
<1 0 A 0
0N (Apn) = . (12)
0 0 Ao

In the following, we use 757(,%)” to denote the set of all m-by-m block diagonal matrices
where each block is a complex matrix of order n, i.e. 757(,%)” is the set of all matrices of the

form given by (12). Let

Mgfl) ={(veI)'AL) (VeI | AL e f)ﬁ?n} ’
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where V' is any given m-by-m unitary matrix and [ is the n-by-n identity matrix.
We define the operator E&}) to be the mapping that maps every mn-by-mn matrix
Apn to the minimizer of ||[Wo,,, — Ay ||F over all W, € ./\;lg/l) Similar to Theorem 1,

we have the following Theorem.

Theorem 2. For any arbitrary mn-by-mn complex matriz A,,, partitioned as in (4), let
5%,1)(Amn) be the minimizer of |Win — Amnl|F over all W, € M%}) Then

(i) E&})(Amn) is uniquely determined by A, and is given by
& (Apn) = (VD) §V[(V @ 1) A (V @ )] (V @ ). (13)

(ii) We have

Omax (53) (Amn)) < Umax(Amn) .

(iii) If A,y is Hermitian, then 5%,1)(Amn) is also Hermitian and
, (D) ~(1)
Amln(Amn) S >‘m1n (CV (Amn)) S Amax(cv (Amn)) S Amax(Amn) .

In particular, if A, is positive definite, then 55/1)(Amn) is also positive definite.

(1)
v

(iv) The operator ¢, is a linear projection operator from the set of all mn-by-mn complex

matrices into ./\;lg) and has the operator norms

=5

~(1
lo = & |F = 1.

The proof of the Theorem is quite similar to that of Theorem 1, we therefore omit
it. We note however that Theorem 2 (ii)-(iv) can be proved easily by using the following

relationship between cg} ) and 55/1 ),

Lemma 3. Let U be any given unitary matriz and P be the permutation matriz defined
in (8). Then for any arbitrary mn-by-mn complexr matriz Ay, partitioned as in (4), we
have

8V (Apn) = POM (P* A, P)P*
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and

P (Apn) = PEP (P* Ay P)P*.

Proof. To prove the first equality, we note that by the definition of 6V and (8), we have

; P* Ay Pl 1=
[0 (P* Ay P) e 1si g :{ ( Ve 6 =]

0 P77
_{ (Amn)i,j;k,l 1=17,
0 it

Hence

s < Amn)ig; ENE
[P (P* Ay )Pt = 6 (P* A Pt ={ et 1

LFEJ
which by definition is equal to [§(") (A )i jsk.i-

To prove the second equality, we first note that
(IU)P=PU®I)
for any matrix U. Hence by (13) and (9), we have

PEY(P* A P)P* = P(U @ I)* 5V [(U ® I)P* Ay P(U ® I)*|(U @ I)P*
= (IQU)* PV [P (IQU)Am.(I @ U)*PIP*(IQU)
—(IoU)*VIQU)ApnI @ U) I @ U) = ¢ (Amn). [

§2.3 Operator CEE)U

Intuitively, cgjl )(Amn) and E&})(Amn) resemble the diagonalization of A,,, along one

specific direction. It is then natural to consider the matrix that results from diagonalization
along both directions. Thus let CEE)U denote the composite of the two operators, i.e.
2 = ~§/1) o cgjl). The following Lemma will be used to derive the properties of the

cV,U = C

operator 05,2’ )U
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Lemma 4. For any given A,,, partitioned as in (4}), we have

I QU 0N (Apn)I@U) =6V [IQU)*Apn(I @ U)] , (14)
and
(V@D (A (VI =6V[(V QDA (VO I)] . (15)
Furthermore,
S(l) © 5(1)(Amn) = 5(Amn) = 6(1) o S(l)(Amn) . (16)

The proof of Lemma 4 is straightforward, we therefore omit it. By using Lemma, 4, we
can prove the following Theorem which states that the operator 05,2’ )U is just a particular

case of the point-operator.

Theorem 3. For any given A,,, partitioned as in (4), we have

C%/?,)U(Aﬁm) = CV®U(Amn) s

where cygu is the point-operator defined in Lemma 1.

(1) (1)
U v

Proof. For any given A,,,, by definitions of ¢;;’ and ¢é;,’, we have

AT (Apn)
:58) [05]1) (Apmn)]
=VeI)iW{(Ve[(IeU)sW(IU)AuIU) |Ie)]|(Vel) Vel

=(Ve D" {(IeU) (Ve NI eU)AmIeU) (Ve ) (IeU)}Vel).
Hence by (14), (15) and (16), we have

2 (Apn) =(V & U)* 5O{BOUV @ U) A (V @ U)THV @ U)

=V U) [(VeU)Am (Ve U)](VeU) =cvev(dm) - O

)

Since cE/ v is just another point-operator, we therefore will concentrate our discussion

(1) (2)

on cy; 5/1 ) in the remaining of the paper. We remark that cy-7;(Amy) is an approx-

and ¢

imation of A,,, in two directions whereas cg} )(Amn) and 63)(Amn) are approximations
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in one direction only (with the other direction being approximated exactly). Thus we
expect that the cg} ) (Asnn) and 63) (A,nn) are better preconditioners than 05/2, )U(Amn) This
is confirmed by the numerical results in §5.

(1)

We now give two simple formula for finding ¢;;” (A, ) and E%} ) (A;np) in the case where

U and V are just the Fourier matrix . When U = F', we have by (10),

CF(Al,l) CF(A1,2) Tt CF(Al,m)
N ]
CF (Am,l) CF(Am,2) Tt CF(Am,m)

where each block c¢p(A4; ;) is T. Chan’s circulant preconditioner for A; ;.
Next we find Eg,l) (A;nn) by using Lemma 3. We first let A,,,,, = P*B,,,,, P and partition
Binn into n? blocks with each block B; ; an m-by-m matrix. Then by Lemma 3 and (17),

we have
[E%)(Amn)]i,j;k,l = [P*c%)(an)P]i,j;k,l = [ngl)(an)]k,l;i,j = (cr(Bi;))kis

where B; ; is the (¢, 7)th block of the matrix By,,. By (2), we see that the (k,l)th entry
of the circulant matrix cg(B; ;) is given by
1
(er(Bijm = — > (Bij)pa-
p—q=k—1 (mod m)
Since (B; j)pq = (Ap,q)ij, we have

) 1 -
65 (A g = oo Z (Apg)ijs 1<, <n,1 <k, <m.
p—g=k—1l (mod m)

Thus the (k,1)th block of &) (Amn) is given by 257 _ i 1 (10d ) (Apg)- Since it de-

pends only on k — [ (mod m), we see that Eg,l)(Amn) is a block circulant matrix. Using

the definition of the matrix @ in (3), we further have

=

m

6;ﬂl)(f‘lmn) = (Qj ® Z Ap,q) :
0

=

p—g=j (mod m)

1
m
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§3 Block Preconditioners for Block Systems.

In this section, we consider the cost of solving block systems A,,,x = b by the
preconditioned conjugate gradient method with preconditioner 05:1) (A;nn)- The analysis for
Eg) (Asnrn) is similar. We first recall that in each iteration of the preconditioned conjugate
gradient method, we have to compute the matrix-vector multiplication A,,,v for some

vector v and solve the system

Cg)(Amn)y =d, (18)
for some vector d, see Golub and van Loan [12].

§3.1 General Matrices.
Let A, be a general mn-by-mn matrix. We note that by (9), the solution to (18) is
given by

y=(I®F) [V (I®F)Am(I®F)*)] (I®F)d. (19)

Hence before we start the iteration, we should form the matrix
A=Y (I®F) A, (I ®F)*)

and compute its inverse. We note that by (17), the (4, j)th block of A is just Fep(A; ;) F*.
By (1), Fep(A; ;) F* = §(FA; jF*) and hence can be computed in n? operations and one
FFT, see Chan, Jin and Yeung [3]. Thus the cost of obtaining A is O(m?n?) operations.
Next we compute its inverse.

We first permute the matrix A by P to obtain

Biy 0 - 0
0 Bas -+ 0
0 0 --- B,,

’

We then compute the LU decompositions for all diagonal blocks By ;. That will take
O(nm?3) operations. Totally, it requires O(n?m? + nm3) operations in the initialization

step.
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After obtaining the LU factors of A, we start the iteration. For a general dense matrix
Apn, Amnv can be computed in O(n?m?). To get the vector y in (19), we note that by
using the FFT, vectors of the form (I ® F')d can be computed in O(mn logn) operations.
Using the LU factors of A, O(nm?) operations are need to compute A~1d for any vector
d. Totally, the cost per iteration is O(mnlogn) + O(nm?) operations.

Thus the algorithm for solving system A,,,z = b for general matrix A,,, requires
O(n?m?+nm?) operations in the initialization step and O(n?m?) operations per iteration.
Clearly if A,,, is sparse, the cost can be reduced. We will consider, in the next two
subsections, two types of block systems where the cost can be drastically reduced.

Finally, we note that some of the block operations mentioned above can be done
parallelly. For instance, the diagonal 6(F A; ; F™*) of the blocks c¢r(A; ;) can be obtained in
O(n?) parallel steps with O(m?) processors and the LU decompositions of the blocks By,

in B,,, can also be computed in parallel. This can further reduce the cost per iteration.

§3.2 Quadrantally Symmetric Block Toeplitz Matrices.

Let us consider the family of block Toeplitz systems T,,,z = b where T, is of the

form
Ty, Tip -+ Tim T(0) Ty - Tin-1)
Ton Top - Topm T Toy - Tin-2
Tm,l Tm,2 T Tm,m T(m—l) T(m—2) T T(O)

Here the blocks T; ; = T(j;—;|) are themselves symmetric Toeplitz matrices of order n.
Such T,,,, are called quadrantally symmetric block Toeplitz matrices.

By (17), the blocks of c%l)(Tmn) are just cp(T(x)). Hence by (2) and the fact that T{y,)
is Toeplitz, the diagonal §(FT(yF™*) can be computed in O(n logn) operations. Therefore,
we need O(mnlogn) operations to form A = 6V (I ® F)T,,(I ® F)*). We emphasize

that in this case, there is no need to compute the LU factors of A. In fact,

Tl’l 0o --- 0

0 Tho --- 0
pap=| . 7 T

0 0 - T,

’
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where

(Ti)ij = (6(FTi;F*)), . = (5(FTqi—sF*)) 1<i,j<m, 1<k<n.

kk’

Hence we see that the diagonal blocks j’k,k are still symmetric Toeplitz matrices of order
m. Therefore it requires only O(m log? m) operations to compute j’k_ ,11) for any vector v,
see Ammar and Gragg [1]. Thus the system c%l) (Tn)y = d can be solved in O(nm log® m)
operations.

Next we consider the cost of the matrix-vector multiplication T},,,v. We recall that
for any Toeplitz matrix T{;), the matrix vector multiplication T{;)w can be computed
by the FFT by first embedding T(xyw into a 2n-by-2n circulant matrix and extending
w to a 2n-vector by zeros. For the matrix-vector product T,,,v, we can use the same
trick. We first embed T, into a (blockwise) 2m-by-2m block circulant matrix where
each block itself is a 2n-by-2n circulant matrix. Then we extend v to a 4mn-vector by
putting zeros in the appropriate places. Using FFT, or more precisely using (Fs,, ® F5,)
to diagonalize the 2m-by-2m block circulant matrix, we see that 7;,,v can be obtained in
O(mn(logm + logn)) operations.

Thus we conclude that the initialization cost in this case is O(mnlogn) and the cost
per iteration is O(nmlog?m + mnlogn). We emphasize that if m > n, then one should

consider using E%l)(Amn) as preconditioner instead.

§3.3 Separable Matrices.

Consider the following system (A,, ® B,)z = b where A,, is an m-by-m nonsingular
matrix and B, is an n-by-n Hermitian positive definite matrix. This system arises in
solving the inverse heat problem in 2-D, see Chan [7]. Since (V) (A4,, ® B,) = A,, ® (B,,),
it follows that

V(A ® By) = A ® cp(By).

Thus the preconditioned system becomes

(A ® cp(Bn)) YA, ® Bz = (A, @ cp(B)) ™',
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or

(I ®cr(B,) B,z = (A} @ ¢zt (Bn))b.

For general B, cr(B,) can be obtained in O(n?) operations and cg(B,,) 'y can be
obtained in O(n logn) operations for any vector y. By decomposing A,, into its LU factors

first, we can then generate the new right hand side vector
(An' ®cp' (Ba))b = (4, @ )(I ® cx' (Bn))b

in O(m3+m?2n+mnlogn+n?) operations. In each subsequent iteration, the matrix-vector
multiplication (I ® c¢x(B,) !By, )v can be done in O(mnlogn + mn?) operations.

When B, is a Hermitian positive definite Toeplitz matrix, cr(B,) can be obtained
in O(n) operation. Hence the initialization cost reduced to O(m?® + m?n + mnlogn).
Moreover, since the cost of multiplying B,y becomes O(nlogn), we see that the cost per

iteration decreases to O(mnlogn).

84 Convergence Rate.

In this section, we analyze the convergence rate of the preconditioned conjugate gra-

dient method when applied to solving some special block systems.

§4.1 Quadrantally Symmetric Block Toeplitz Matrices.

Let us consider the system T,,,x = b where T,,, is a quadrantally symmetric block

Toeplitz matrix given by (20). Let the entries of the block T;y be denoted by tz(,z) = tfilql’

for 1 < p,qg < n,0 <7 < m. We assume that the generating sequence t,(gj ) of Tonn 18

absolutely summable, i.e.

ii|t§j)|§K<oo.

7=0 k=0
In order to analyze the distribution of the eigenvalues of T}, — cg) (Tynn), we need to
introduce Strang’s circulant preconditioner. For each T{;), Strang’s preconditioner s (7))

is defined to be the circulant matrix obtained by copying the central diagonals of T}y and
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bringing them around to complete the circulant. More precisely, the entries sz(fq) = sf; ) d

of sp(T};)) are given by

(4
L ()
t ., r<k<n.
Here for simplicity, we have assumed that n = 2r. Define
sF(T(0)) sp(Twy) - sF(T(m-1))
sr(T(1)) sr(Twy)  + sF(Tim-2))
(1)( Tn) = :() .‘() } (: ) ‘ (22)
$F(Tim-1)) SF(Tm-2y) -+  sr(T(0))

We prove below that the matrices A )( Tinn) and sg,l)(Tmn) are asymptotically the same.

Lemma 5. Let T,,, be given by (20) with an absolutely summable generating sequence.
Then for all m > 0,

Jim (155 (Tonn) = e (Toun) |1 = 0.

Proof. Let By, = 8%1)( Tonn) — c%l)(Tmn). By (17) and (22), we see that the block By

of By are given by sp(T(;)) — cr(T(;)). Hence by (2) and (21) they are circulant with

entries bz(,],;,) = bg )_q| given by
koG _ L0
. _(t —t — ) OSkST,
plid — ) n k n—k
¥ n—k o .0
T(tn—k_tk ) r<k<n.
Thus
m—1n—1 m—1 r m—1 n-—1
||an||1<zz||B<g>||1<222|b“>|<4 |t‘”|+42 S )
7=0 k=0 jOkl 7=0 k=r+1

For all € > 0, since the generating sequence is absolutely summable, we can always find

an N1 > 0 and an Ny > 2Ny, such that

0o o) oo Ni
Z Z |t§cj)|<€ and ZZk|t<J)|<6.
j=0 k=N, 2 j=0k=1

Thus for all n > N»,

co N ] oo r ] oo oo ]
HanrlléNiZZZku,?)HzxZ S 44y Y ) <12e .

=0 k=1 =0 k=N;+1 =0 k=r+1
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In view of Lemma 5 and the following equality

we see that the spectra of T, — c%l)

(Tynn) and Ty — 3%1)(Tmn) are asymptotically the
same. However, it is easier to obtain spectral information about the second matrix as the

following Lemma, shows.

Lemma 6. Let T,,, be given by (20) with an absolutely summable generating sequence.

Then for all € > 0, there exists an N3 > 0, such that for all n > N3 and for all m > 0,
Sg)(Tmn) —Tn = Wr(nl\rig) + Ur(n]\r[as)a

where ||W,Sf¥f)||1 <eand mnk(UTSﬁf)) < 2N3m.

Proof. Define W,,,, = 3%1)(Tmn) — Tyun- It is clear from (21) that its blocks Wi =

sr(T(;)) — T;) are symmetric Toeplitz matrices with entries wz(,zl) = wl(; )_q| given by

() 0 0<k<r,
w = . .
¥ 19—t r<k<n,

For all € > 0, since the generating sequence is absolutely summable, there exists an N3 > 0,

such that 3522 707 v |t,(€j)| < e. Corresponding to this N3, we define, for each block W/;,

the n-by-n matrix

(Ns) W(') 0
W(j) _[ oj 0l

where W(j) is the (n — N3)-by-(n — N3) principal submatrix of W(;y. Clearly, each W(j)

is a Toeplitz matrix. Let U((g"‘) =Wy — W((j];[?') for all . We note that U((g"‘) is nonzero

only in the last N3 rows and N3 columns, therefore rank(U((;;fB)) < 2N3.
et (Ns) (N3) (N3)
W((g)v ) W((lz)v _— W((%l)
3 3 3
wao = | Yo Wt Weay | (23)

(Ns) (Na) (N)
Wiy Winls W)



20 A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS

and
(N3) (Ns) . (Ns)
U((% ) U((lza ) U({}@_)l)
g | Yoo Yo o Uy
(N3) Ny (V)
Um=1) Um—ay - U

Then 3%1)(Tmn) — Ton = WTSI]XS) + UTS%"‘). Since each block U((;;IB) in UTS%"‘) is an n-by-n
matrix where the leading (n — N3)-by-(n — N3) principal submatrix is a zero matrix, it is

easy to see that rank(UT(nATff)) < 2N3m = O(m). For Wil we have by (23)

m—1 m—1
N )
WS <2 > (Wl =237 Wl
j=0 5=0

m—1n—N3—1 ] m—1n—N3—1 ) )
=23 > =23 3 -t
7=0 k=r+1 7=0 k=r+1
m—1n—N3—1 ) o] o) )
<23 > w2y > i<z, g
7=0 k=N3+1 j=0k=N3

Let N = max{N, N3}, where Ny and Nj are given in the proofs of Lemmas 5 and 6.

Then for all n > N and m > 0, we have
Ton — ¢ (Toun) = My, + Logm) »
where My, = 853 (Toun) — €9 (Tonn) + Wi with || Myl < & and Loy = Uty with
rank (Lo(m)) = O(m). Since M,,,, is symmetric, we have
[Mannllz < (1Ml |11 Mo o0)F = [ Minll1 <€ -
By using Cauchy’s Interlace Theorem, we then have the following Theorem.

Theorem 4. Let T)y,, be given by (20) with an absolutely summable generating sequence.
Then for all € > 0, there exists an N > 0 such that for alln > N and oll m > 0, at most
O(m) eigenvalues of c%l)(Tmn) — Tyun have absolute values exceeding €.
If T,,,, is positive definite with the smallest eigenvalue A\ pin(ZTyn,) > 6 > 0, where §
&)

is independent of m and n, then by Theorem 1 (iv), Amin (cF (Tmn)) > 6 > 0. Hence

I (cg)(Tmn))_lng is uniformly bounded. By noting that

-1

(e (Tonn)) ™ Ton =1 = (e (Tonn)) ™ (€ (Trun) = Ton).

we then have the following immediate Corollary.
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Corollary 1. Let T,,, be given by (20) with an absolutely summable generating sequence.
If T, are positive definite for all m and n and that Apin(Tinn) > 6 > 0, then for alle > 0,

there exists an N > 0, such that for all n > N and all m > 0, at most O(m) eigenvalues

of (¢ (Toun))

_1Tmn — I have absolute value large than €.

As a consequence, the spectrum of (cg) (Tmn)) _len is clustered around 1 except for
at most O(m) outlying eigenvalues. When the preconditioned conjugate gradient method
is applied to solving the system T,,,,z = b, Corollary 1 shows that the number of iterations
will grow at most like O(m). We recall that in §3.2, the algorithm requires O(mn logn) op-
erations in the initialization step and O(mn log® m+mn logn) operations in each iteration.
Thus the total complexity of the algorithm is bounded above by O(m?n log® m+m?2n log n).

We emphasize that for the quadrantally symmetric block Toeplitz systems we tested
in §5, the number of iterations is independent of m and n and the complexity of the
method is therefore of O(nm log? m + nmlogn).

We remark again that when m > n, one should consider using the preconditioner
Eg)(Tmn) instead. Then by repeating the whole argument we used, we can show that
the preconditioned conjugate gradient method will converge in at most O(n) steps for m
sufficiently large. Hence the total complexity of the algorithm in this case is bounded
above by O(n?mlog®n + n?mlogm).

Before we close this subsection, we would like to point out that for quadrantally
symmetric block Toeplitz matrix T;,,, we can define, analogous to E%})(Tmn), the matrix
§g)(Tmn) as follows:

S (Tyn) = P*sW(PT,,,, P*)P,

where P is defined by (8). Then as in §2.3, we can further define the doubly circulant block
preconditioner 55,1) os%l) (Tinn)- As remarked after the proof of Theorem 3, 55,1) os%l) (Tinn) 18
the approximation of T},,,, in two directions. Therefore it will not be a good preconditioner
compared to either 5%1) (Tynn) or, in view of Lemma 5, to 05:1) (Tynn)- We finally remark that

if instead of Strang’s circulant preconditioner, R. Chan’s preconditioner [6] is used in (22),
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then the corresponding doubly circulant block preconditioner is the block preconditioner

considered in Ku and Kuo [14].

§4.2 Separable Matrices.

Next we consider the system (A,, ® T),)z = b where T,, is a Toeplitz matrix with
generating function f, i.e. the diagonals of T, are given by the Fourier coefficients a;(f)

of f. More precisely, we have

(Tn)jk:a’j—k(f)a j,k:1,2,--- .

We assume that f is positive, 2m-periodic and continuous and denote T), by T,(f). For

such T),(f), we have the following result, see Chan and Yeung [4].

Lemma 7. Let f be a positive, 2w-periodic and continuous function. Then for all € > 0,
there exist N and M > 0, such that for all n > N, at most M eigenvalues of the matrices

cg (T (£)To(f) — I, have absolute values large than e.

Since the preconditioned matrix is given by

[Am @ e (To(H))] " (Am @ Tu(f)) = I ® [c' (Tu(H)) Tu(f)],

it is clear that the number of distinct eigenvalues of the preconditioned matrix is the same
as the number of distinct eigenvalues of ¢! (T (f))Tn(f). In view of Lemma 7, we then
see that for all ¢ > 0, there exist N, M > 0, such that for all n > N and all m > 0, at
most M distinct eigenvalues of the matrices {I,, ® [c}l (T (f))Tw(f)] } — I have absolute
values large than e. Thus the eigenvalues of the preconditioned matrix is clustered around
1 and hence the number of iterations required for convergence is a constant independent
of n and m. Recalling the operation count in §3.3, the total complexity of the algorithm

in this case is equal to O(m3 + nm? + mnlogn).

§5 Numerical Results.

In this section, we apply the preconditioned conjugate gradient method to the block

systems we considered in §4. The stopping criteria for the method is set at ||||:§ “2 <1077
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where 7}, is the residual vector at the kth iteration. The right hand side vector b is chosen

OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS

to be the vector of all ones and the zero vector is the initial guess.

§5.1 Quadrantally Symmetric Block Toeplitz Matrices.

We consider T, of the form given in (20) with the diagonals of the blocks T(;) being

given by tl(»j ). Four different generating sequences were tested. They are

The generating sequences (ii) and (iv) are absolutely summable while (i) and (iii) are not.
Tables 1 and 2 show the number of iterations required for convergence. In all cases, we see
that as m = n increases, the number of iterations remains roughly a constant or increases

very slowly for the preconditioned system with preconditioner c%) (T'nn) while it increases

40 _ L

CT G D+ e

() _ 1 - -
WS G g 720 1= 0L
19— !

@D (DY

; 1
tE]) _

(7 + 1>+ (i + 1>

with other choices of preconditioners.

= §>0,i=0+1,+2 .

§>0,i=0+1,+2 .

§>0,i=0,+1,42, .- .

Sequence (i) Sequence (ii)
n=m | mn None c%l) (Tonn) cg)F (Tynn) | None c%l) (Tonn) cg)F (Tonn)
8 64 20 6 12 19 5 12

16 256 35 6 18 32 6 17
32 1024 43 6 21 41 6 20
64 4096 51 7 25 47 7 22
128 16384 54 7 26 50 7 24

Table 1. Preconditioners Used and the Number of Iterations
Sequence (iii) Sequence (iv)
n=m | mn None c}” (Tonn) cg)F (Tynn) | None c}” (Tonn) cg?F (Tonn)
8 64 18 7 16 14 7 12
16 256 40 8 30 22 8 20
32 1024 63 9 49 30 9 26
64 4096 101 11 80 36 9 33
128 16384 144 12 123 42 8 38
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Table 2. Preconditioners Used and the Number of Iterations

§5.2 Separable Matrices.

We consider the separable block Toeplitz system (Tm ®T,)x = b where the diagonals
of T, and T, are given by ; = (Ji| + 1)~ and t; = (]j| + 1)~ respectively for i, =
0,+1,+2,---. We note that T,, ® T, is also a quadrantally symmetric block Toeplitz

matrix with the generating sequence given by

(i) 1 ) .
t) = — . , >0, j=0,41,£2,---.
7T G+ D+ ) J

The preconditioner cg,l)(ffm ® T,,) is given by T ® cp(T,). Table 3 shows the number
of iterations required for convergence. We notice that as n = m increases, the number
of iterations stays almost the same for the preconditioned system with preconditioner
cg)(fm ® T,,) while it increases with other choices of preconditioners. We remark that
since T,,, is a Toeplitz matrix, its inverse can be obtained in O(m log? m). Hence the total

complexity of the algorithm is reduced to O(mmn log? m 4+ mnlogn).

n=m mn None cr (T Th) ® cr(Ty) T, I, T ® cr(Ty)
8 64 20 7 5 4
16 256 34 9 10 4
32 1024 48 9 14 5
64 4096 57 10 18 5
128 16384 67 11 20 5

Table 3. Preconditioners Used and the Number of Iterations



A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS 25
Acknowledgement.

This research was initiated by Professor Tony F. Chan during his visit at the Uni-
versity of Hong Kong in December 1990. We would like to thank him for his very helpful

suggestions and guidance in the preparation of this paper.



26 A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS
References.

[1] G. Ammar and W. Gragg, Implementation and Use of the Generalized Schur Algo-
rithm, in Computational and Combinatorial Methods in Systems, C. Byrnes and A.
Lindquist, eds., North—Holland, Amsterdam, 1986, pp. 265—280.

[2] R. Chan and G. Strang, Toeplitz Equations by Conjugate Gradients with Circulant
Preconditioner, SIAM J. Sci. Statist. Comput., V10 (1989), pp. 104-119.

[3] R. Chan, X. Jin and M. Yeung, The Circulant Operator in the Banach Algebra of
Matrices, Linear Algabra Appls., V149 (1991), pp. 41-53.

[4] R. Chan and M. Yeung, Circulant Preconditioners for Toeplitz Matrices with Positive
Continuous Generating Functions, Math. Comput., to appear.

[5] R. Chan and M. Yeung, Circulant Preconditioners Constructed from Kernels, SIAM
J. Numer. Anal., to appear.

[6] R. Chan, Circulant Preconditioners for Hermitian Toeplitz Systems, SIAM J. Matrix
Anal. Appl., V10 (1989), pp. 542-550.

[7] R. Chan, Numercal Solutions for the Inverse Heat Problems in RY, The SEAMS Bull.
Math., to appear.

[8] R. Chan and T. Chan, Circulant Preconditioners for Elliptic Problems, J. Numerical
Linear Algebra with Applications, to appear.

[9] T. Chan, An Optimal Circulant Preconditioner for Toeplitz Systems, SIAM J. Sci.
Statist. Comput., V9 (1988), pp. 766-771.

[10] T. Chan and J. Olkin, Preconditioners for Toeplitz-Block Matrices, in the Second

SIAM Conference on Linear Algebra in Signals, Systems, and Control, San Francisco,

California, 1990.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

A FAMILY OF BLOCK PRECONDITIONERS FOR BLOCK SYSTEMS 27

P. Davis, Circulant Matrices, John Wiley & Sons, Inc., New York, 1979.

G. Golub and C. van Loan, Matriz Computations, 2nd edition, Johns Hopkins Univ.

Press, Baltimore, 1989.

T. Huckle, Circulant/Skewcirculant Matrices as Preconditioners for Hermitiatian Toe-
plitz Systems, in Cooper Mountain Conference on Iterative Methods, Cooper Moun-

tain, Colorado, 1990.

T. Ku and C. Kuo, On the Spectrum of a Family of Preconditioned Block Toeplitz
Matrices, USC-SIPI Report #164, Signal and Image Processing Institute, Univ. of

Southern California, 1990.

J. Olkin, Linear and Nonlinear Deconvolution Problems, Ph.D. thesis, Rice University,

Houston, Texas. 1986.

G. Strang, A Proposal for Toeplitz Matriz Calculations, Stud. Appl. Math., V74

(1986), pp. 171-176.

R. Thompson, Principal Submatrices IX: Interlacing Inequalities for Singular Values

of Submatrices, Linear Algabra Appls., V5 (1972), pp. 1-12.



