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Abstract. We consider complex-valued functions f defined on the unit circle T' that are
continuous for all £ € T' except at a point £y where the left- and right-hand limits of f both
exist. Using matrix methods, we show that if f is in the Besov class BQ% (T'), then f is
continuous at ty. In particular, we prove that if the left- and right-hand limits of f are not

equal at to, then Y 7o |k|lax[f]|> = oo, where ai[f] are the Fourier coefficients of f.
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1. Introduction.

Let T be the unit circle in the complex plane. For 1 < p < o0, let LP be the Banach

space of all complex-valued Lebesgue measurable functions f on T for which the LP norm

L LT ey a7

1o ={5- |l as}

is finite. For ¢ € R, the set of real numbers, we define the operator d, as
s f) (") = f(e'T) — f(e), VO €R.
Then for all natural number n, we let
n _— n—1
For a > 0 and 1 < p < oo, the Besov class B is defined as
By ={rers [ wIriogsipe <

where n is any integer such that n > «.

A well-known theorem about the class B;’ states that if 1 <p < oo and o > 1/p, then
all functions in By’ are continuous functions, see Béttcher and Silbermann [1, p.44]. In this
paper, we will use matrix methods to discuss the case when p = 2 and a = 1/2. Our main

result is the following

1
Theorem 1. If f € By is continuous at every point t € T\{—1} and both

o = lim i(m—8)
f(=1+40) = lim f(e'7=7)



and

f(=1-0) = lim f(e'CT)

#—0

ezist, then f(—1+0) = f(—1—0).
As an immediate corollary, we also prove

Theorem 2. Let f be any arbitrary complex-valued function defined on T. If f is contin-
uous at every point t € T\{—1} and both f(—1+0) and f(—1 —0) exist but f(—1+ 0) #
f(=1—=0), then

> [kllax[f]PF = oo,

k=—o00

where ay[f]| are the Fourier coefficients of f.

Before carrying out our proof, we need several definitions and lemmas.

2. Definitions and Lemmas.

Given f € L, we define its Fourier coefficients ax[f] by

1 [T . )
ak[f]zﬂ/ f(e®)e %4, k=0,+1,£2,--- .

Let A,,[f] denote the n-by-n Toeplitz matrix with the (j,¢)th entry given by a;_,[f]. If f
is real-valued, then a_j[f] = @x[f] and hence A, [f] is a Hermitian matrix. Let C,[f] be

the n-by-n circulant matrix in which the (j, ¢)th entry is given by c¢;_,[f] where

(n — k)ar[f] + kag—n[f]

cr[f] = n
Crtilf] O0<—-k<n.

0<k<n,

Clearly, C,,[f] will be a Hermitian matrix if f is real-valued.



A sequence of matrices {My,},=12,... is said to have clustered spectra if for any € > 0,
there exists an N > 0 such that for all n > 1, at most N eigenvalues of M,, have absolute

values exceeding e. As examples, we consider the following Lemmas.

Lemma 1. Let {M,},=1,2,... be a sequence of Hermitian matrices. If sup ||M,||r < oo
n

where || - |p denotes the Frobenius norm, then {M,} has clustered spectra.

Proof. Since the square of the Frobenius norm of a Hermitian matrix is equal to the sum
of the square of its eigenvalues, it follows that for any given € > 0, M, has at most

sup || M, ||%/€? eigenvalues with absolute values greater than e.
n

Lemma 2. Let f be a real-valued continuous function onT. Then the sequence of matrices

Alf]1= Anlf] = Culf]l, n=0,1,2,---

has clustered spectra.
Proof. See Chan and Yeung [2, Theorem 1].
Lemma 3. If f is a real-valued function in B;/Z, then {A,[f]} has clustered spectra.

Proof. We first note that the space B21/ % admits a very simple description, namely

feB? = Y (Kl +Dlarlf]? <, (1)

k=—o00

see for instance, Bottcher and Silbermann [1, p.44]. Since the first row of the Hermitian
Toeplitz matrix A, [f] = A,[f] — Cn[f] is given by

n—1

(0.2 (@oalf) = nslD). 2 (ol ) = ol s o o salf] = 1)),



we have

1A, f1||F—2Z LTk
<4Z (el A + lan_s[71P)

—42{ ot + B )

E kil

< 4Zk|ak[f1|2
k=1

<2 3 (Kl + DlaxlfP < .

k=—o00

By Lemma 1, {A,[f]} has clustered spectra.

Lemma 4. Let H, be the n-by-n Hilbert matriz, i.e.

_ 1 1 1 -
L5 3 m
101 ;
2 3
H,= |1
3
- n 2n—1 -

Then for any € > 0, the number of eigenvalues of H, which exceed € > 0 is asymptotically
equal to

2
Zlogn sech™! €
7 7

In other words, {H, } does not have clustered spectra.

Proof. See Widom [3, p.31].
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3. Proofs of Theorems.

Proof of Theorem 1: It is enough to prove the theorem for real-valued functions. Thus

let f be a real-valued function in B;/ %, Assume that f is continuous at every point t €

T\{—-1} with both f(=1+0) = lim f(e'™=9) and f(—1—0) = lim f(e!(-7+9) exist,
0 —0+ 6—0+

but f(—=1+0) # f(—1-0).

Define g(e*’) = 6 for all —7 < @ < 7 and let

p= HELH0-JC120)

Then f — (B¢ is a continuous function on T. By Lemmas 3 and 2, both {A,[f]} and
{A,[f — Bg]} have clustered spectra. Since g = %(f —(f — ﬂg)),

Anlg) = %Anm - %An[f _ Bg]

and hence {A,[g]} has clustered spectra by Cauchy’s interlace theorem, see for instance

Wilkinson [4, p.101].

The Fourier coefficients ax[g] of g are given by

0 k=0,

1 T :
— [ 6e*do = (—1)

arlg] = 5
k

i h=41,42,- .

Therefore, for all m > 0, the first row of the 2m-by-2m Hermitian Toeplitz matrix Agy,[g]
is given by

2m —1
2m

(0. 5 (-106] = tam s 1) e a-l6) — azm—alsl) - + 2 (aamsale] — o)

B 1 -1 2m(—1)’€+1. .
_< =D Z)

om—1"2m—2""" " om—k "
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Let P, and Q,, denote the m-by-m diagonal matrices with (—1)7*1j and (—1)m*/+1

as their (7, j)th entries respectively and let A,,,[g] be partitioned as

W Un
AZm[g] = |: U* Wm]

where W,,, and U, are m-by-m Toeplitz matrices. Then

P, 0 Pom[g] P 0| | PaWnP, P,U,Q;,
0 Qu| ™[0 Qnl” [QuULPL QuiinQ,
| P W, P, HyJm
where
0 1
1
Im = ' )
1 0
is the m-by-m anti-identity matrix and H,, is the m-by-m Hilbert matrix. Let
P, W, P, 0
Aom = [ 0 QmeQi‘n]
and

Then we have

Since

| Xom |7 = 1Pn Win P17 + 1Qn Win Q7 I

L om—k
_ 2 _ -
=2[[Wy|lr =4 @m k)2
k=1

<4/1 L=t gt — d1og2 — 2
- — o) —
= 0 (2—t)2 g )
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{Xom } has clustered spectra by Lemma 1. Recall that {A2,,[g]} also has clustered spectra,

therefore from (2) and Cauchy’s interlace theorem, {Y2,,} has clustered spectra.

Let

1[5, I,
Rzm—ﬁ[Jm —Jm]

where I,,, is the m x m identity matrix. Clearly, R5 R, = Iay,. Hence {Rj, Yo, Rom}

has clustered spectra. However,

" 11H, 0
R2mY2mR2m - 5 |: 0 :| .

—H,,
This implies that {H,,} has clustered spectra, a contradiction to Lemma 4.

Proof of Theorem 2: Just use (1) and Theorem 1.

We finally note that since estimates of the form (1) only hold for Besov space Bj’ where

p =2 and a = 1/2, the matrix method used here will not work for larger Besov spaces.
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