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Abstract

In this paper, we propose a new family of circulant preconditioners for ill-conditioned
Hermitian Toeplitz systems Ax = b. The preconditioners are constructed by con-
volving the generating function f of A with the generalized Jackson kernels. For an
n-by-n Toeplitz matrix A, the construction of the preconditioners only requires the
entries of A and does not require the explicit knowledge of f. When f is a nonnegative
continuous function with a zero of order 2p, the condition number of A is known to
grow as O(n??). We show however that our preconditioner is positive definite and the
spectrum of the preconditioned matrix is uniformly bounded except for at most 2p+1
outliers. Moreover the smallest eigenvalue is uniformly bounded away from zero.
Hence the conjugate gradient method, when applied to solving the preconditioned
system, converges linearly. The total complexity of solving the system is therefore of
O(nlogn) operations. In the case when f is positive, we show that the convergence is
superlinear. Numerical results are included to illustrate the effectiveness of our new
circulant preconditioners.

Key Words. Toeplitz systems, circulant preconditioner, kernel functions, preconditioned
conjugate gradient method
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1 Introduction

An n-by-n matrix A, with entries a;; is said to be Toeplitz if a;; = a;_;. Toeplitz systems
of the form A,x = b occur in a variety of applications in mathematics and engineering
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[7]. In this paper, we consider the solution of Hermitian positive definite Toeplitz systems.
There are a number of specialized fast direct methods for solving such systems in O(n?)
operations, see for instance [22]. Faster methods requiring O(nlog®n) operations have
also been developed, see [1].

Strang in [21] proposed using the preconditioned conjugate gradient method with cir-
culant matrices as preconditioners for solving Toeplitz systems. The number of operations
per iteration is of order O(nlogn) as circulant systems can be solved efficiently by fast
Fourier transforms. Several successful circulant preconditioners have been introduced and
analyzed; see for instance [11, 5]. In these papers, the given Toeplitz matrix A,, is assumed
to be generated by a generating function f, i.e., the diagonals a; of A, are given by the
Fourier coefficients of f. It was shown that if f is a positive function in the Wiener class
(i.e., the Fourier coefficients of f are absolutely summable), then these circulant precon-
ditioned systems converge superlinearly [5]. However, if f has zeros, the corresponding
Toeplitz systems will be ill-conditioned. In fact, for the Toeplitz matrices generated by a
function with a zero of order 2p, their condition numbers grow like O(n?), see [19]. Hence
the number of iterations required for convergence will increase like O(nP), see [2, p.24].
Tyrtyshnikov [23] has proved that the Strang [21] and the T. Chan [11] preconditioners
both fail in this case.

To tackle this problem, non-circulant type preconditioners have been proposed, see
[6, 4, 18, 16]. The basic idea behind these preconditioners is to find a function g that
matches the zeros of f. Then the preconditioners are constructed based on the function
g. These approaches work when the generating function f is given explicitly, i.e., all
Fourier coefficients {a; }?‘;_oo of f are available. However, when we are given only a finite
n-by-n Toeplitz system, i.e., only {a;}|j <, are given and the underlying f is unknown,
then these preconditioners cannot be constructed. In contrast, most well-known circulant
preconditioners, such as the Strang and the T. Chan preconditioners, are defined using only
the entries of the given Toeplitz matrix. Di Benedetto in [3] has proved that the condition
numbers of the preconditioned matrices by sine transform preconditioners are uniformly
bounded. However, the preconditioners themselves may be singular or indefinite in general.
Our aim in this paper is to develop a family of positive definite circulant preconditioners
that work for ill-conditioned Toeplitz systems and do not require the explicit knowledge
of f, i.e., they require only {a;};<, for an n-by-n Toeplitz system.

Our idea is based on the unified approach proposed in Chan and Yeung [9], where
they showed that circulant preconditioners can be derived in general by convolving the
generating function f with some kernels. For instance, convolving f with the Dirichlet
kernel D), ;| gives the Strang preconditioner. They proved that for any positive 27-
periodic continuous function f, if C, is a kernel such that the convolution product C, * f
tends to f uniformly on [—m, 7], then the corresponding circulant preconditioned matrix
C 1A, will have clustered spectrum. In particular, the conjugate gradient method will
converge superlinearly when solving the preconditioned system. This result turns the
problem of finding a good preconditioner to the problem of approximating f with C, * f.
Notice that D, /| * f, being the partial sum of f, depends solely on the first [n/2]



Fourier coefficients {a;}jj<|n/2) of f. Thus the Strang preconditioner, and similarly for
other circulant preconditioners constructed through kernels, does not require the explicitly
knowledge of f.

In this paper, we construct our preconditioners by approximating f with the convolu-
tion product Ky, 2, * f that matches the zeros of f and depends only on {a;} jj<,. Here
K 2r is chosen to be the generalized Jackson kernels, see [15]. Since ICyy 2, are positive
kernels, our preconditioners are positive definite for all n. In comparison, the Dirichlet
kernel D,, is not positive and hence the Strang preconditioner is indefinite in general. We
will prove that if f has a zero of order 2p, then Ky, 9, * f matches the zero of f when
r > p. Using this result, we can show that the spectra of the circulant preconditioned
matrices are uniformly bounded except for at most 2p + 1 outliers, and that their smallest
eigenvalues are bounded uniformly away from zero. It follows that the conjugate gradient
method, when applied to solving these circulant preconditioned systems, will converge
linearly. Since the cost per iteration is O(nlogn) operations, see [7], the total complexity
of solving these ill-conditioned Toeplitz systems is of O(nlogn) operations. In the case
when f is positive, we show that the spectra of the preconditioned matrices are clustered
around 1 and thus the method converges superlinearly. The case where f has multiple
zeros is more involved and will be considered in a future paper.

This paper is an expanded version of the proceedings paper [10] where some of the
preliminary results were reported. Recently Potts and Steidl [17] have proposed skew-
circulant preconditioners for ill-conditioned Toeplitz systems. Their idea is also to use
convolution products that match the zeros of f to construct the preconditioners. In par-
ticular, they have used the generalized Jackson kernels and the B-spline kernels proposed in
[8] in their construction. However, in order to construct the {w}-circulant preconditioners,
the position of the zeros of f is required which in general may not be readily available. In
contrast, our circulant preconditioners can be constructed without any explicit knowledge
of the zeros of f.

The outline of the paper is as follows. In §2, we give an efficient method for computing
the eigenvalues of the preconditioners. In §3 we show that KCy, 2, * f matches the zeros of f.
We then analyze the spectrum of the preconditioned matrices in §4. Numerical results are
given in §5 to illustrate the effectiveness of our preconditioners in solving ill-conditioned
Toeplitz systems. Concluding remarks are given in §6.

2 Construction of Circulant Preconditioners

Let Co,; be the space of all 2w-periodic continuous real-valued functions. The Fourier
coefficients of a function f in Cy; are given by

1 (" ,
ar = o f@)e * dg,  k=0,+1,42,---.

Clearly a, = a_j, for all k. Let A,[f] be the n-by-n Hermitian Toeplitz matrix with the
(i, j)th entry given by a;_;, i,5 =0,...,n — 1. We will use CJ_ to denote the space of all



nonnegative functions in Co,; which are not identically zero. We remark that the Toeplitz
matrices A,[f] generated by f € Cj_ are positive definite for all n, see [6, Lemma 1].
Conversely, if f € Cy, takes both positive and negative values, then A,[f] will be non-
definite. In this paper, we only consider f € Cj , i.e., A,[f] being positive definite
Hermitian Toeplitz matrices.

We say that 6y is a zero of f of order p if f(fp) = 0 and p is the smallest positive
integer such that f®)(6y) # 0 and f®+1)(6) is continuous in a neighborhood of ;. By
Taylor’s theorem,

F®)(6o)
p!
for all  in that neighborhood. Since f is nonnegative, f®)(6y) > 0 and p must be even.
We remark that the condition number of A, [f] generated by such an f grows like O(nP),
see [19]. In this paper, we will consider f having a single zero. The general case where f

has multiple zeros is more complicated and will be considered in a future paper.

The systems A,[f]x = b will be solved by the preconditioned conjugate gradient
method with circulant preconditioners. It is well known that all n-by-n circulant matrices
can be diagonalized by the n-by-n Fourier matrix Fj,, see [7]. Therefore, a circulant matrix
is uniquely determined by its set of eigenvalues. For a given function f, we define the
circulant preconditioner Cy,[f] to be the n-by-n circulant matrix with its j-th eigenvalue
given by

f(0) = (0 = 60)” + O((0 — 60)*")

el =1 (%), o<i<n, 0

We note that Cy,[f] = F,diag(Xo, A1,. .., An—1)Fn, see [7]. Hence the matrix-vector mul-
tiplication C, [f]v, which is required in each iteration of the preconditioned conjugate
gradient method, can be done in O(nlogn) operations by fast Fourier transforms. Clearly
if f is a positive function, then C,[f] is positive definite.

In the following, we will use the generalized Jackson kernel functions

- mb 2r
ICm,Q,«(H) o km,?r (Slfl( Z )) , r=1,2,... (2)
2

- m2r—1

to construct our circulant preconditioners. Here £, 2, is a normalization constant such

that flr Km2r(0)d0 = 1. 1t is known that &y, o, is bounded above and below by constants

independent of m, see [15, p.57] or (11) below. We note that ICp, 2(6) is the Fejér kernel.
For any m, the Fejér kernel K, 2(f) can be expressed as

m—1
Kna(0) = 3 b Deik?,
k=—m+1

where |k-|
b(m’Z) = m— 1% k=0,£1,£2,---, £ -1
k 2rm 0, ) ) ) (m )7



see for instance [9]. Note that [" K, 2(0)df = 27rb(()m’2) = 1. By (2), we see that I, 2,(6)
is the r-th power of Ky, 2(0) up to a scaling. Hence we have

r(m—1)
’Cm,Zr (0) = Z b]gm,Zr)eikG, (3)
k=—r(m—1)
where the coefficients b]gm,w) can be obtained by convolving the vector (b(ﬁ,ﬁl, R bgm’2),

b(maz)

b
[20, pp.294-296]. Thus the cost of computing the coefficients {b,gm’w)} for all |k| < r(m—1)
is of order O(rmlogm) operations. In order to guarantee that [ Ky, 2. (0)df = 1, we

) with itself for r — 1 times and this can be done by fast Fourier transforms, see

can normalize bgm’%) to 1/(2m) by dividing all coefficients b]gm,w) by 27rbgm’2T).
The convolution product of two arbitrary functions g = > 72 bpe*? and h =

> e cpe®® in Co, is defined as

' g(t)h(0 — t)dt = 27 i bere'™. (4)

k=—o00

gemo)= [

—T

When we are given an n-by-n Toeplitz matrix A,[f], our proposed circulant preconditioner
is Cp K 2r * f], where m = [n/r], ie.,

r(m—1) <n<rm. (5)

By (3) and (4), since f = 370 age™?, the convolution product of Ky, 9, * f is given by

r(m—1) n—1
(’Cm,2r * f)(Q) =27 Z akbl(cm,27")ezk0 _ Z dkezke, (6)
k=—r(m—1) k=—n+1

where

g L 2mab™0 k| < r(m - 1),
F 0, otherwise.

Clearly, KCpyor * f depends only on aj for |k| < n, ie., only on the entries of the
given n-by-n Toeplitz matrix A,[f]. Notice that by (1), to construct our preconditioner
Cn[KCm,2r * f], we only need the values of Iy, o, * f at 27mj/n for 0 < j < n. By (6), these
values can be obtained by taking one fast Fourier transform of length n. Thus the cost of
constructing Cy,[KCpp 2r * f] is of O(nlogn) operations.

We remark that the Strang [21] and the T. Chan circulant preconditioners [11] for
Ap[f] are just equal to Cp[D|y, o) * f] and Cy[Kp 2 * f] respectively where Dy, /9| is the
Dirichlet kernel and IC,, 2(6) is the Fejér kernel, see [9].



3 Properties of the Kernel £, ,

In this section, we study some properties of K, o, in order to see how good the approxima-
tion of f by KCp, 2, * f will be. These properties are useful in the analysis of our circulant
preconditioners in §4. First we claim that our preconditioners are positive definite.

Lemma 3.1 Let f € C§_. The preconditioner C,[Kpor * f] is positive definite for all
positive integers m, n and r.

Proof: By (2), Ky, 2r(6) is positive except at 0 = 2kw/m, k = £1,+2,...,+(n—1). Since
fe C;r is nonnegative and not identically zero, the function

™

(Km2r x f)(0) = K2 (t)f(0 —t)dt

-

is clearly positive for all § € [—m, 7]. Hence by (1), the preconditioners Cy,[ICp, 2, * f] are
positive definite.

In the following, we will use 6 to denote the function 6 defined on the whole real line R.
For clarity, we will use 2, to denote the periodic extension of 6 on [—m, 7], i.e. O9,(0) = 6
if = @ (mod 2r) and 0 € [—n, x1] (cf. Figure 1 below). It is clear that 9§£ € Cj. for any
integer p. We first show that KCy,; 2, * Ogg matches the order of the zero of 0§fr at 0 =0 if
r>p.

Lemma 3.2 Let p and r be positive integers with r > p. Then

T Cp.or
(Kimr #032) (0) = (i % 6%) (0) = | Kmr(0)dt = 22, (7)
where
2=t 2\ < < ozpt1 (MY 3
2 + 1 (E) = = (5) ' (8)

Proof: The first two equalities in (7) are trivial by the definition of 63,. For the last
equality, since 0/m < sin(#/2) < /2 on [0, 7], we have by (2)

Q 272" T in?" (ﬂt)
2 Y
Kmor()tPdt < T /0 t%?]f dt

—T

22p72r+27r2rkm,27 = sin?" u
= 2p 2r—2p du
m 0 (7
< 222 o (7r>27“ L gin?r u % gin?" u
— m2p 5 0 u2r—2p u+ 1 u2r—2p u
22p+2k TN 27 1 o0 1
m 0 1 (7
22p+3. T 27
< i m,2r (_) ) (9)
m=P 2

(=)



On the other hand, we also have

)dt

22r+1km,2r /7r Sian (mTt

™
]Cm72r (t)t2pdt t27‘*2p

—T

Y

m2r71

du

\Y

2242 or [ sin® u
m2p 0 u2r72p

22p+2km or (2 2r  p1 )
—) | — u pdu
e (2)

W2 o 2\
_ m,2r 4 ) 1
2p + Dm (w) (10)

\Y

By setting p = 0 in (9) and (10), we obtain

2\ 2" m T\ 2r
4 <_> km,?r <1l= Km,?r(t)dt <38 (_) km,?r-
s 2

1/2\% T\ 2"
—| — < < — .
8 <7r> < Ko < (2) (11)
8). [

Putting (11) back into (9) and (10), we then have
We remark that using the same arguments as in (10), we can show that

Thus

—_ =

(K2 6%)(0) > O (i) L W, (12)

m
i.e., the T. Chan preconditioner does not match the order of the zeros of §?? at § = 0
when p > 1. We will see in §5 that the T. Chan preconditioner does not work for Toeplitz
matrices generated by functions with zeros of order greater than or equal to 2.

Next we estimate (ICp, o * 9;?)(@ for ¢ # 0. In order to do so, we first have to replace
the function 9§£ in the convolution product by 6?7 defined on R.

Lemma 3.3 Let p be a positive integer. Then

2
P < [’Cm,2r + 0% (0 + 27")2])] @) < (5_7r> p’ Vo € [, _z]a (13)
(K ar 022 (4) ? :
2
1< (’Cm,2r * 0 p) (¢) < 32p, V¢ c [_g, g], (14)

(i +02) (9

and

i ¢ (nar £ 020207 () _ (5_7r> vpe [l
(’Cm,Qr * 922) (¢)



Proof: To prove (13), we first claim that

" < (‘ﬁ_t)i;(‘f;;; —07 (%”)21), vie[-m ], € [-m~5].  (16)
By the definition of (¢ — )32, we have (see Figure 1)
(¢ —t)*(p+2m — )% _ { (¢ +2m—1)%, te[-m¢+r],
(¢—t)2 T (p—t)%, t € [p+m, 7.
For t € [-m,¢ + 7] and ¢ € [—m, —7/2], we have
P = (p+ 21 — (p+ 7)) < (p+2m — 1) < (¢ +3m)% < <5§>2p'

For t € [¢p + m, 7] and ¢ € [—m, —7/2], we have
T = (¢~ (¢p+m)* < (p— 1) < (¢ —m) < (2m) .

Thus we have (16).
By (16), we see that

™

(K2 032) (4) = | Kunar()(6 — )30t

IN

S [ Kmar 00— 079+ 27 17
1

= (K20 * 0% (0 + 2m)%"] ().

2P

Similarly, we also have

(Icm,zr * 9§£> (¢) > < 2 >2p (K20 * 027 (0 + 27)%] ().

5m

Thus, we have (13).
To prove (14), we just note that

Vt € [-m, 7], ¢ € [—7/2,7/2].

As for (15), we have

o ($ 0P (P—2m )%
- (6 — )37

5\ 2P
§<7> , Vte[-mm],¢€[n/2,7].

With Lemmas 3.2 and 3.3, we show that KCp, 2, * 0§fr and 0§fr are essentially the same
away from the zero of 0§fr.



ol

Figure 1: The functions (¢ — )52, (¢ — ¢)% and (¢ + 21 — t)?2.

Theorem 3.4 Let p and r be positive integers with r > p and m = [n/r]|. Then there
exist positive numbers a and (B independent of n such that for all sufficiently large n,

(Kmzr = 622) (9)

2p
2T

a < <B, V<< (17)

313

Proof: We see from Lemma 3.3 that for different values of ¢, (KCp, 2, * Hgﬁ)(qb) can be
replaced by different functions. Hence, we proceed the proof for different ranges of values

of ¢.
We first consider ¢ € [r/n,n/2]. By the binomial expansion,
(Kmor x0%) (¢) = Kom,or (8) (¢ — t)?Pdt
™ 2p 2p
= m2r (t -k (—t)kat.
Km0 32 (V)74



For odd k, ["_ Km.ar(t)tkdt = 0. Thus

(Kmor % 0%) (¢) _ (Kmar *6%) (¢) _ i (2p> o / " Ko (1)2%.

2p 2p
27 ¢

By (7), we then have

(’Cm 2r * 0 p . Ck,2r 1
Z 2k ¢2km2k’ ( 8)
=0

QW

where by (8), cx,2, are bounded above and below by positive constants independent of m
for Kk =0,...p. Since by (5), n/r < mm/n < ¢m, we have

<p 20\ Cror <p r\2k (2p
02 <3 (o) ot <20 () (g )ovor

Thus by (18),

Coar < (’Cm 2r *92p zp:( ) ( )cmr‘

2W k=0

Hence by (14), (17) follows for ¢ € [7/n,7/2].
The case with ¢ € [—n/2, —7/n] is similar to the case where ¢ € [7/n,7/2].
Next we consider the case ¢ € [7/2, 7]. Note that

Konr #6720 —200%] () = [ Ko ()t — $)7(t — b+ 2m)Pdt

-7
™

= Kom,ar(t) (% (21 — )% + q(t)) dt

-

where
4p

at) = (£ = ) (t = §+2m)" — ¢ 21 — ) = gt/

j=1

is a degree 4p polynomial without the constant term. By (7), we have

—T

IS 2p
€252
Koo (Dat)t = 3 g 2521,
j=1
Thus by using the fact that [7 Ky, 2.dt = 1, we obtain

[Kmar + 6%(0 = 2m)%] (8) = 6% (2m — )% + Y @y 2 (19)

10



Since (m/2)% < qb%ﬁ for ¢ € [7/2, ], we have

[Icm,Qr * 0211 (9 - 271—)21)] (¢)

2p 2p
2p < (27 —9) ( > Z|Q2J|C2J,2r
2
3 2\ % 2p
< <7> +<;> ZI|QZj|02j,2ra (20)
]:

which is clearly bounded independent of n. For the lower bound, we use the fact that
72 > ¢F for ¢ € [r/2, 7] in (19), then we have

[Kum.or  027(0 — 2)2°] (¢)

N

2p C2j,2’f‘
2p > (¢—2m) E q2j m2i
2m
2P C24,2r
> + TS g 25—+ m2i (21)

Clearly for sufficiently large n (and hence large m), the last expression is bounded uni-
formly from below say by 72?/2. Combining (20), (21) and (15), we see that (17) holds
for ¢ € [7/2, 7] and for n sufficiently large.

The case where ¢ € [—m, —7 /2] can be proved in a similar way as above.

Using the fact that

Ko % 0 =D2) D) = [ Komar () -y — )2t

—T
= (Kmar * 955?)((75 —),
we obtain the following corollary which deals with functions having a zero at vy # 0.
Corollary 3.5 Let v € [—m,w], p and r be positive integers with v > p and m = [n/r].

Then there exist positive numbers a and (3, independent of n, such that for all sufficiently
large n,

[Canoe (6= 7)3] (4)
(¢ =730

Now we can extend the results in Theorem 3.4 to any functions in C27T with a single
zero of order 2p.

a<

< B, V%SW—ﬂSm

Theorem 3.6 Let f € C;’W and have a zero of order 2p at vy € [—m,]. Let r > p be any
integer and m = [n/r]. Then there exist positive numbers « and (3, independent of n,
such that for all sufficiently large n,

< (Km2r * [) ()

TSP Ypsl-asw

11



Proof: By the definition of zeros (see §2), f(#) = (0—’)/)%1;9(9) for some positive continuous
function ¢(@) on [—m, w]. Write

Ko s (@) [Kmar 0= 0290] () [Kmarx 0-13] (9

O (ke 0-2]@ G- 9(9)’

Clearly the last factor is uniformly bounded above and below by positive constants. By
Corollary 3.5, the same holds for the second factor when 7/n < |¢ —y| < 7. As for the
first factor, by the Mean Value Theorem for integrals, there exists a ( € [—m, 7] such that

Koz + (0 —7)32g(0))() = (O [Kmzr * (0 — 7)32] ().

Hence

Koo % (0 =)329(6)] (9)
[Knar (6= )32] (9)

where gmin and gmax are the minimum and maximum of g respectively. Thus the theorem
follows.

0 < gmin < < Gmax; V¢ € [_7Ta '/T]a

So far we have considered only the interval 7/n < |¢p —y| < 7. For |¢p — v| < 7/n, we
now show that the convolution product K, 2, * f matches the order of the zero of f at
the zero of f.

Theorem 3.7 Let f € C;T and have a zero of order 2p at vy € [—m,]. Let r > p be any
integer and m = [n/r|. Then for any |¢ — | < 7/n, we have

Kmar 1) (6= 0 (5.

n2p

Proof: We first prove the theorem for the function f(0) = 03? By the binomial theorem,

™

(Kim,2r ¥ 0%) (¢) = Km.or (£) (¢ — )%t

—T

- 2
= Kom,2r (t) ij (%’) @I (—t) dt.

—n o\ J

Since [ K or(t)t?dt = 0 for odd j, we have for |¢| < m/n,

p
(Kimor x 07) (9) = Kmn2r(®) (2];) @27 dt (22)
. par
P 2p—2j [T ,
£ (3) (07 [ oo
j=0 \E T -

12



By (7), (8) and (5), we then have

1 < [/2p 1
(ICm,Qr * 02p) (¢) < 3 ZO (2j>7«2y 2p— 2JCJ 9 = O ( 2p>

7=

Hence by (14), (}Cm’gr * 0;51) (¢) < O(1/n?!). On the other hand, from (22), (8) and (5),

we have

2p 2
- m=P n<p

(Kmor % 0%P) () > Kom.or ()% dt = 2r _ <L> -

Hence by (14) again, (’Cm,gr * 9§£> (#) > O(1/n?). Thus the theorem holds for f(f) =

2p
05

In the general case where f(6) = (0 — 7)27rg(0) for some positive function g € Cyy, by
the Mean Value Theorem for integrals, there exists a { € [—m, 7] such that

(Kimzr % £)(@) = [Kmr % (0 — 7)329(0)](¢)
= g(OKmar * (0 —7)32D) = g(C) (Km2r * 052) (¢ — ).

Hence

Genin - (Kimar % 022) (6 — ) < (Kmzr % £)(9) < gimax - (Konzr * 022)(¢p — )

for all ¢ € [—m, 7]. Here gmin and gmax are the minimum and maximum of g respectively.
From the first part of the proof, we already see that (ICp, o, * 9;?)(¢ — ) is of O (1/n?P)
for all |¢ — | < m/n, hence the theorem follows.

4 Spectral Properties of the Preconditioned Matrices

4.1 Functions with a Zero

In this subsection, we analyze the spectra of the preconditioned matrices when the gener-
ating function has a zero. We will need the following lemma.

Lemma 4.1 [/, 16] Let f € C;_. Then A,[f] is positive definite for all n. Moreover if
gec C;ﬂ is such that 0 < a < f/g < 8 for some constants « and (3, then for all n,

x* Ay [f]x
a < m <5, Vx # 0.

Next, we have our first main theorem which states that the spectra of the precondi-
tioned matrices are essentially bounded.
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Theorem 4.2 Let f € CJ_ and have a zero of order 2p aty. Let v > p and m = [n/r].
Then there exist positive numbers a < 3, independent of n, such that for all sufficiently
large n, at most 2p + 1 eigenvalues of C,, K or * flAn[f] are outside the interval [, ).

Proof: For any function g € Cayr, we let Cy[g] to be the n-by-n circulant matrix with the
j-th eigenvalue given by

\(Calg) =4 " ”2 (23)
)
g (T)’ otherwise,

for j = 0,...,n — 1. Since there is at most one j such that |27j/n — v| < ©/n, by (1),
Chlg] — Chlg] is a matrix of rank at most 1.

By assumption, f(8) = sin?’((6 — y)/2)g(#) for some positive function g in Co,. We
use the following decomposition of the Rayleigh quotient to prove the theorem:

xAulflx Aulflx X [sin® (#52) | x
x*Cp[KCm2r * f]x B [s1n2p (T'yﬂ X X*C [sian (9_T'Y>] X
Gl (Dx o
x*Ci[f]x ' x*ColKmor # f1x

‘X Cn[’Cm,2r * f]X
x*Cn[lCm,z,« * f]x

(24)

We remark that by Lemma 4.1 and the definitions (1) and (23), all matrices in the factors
in the right hand side of (24) are positive definite.

As g is a positive function in Co,, by Lemma 4.1, the first factor in the right hand
side of (24) is uniformly bounded above and below. Similarly, by (23), the third factor is
also uniformly bounded. The eigenvalues of the two circulant matrices in the fourth factor
differ only when |27j/n — | > n/n. But by Theorem 3.6, the ratios of these eigenvalues
are all uniformly bounded when n is large. The eigenvalues of the two circulant matrices
in the last factor differ only when |27j/n — v| < ©/n. But by Theorem 3.7, their ratios
are also uniformly bounded.

It remains to handle the second factor. Define sg,(0) = sin? (1

—71), we have
1 1

. . 1 L
2p( 2 176—19+1_ Ee—wezﬂ)p

52(6) = 21 1= cos(0 — )P =

i.e., s9p(0) is a p- th degree trigonometric polynomial in §. Recall that for any function
h(0) = 3272 bjeV 9 the convolution product of the Dirichlet kernel D, with A is just

equal to the nth partlal sum of h, i.e., (D, x h)(0) = Z]__nb €% Hence for n > 2p,
(DLn/QJ * 32p(0))(¢) = Sgp(¢) for all ¢ € [—’/T,?T].

14



Since Cp[D|y,/2) * s2p(0)] is the Strang preconditioner for Ay,[s2,(0)], see [9], Cy[s2,(0)]
will be the Strang preconditioner for A, [sg,(6)] when n > 2p. As s9,(0) is a p-th degree
trigonometric polynomial, A, [s9,(0)] is a band Toeplitz matrix with half bandwidth p+1.
Therefore when n > 2p, by the definition of the Strang preconditioner,

0 0 R,
Cn [529(0)] = An [s2p(0)] + | 0 0 0 1, (25)
R, 0 0

where R, is a p-by-p matrix, see [21]. Thus A,[s2,(0)] = Cy[s2p(0)] + R, where the n-by-n
matrix R, is of rank at most 2p + 1.
Putting this back into the numerator of the second factor in (24), we have

x*An[f]x
x*Cp[KCm2r * f]x
XAn[flx X Calsgp(@)]x  x*Culflx  x*CulKmor * fIx
x*An[sp@)]x  xCulflx % Culmar * flx X" CalKomzr * I
x*A,[f]x x*R,x
x* A [52p(0)] % x*Co[Kom 20 * fI%

Notice that for all sufficiently large n, except for the last factor, all factors above are
uniformly bounded below and above by positive constants. We thus have

x*R,x

X*Cn [’Cm,ZT * f]X’

X An[f]x = ax x) -
x*Cp[Km2r * flx = a(x) + f(x)

Vx #0
when n large, where
0 < amin < a(x) < Omax < 00, 0< ﬁmin < /B(x) < ﬁmax < 0.

Hence for large n,

x* (An [f] — ﬁmaan)x
X*Cn [’Cm,2r * f]x

< Omax, Vx # 0.

If R, has ¢ positive eigenvalues, then by Wey!l’s theorem [13, p.184], at most ¢ eigenvalues
of Cp K 2r * 171 A,[f] are larger than aupax. By using a similar argument, we can prove
that at most 2p + 1 — q eigenvalues of Cp, [ 2r * f]7 1 An[f] are less than amin. Hence the
theorem follows.

Finally we prove that all the eigenvalues of the preconditioned matrices are bounded
from below by a positive constant independent of n. Hence the computational cost for
solving this class of n-by-n Toeplitz systems will be of O(nlogn) operations.
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Theorem 4.3 Let f € CJ_ and have a zero of order 2p aty. Let v > p and m = [n/r].
Then there exists a positive constant ¢ independent of n, such that for all n sufficiently
large, all eigenvalues of the preconditioned matriz Cgl[lCm,Q,« x flAn[f] are larger than c.

Proof: In view of the proof of Theorem 4.2, it suffices to get a lower bound of the
second Rayleigh quotient in the right hand side of (24). Equivalently, we have to get
an upper bound of p(A; ! [s9,(0)] Cy, [s25(0)]), where p(-) denotes the spectral radius and
s9,(0) = sin?? (%)

We note that by the definition (23), Cy, [s2,(0)] = Cy, [s25(0)] + E.,, where E,, is either

the zero matrix or is given by

. 1e 1 277
Fndlag<"',0,m—82p (%)Jh) Fy

for some j such that |27j/n — 7| < m/n. Thus ||E,||2 = O(1/n?).
By Lemma 4.1, A, [s9,(0)] is positive definite. Thus the matrix

Ay [52(6)] G [525(6)]
is similar to the symmetric matrix
AV [525(8)] Cr [s2p (0)] A /2 [525(6)] -
Hence we have

p (A7 [s2p(0)) G [sw)])

= (A7 52 (0)] Co 52 (0)] A7 /2 [s25(0)])
< p (A2 [52p(0)) Co [32p(0)] A5, /2 [5(0)))
o (4712 [s) (0>1EA1/2 e)
< p (A, 52 (0)] Cu [s2 (0) + ]| 4. [52p O]l I Bl (26)

Here p(+) is the spectral radius of a matrix. By [6, Theorem 1], we have HA,_L1 [32,](0)]“2 =
O(n?"). Hence the last term in (26) is of O(1).

It remains to estimate the first term in (26). According to (25), we partition A, [s9,(6)]
as

Agl [32;0(9)]: Bi, Bz Ba3

Bis Bj; Bss

Bi1 Bis 313]

16



where By, and Bss are p-by-p matrices. Then by (25),

Bi3R; 0 BuR,
p (A7 [s2(0)] Culs2p(0)]) < 1+4p| | BusR, 0 BiR,
B3R, 0 B4R,

BisR* Bi1R
= 1+ b P ]), 27
P (|: B33Rp BISRP ( )

where the last equality follows because the 3-by-3 block matrix in the equation has vanish-
ing central column blocks. In [3, Theorem 4.3], it has been shown that R,, Bi1, Bi3 and
Bss all have bounded ¢;-norms and /.,-norms. Hence using the fact that p(-) < || - |2 <
{1 1]l - lloo /2, we see that (27) is bounded and the theorem follows.

By combining Theorems 4.2 and 4.3, the number of preconditioned conjugate gradient
(PCQG) iterations required for convergence is of O(1), see [3]. Since each PCG iteration
requires O(nlogn) operations (see [7]) and so is the construction of the preconditioner
(see §2), the total complexity of the PCG method for solving Toeplitz systems generated
by f € C4._ is of O(nlogn) operations.

4.2 Positive Functions

In this subsection, we consider the case where the generating function is strictly positive.
We note that the spectrum of A,[f] is contained in [fuin, fmax|, Where fmin and frax
are the minimum and maximum values of f, see [6, Lemma 1]. Since fmin > 0, Ap[f]
is well-conditioned. In [9], it was shown that for such f, the spectrum of C; [k, *
f1An[f] is clustered around 1 and the PCG method converges superlinearly. Recall that
Cn[KCp2 * f] is just the T. Chan circulant preconditioner. In the following, we generalize
this result to other generalized Jackson kernels. First, it is easy to show that 0 < fmin <
(Km.2r * f) (#) < fmax- Thus the whole spectrum of C;, }[KCp2r * f]An[f] is contained in
[fmin/ fmaxs fmax/fmin], 1-€. the preconditioned system is also well-conditioned. We now
show that its spectrum is clustered around 1.

Theorem 4.4 Let f € Car be positive. Then the spectrum of Cp ' [Kmar * flAn[f] is
clustered around 1 for sufficiently large n. Here m = [n/r].

Proof: We first prove that Ky, 2, * f converges to f uniformly on [—m,w]. For p > 0,
let w(f,p) = maxy <, |f(z) — f(z —¢)| be the modulus of continuity of f. It has the
property that
w(f, ) < A+ Dw(fop), VA0,
see [15, p.43].
By the uniform continuity of f, for each ¢ > 0, there exists a ¢ > 0 such that w(f,J) < e.
Take n > 1/4, then for all ¢ € [—7, 7|, we have

£ () = (Km,2r + [) ()]

17



_ ‘ / Koo (07 () — Koo (8)£( — 1)]

IN

[ 156 = 56 = 0lKmar

-

IN

/ " (o [E) Ko (£)

—T

= /ﬂ w(f,nlt| - %)’Cm,%(t)dt

—T

< [ @l D0l o (Ot = w(f D) e+ 1) < (e D

-

where ¢ = 2n [ Ky 2, (t)tdt is bounded by a constant independent of n (cf. the proof of
Lemma 3.2 for p = 1/2). Therefore, K, 2, * f converges uniformly to f. By [9, Theorem
1], the spectrum of Cy; 'Ky, o * f]A,[f] is clustered around 1 for sufficiently large n.

As an immediate consequence, we can conclude that when f is positive and C, [ICp, 2, f]
is used as the preconditioner, the PCG method converges superlinearly, see for instance

[5].

5 Numerical Experiments

In this section, we illustrate by numerical examples the effectiveness of the preconditioner
Cn[Km,2r * f] in solving Toeplitz systems. For comparisons, we also test the Strang [21]
and the T. Chan [11] circulant preconditioners. In the following, m is set to [n/r].

Example 1: The first set of examples is on mildly ill-conditioned Toeplitz systems where
the condition numbers of the systems grow like O(n’) for some ¢ > 0. They correspond
to Toeplitz matrices generated by functions having zeros of order ¢, see [19]. Because of
the ill-conditioning, the conjugate gradient method will converge slowly and the number
of iterations required for convergence grows like O(nf/?) [2, p.24]. However, we will see
that using our preconditioner Cy,[KCp, 2r * f] with 2r > £, the preconditioned system will
converge linearly, i.e., the number of iterations required for convergence is independent of
n.

We solve Toeplitz systems A,[f]x = b by the preconditioned conjugate gradient
method for twelve nonnegative test functions. Since the functions are nonnegative, the
Ap[f] so generated are all positive definite. We remark that if f takes negative values, then
A, [f] will be non-definite for large n. As mentioned in §2, the construction of our pre-
conditioners for an n-by-n Toeplitz matrix requires only the n diagonal entries {aj}‘ jl<n
of the given Toeplitz matrix. No explicit knowledge of f is required. In the tests, the
right-hand side vectors b are formed by multiplying random vectors to A, [f]. The initial
guess is the zero vector and the stopping criteria is ||ry||2/||rol|2 < 1077 where r, is the
residual vector after ¢ iterations.
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Tables 1-4 show the numbers of iterations required for convergence for different choices
of preconditioners. In the table, I denotes no preconditioner, .S is the Strang preconditioner
[21], Ky 2r are the preconditioners from the generalized Jackson kernel KCp, o, defined in
(2) and T' = K, 2 is the T. Chan preconditioner [11]. Iteration numbers more than 3,000
are denoted by “i7. We note that S in general is not positive definite as the Dirichlet
kernel D,, is not positive, see [9]. When some of its eigenvalues are negative, we denote
the iteration number by “-” as the PCG method does not apply to non-definite systems
and the solution thus obtained may be inaccurate.

The first two test functions in Table 1 are positive functions and therefore correspond
to well-conditioned systems. Notice that the iteration number for the non-preconditioned
systems tends to a constant when n is large, indicating that the convergence is linear.
In this case, we see that all preconditioners work well and the convergence is fast, see
Theorem 4.4 and [9].

0t +1 10> +0.01
n |32 64 128 256 512 1024 | 32 64 128 256 512 1024
I [33 51 63 69 71 72 [45 107 213 288 315 323
s |7 7 17 7 7 719 8 8 8 8 8
T |9 8 8 7 T 7 |18 19 16 13 10 10
Kys| 7 7 7 7T 7 7 |10 9 9 8 8 8
Kye| 7 7 7 7 7 7 /10 9 9 8 8 8
Kys| 7 7 7 7 7 7 |11 9 9 8 8 7

Table 1: Numbers of iterations for well-conditioned systems.

The four test functions in Table 2 are nonnegative functions with single or multiple
zeros of order 2 on [—m,w]. Thus the condition numbers of the Toeplitz matrices are
growing like O(n?) and hence the numbers of iterations required for convergence without
using any preconditioners is increasing like O(n). We see that for these functions, the
number of iterations for convergence using the T. Chan preconditioner increases with n.
This is to be expected from the fact. that the order of Ky, 2 * 6% does not match that of
62 at 0 = 0, see (12). However, we see that K, 4, Kme and K, s all work very well as
predicted from our convergence analysis in §4.

When the order of the zero is 4, like the two test functions in Table 3, the condition
number of the Toeplitz matrices will increase like O(n*) and the matrices will be very ill-
conditioned even for moderate n. We see from the table that both the Strang and the T.
Chan preconditioners fail (the number of iterations required for convergence is increasing
with n). For the T. Chan preconditioner, the failure is also to be expected from the fact
that the order of K, 2 * 0* does not match that of 0% at § = 0, see (12). As predicted by
our theory, K, ¢ and K, still work very well. The numbers of iterations required for
convergence are roughly constant independent of n.

In Table 4, we test functions that our theory does not cover. The first two functions are
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6?2 (6% —1)2
n 32 64 128 256 512 1024 |32 64 128 256 512 1024
I 36 79 170 362 753 1544 | 53 141 293 547 1113 2213
S - = — — — — 10 - 9 10 8 12
T 12 16 19 23 29 39 |18 24 30 27 36 46
Kya| 8 9 10 9 9 9 13 13 14 12 13 11
Kyg |10 10 10 10 9 9 13 13 14 14 13 13
Kyg | 9 10 10 10 10 10 | 13 13 15 15 14 13
92(7r2 - 02) 92(7r4 - 04)
n 32 64 128 256 512 1024 | 32 64 128 256 512 1024
I 32 61 116 220 428 835 |32 64 128 256 510 1017
S 9 9 9 10 11 12 9 9 9 10 11 12
T 12 14 17 20 26 33 |12 15 17 22 27 38
Kyg |10 11 11 11 11 11 10 11 11 11 11 11
Kyg |10 11 11 11 11 12 |10 11 11 11 11 13
Kyg |11 12 12 11 12 13 |11 12 12 12 12 12
Table 2: Numbers of iterations for functions with order 2 zeros.
04 04(7r2 - 02)
n 32 64 128 256 512 1024 | 32 64 128 256 512 1024
I 63 209 790 2149 1 T 46 131 410 1084 2600 T
S _ _ _ _ _ _ _ _ _ _ _ _
T 26 42 71 161 167 247 |24 35 58 106 144 196
Kys |15 17 20 24 26 26 |15 16 20 22 27 26
Kye |16 16 18 18 17 18 |15 16 18 18 18 21
Kyg | 16 17 19 19 19 20 |16 18 19 20 21 23

Table 3: Numbers of iterations for functions with order 4 zeros.
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o) o]

n 32 64 128 256 512 1024 | 32 64 128 256 512 1024

I 27 40 56 77 110 144 | 47 128 360 1029 2665 T

S 7 7 8 8 8 8 - - - - - -

T 8 9 9 9 10 10 19 28 41 62 98 152
Kyg | 7 8 8 8 8 9 12 13 13 13 14 15
Kng | 8 8 8 8 8 9 12 13 13 12 14 15
Kyg | 8 8 8 8 8 9 12 14 14 15 14 15

S icrons L (K] + 1) —0.3862 | 50 2y000 1/(K7 + 1) — 0.4325

n 32 64 128 256 512 1024 | 32 64 128 256 512 1024

I 45 112 184 240 296 343 |41 92 238 715 1773 T

S - - 7 8 8 8 - - - - -

T 15 15 14 12 10 8 14 13 12 17 15 13
Knag| 8 8 7 8 8 7 11 10 9 9 9 8
Kyg | 10 7 8 8 8 8 11 10 9 10 9 9
Kng | 9 8 8 8 8 8 11 11 10 10 10 9

Table 4: Numbers of iterations for other functions.

not differentiable at their zeros. The last two functions are functions with slowly decaying
Fourier coefficients. We found numerically that the minimum values of E‘ k| <1024 Wﬁe”‘”

and Z\k|<1024 |k\0-15+1 et
the last two test functions are approximately zero at some points in [—m,7|. Table 4
shows that the K, 2, preconditioners still perform better than the Strang and the T.
Chan preconditioners.

To further illustrate Theorems 4.2 and 4.3, we give in Figures 2 and 3 the spectra of
the preconditioned matrices for all five preconditioners for f(#) = 6? and #* when n = 128.
We see that the spectra of the preconditioned matrices for K, s and K, g are in a small
interval around 1 except for one to two large outliers and that all the eigenvalues are well
separated away from 0. We note that the Strang preconditioned matrices in both cases
have negative eigenvalues and they are not depicted in the figures.

are approximately equal to 0.3862 and 0.4325 respectively. Hence

Example 2: In image restoration, because the blurring is an averaging processing, the
resulting matrix is usually strongly ill-conditioned in the sense that its condition number
grows exponentially with respect to its size n. In contrast, the condition numbers of the
mildly ill-conditioned matrices considered in Example 1 are increasing like polynomials
of n only. Regularization techniques have been used for some time in mathematics and
engineering to treat these strongly ill-conditioned systems. The idea is to restrict the
solution in some smooth function spaces [14]. This approach has been adopted in the
circulant preconditioned conjugate gradient method and is very successful when applied
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K 5 Jackson Preconditioner + o+ +
K Jackson Preconditioner T+ +
Km4Jackson Preconditioner +H HiE-

T. Chan Preconditioner + + 4 +

Strang Preconditioner (has negative eigenvalues) +

+ I i s w mmm maaaaaatt UL

No Preconditioner

10°° 107 107" 10° 10"

Figure 2: Spectra of preconditioned matrices for f(#) = 62 when n = 128.
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Km 8 Jackson Preconditioner

Km 6 Jackson Preconditioner + oA +
Km4Jackson Preconditioner + + o + +
+ e i e e e e AR AR Ria 1 i +
T. Chan Preconditioner
+  + HH+

Strang Preconditioner (has negative eigenvalues)

e A e s s s wan st

No Preconditioner

10° 10 10° 10° 10° 10*

Figure 3: Spectra of preconditioned matrices for f(#) = 6* when n = 128.
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to ground-based astronomy [7].
To illustrate the idea, we use a “prototype” image restoration problem given in [12].
Consider a 100-by-100 Toeplitz matrix A with (7, j) entries given by

L[ if i — j| > 8,
“ £g(0.15, &£ (i — j)), otherwise,
where )
1 Y
g9(o,7) = N exp(—7—3)-

Blurring matrices of this form (called the truncated Gaussian blur) occur in many image
restoration contexts and are used to model certain degradations in the recorded image.
The condition number of A is approximately 2.3x10°. Thus if no regularization is used,
the result obtained may be very inaccurate, especially if b is corrupted with noise.

In our experiment, we solve the regularized least squares problem miny{||Ax — b||3 +
al|x||3} as suggested in [12]. The problem is equivalent to the normal equations (ol +
A%)x = Ab which we solve by the preconditioned conjugate gradient method. We choose
the solution vector x with its entries given by

44 4 .

[x]; = 0.5g(0.1,—1.1 + H) +¢(0.05, —2.8 + ﬁ)’ 1<i<mn, (28)
see [12], and then we compute b = Ax. A noise vector is added to b where each component
of the noise vector is taken from a normal distribution with mean zero and standard
deviation 1073. The stopping criteria is ||ry||2/||rollz2 < 10710 where r, is the residual
vector after ¢ iterations.

We choose the optimal regularization parameter o* such that it minimizes the relative
error between the computed solution x(«) of the normal equations and the original solution
x given in (28), i.e. * minimizes ||x — x(«)l||2/||x||2. By trial and error, it is found to be
8 x 10~% up to one digit of accuracy. The preconditioner we used for the normal equations
is of the form a*I + C? where C is chosen to be S, T, Ky, Kpg, and Ky, g. The
corresponding numbers of iterations required for convergence are equal to 21, 33,22, 22,
and 23 respectively. The number of iterations without preconditioning is 171. The relative
error of the regularized solution is about 3.1 x 10~!. In contrast, it is about 6.9 x 10*2
if no regularization is used. Thus we see that our preconditioners also work for strongly
ill-conditioned systems after it is regularized.

6 Concluding Remarks

We remark that even for mildly ill-conditioned matrices with condition number of order
O(nP), if p > 6, then the matrix A, will be very ill-conditioned already for moderate
n, say n = 100. Thus regularization is also needed in this case. Once the system is
regularized, our preconditioner Cy[/Cy, 8 * f] will work even if p > 6, cf. Example 2 in §5
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for instance. Hence in general, the circulant preconditioner C,[/C;, g * f] should be able
to handle all cases, whether the matrix A, is well-conditioned, mildly ill-conditioned, or
very ill-conditioned but regularized.
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