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Abstract

By introducing a variable substitution we transform the two-point boundary value prob-
lem of a third-order ordinary differential equation into a system of two second-order ordinary
differential equations. We discretize this order-reduced system of ordinary differential equa-
tions by both sinc-collocation and sinc-Galerkin methods, and average these two discretized
linear systems to obtain the target system of linear equations. We prove that the discrete
solution resulting from the linear system converges exponentially to the true solution of the
order-reduced system of ordinary differential equations. The coefficient matrix of the linear
system is of block two-by-two structure and each of its blocks is a combination of Toeplitz
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and diagonal matrices. Because of its algebraic properties and matrix structures, the lin-
ear system can be effectively solved by Krylov subspace iteration methods such as GMRES
preconditioned by block-diagonal matrices. We demonstrate that the eigenvalues of certain
approximation to the preconditioned matrix are uniformly bounded within a rectangle on the
complex plane independent of the size of the discretized linear system, and we use numerical
examples to illustrate the feasibility and effectiveness of this new approach.

Keywords: third-order ordinary differential equation; order reduction; sinc-collocation
discretization; sinc-Galerkin discretization; convergence analysis; preconditioning; eigenvalue
estimate.

AMS(MOS) Subject Classifications: 65F08, 65F10, 65F15, 65L10, 65T10; CR: G1.3.

1 Introduction

We consider numerical solution for the following two-point boundary value problem of linear
third-order ordinary differential equation (ODE):

{
Ly1(x) := y

′′′

1 (x) + µ2(x)y
′′

1 (x) + µ1(x)y
′

1(x) + µ0(x)y1(x) = σ(x), a < x < b,

y1(a) = 0, y1(b) = 0, y
′

1(a) = 0,
(1.1)

where µj(x) (j = 0, 1, 2) and σ(x) are known bounded functions, and a and b are given real
numbers. This class of problems arise from many different applications where point/contact
transformations and numerical linearizations are used. Examples are (i) the Korteweg-de Vries
(KdV) equations in hydrodynamics modeling the propagation of solitary wave on water surfaces
[34, 35], (ii) the non-conservative systems of realistic physical situations such as the Falkner-
Skan and the Nosé equations modeling boundary layers in fluid dynamics and the interaction of a
particle with a heat-bath, respectively [32, 11, 28], (iii) the draining or coating fluid-flow problems
involving surface tension force [33], (iv) the flow of thin films of viscous fluid with a free surface
having surface tension effects [9, 12, 14], and many others, see [30, 20, 21, 15, 23, 13, 10]. The
main issue in solving (1.1) is that its highest term is of order three, which makes the coefficient
matrix of the discretized linear system strongly nonsymmetric and highly ill-conditioned.

Recently, Bai, Chan and Ren [3] discretized the third-order ODE (1.1) by sinc methods and
proved that the discrete solution converges to the true solution exponentially. The coefficient
matrix of the resulted linear system is a combination of Toeplitz and diagonal matrices. In
[3] the authors constructed a banded preconditioning matrix and employed the corresponding
preconditioned Krylov subspace methods to iteratively solve such a discretized linear system.
However, as the highest term of the ODE (1.1) is of order three, the discretized linear system
is highly ill-conditioned as its coefficient matrix has a strongly dominant skew-symmetric part.
As a result, in actual implementations there is considerable difficulty in iteratively computing
the discrete solution.

In order to overcome the shortcoming of the direct discretization method in [3], in this paper
we introduce a variable substitution that first transforms the third-order ODE (1.1) into a system
of two second-order ODEs. Then we apply the approach similar to the one used in [3] to solve
the resulting system. More precisely, we apply the sinc-collocation and sinc-Galerkin methods
to discretize the system of second-order ODEs. Then we take the average of the two resulting
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systems to obtain a system Aw = p that we need to solve. Because the highest order of both
ODEs are 2, the coefficient matrix A will have strongly dominant symmetric part and diagonal
blocks, as well as smaller-order off-diagonal blocks. Moreover, its diagonal blocks are positive
definite. Thus A has better algebraic properties and matrix structures so that many numerical
difficulties in solving the third-order ODE (1.1) caused by its third-order term can be alleviated.
We will prove that the discrete solution of Aw = p converges exponentially to the true solution
of the order-reduced system of ODEs when the discretization step-size h tends to zero.

The matrix A is of block two-by-two structure with each of its blocks being a combination of
Toeplitz and diagonal matrices. Unfortunately, direct methods such as the Gaussian elimination
or the fast Toeplitz algorithms are not applicable to effectively solve this class of Toeplitz-plus-
diagonal linear systems due to considerably high computational complexity; see [16, 17, 18, 25].
However, note that for A of size n-by-n, the matrix-vector product Aq can be computed in
O(n log n) operations for any n-vector q. We can therefore employ Krylov subspace iteration
methods such as GMRES to iteratively solve Aw = p. To guarantee fast convergence, one needs
an efficient preconditioner; see [2, 6, 7, 8, 26]. Since the diagonal blocks of A are dominant over
the off-diagonal blocks, we can construct a block-diagonal preconditioning matrix P, with banded
diagonal blocks, for A, and make use of the Toeplitz structure and positive-definite property in
A. By denoting Â the diagonal-block matrix of A, we prove that ‖Â − A‖2 ≤ O(h) and the
eigenvalues of the matrix P−1Â are uniformly bounded within a rectangle on the complex plane
independent of the size of the linear system. It follows that P will be a desirable preconditioner
for A, especially when the discretization step-size h is small. Numerical results show that P
is effective in accelerating the convergence of the Krylov subspace iteration methods and the
approximated solution is accurate.

The outline of this paper is as follows. In Section 2, we introduce the variable substitution
that gives the order-reduced ODE system from the third-order ODE (1.1). In Section 3, we
discretize the order-reduced ODE system by both sinc-collocation and sinc-Galerkin methods;
and an averaging combination of these two sinc discretizations leads to the target linear system
Aw = p. In Section 4, we derive an error bound of exponentially decreasing rate for the discrete
solution of the order-reduced ODE system. A block-diagonal preconditioner P for the matrix
A is constructed and the eigen-properties of the preconditioned matrix P−1A are discussed in
Section 5. In Section 6, numerical examples are given to show the feasibility and effectiveness
of our approach. Finally, in Section 7, we end the paper with a few concluding remarks.

2 The Order-Reduced ODE System

In this section, we give the substitution that transforms (1.1) into a system of two second-order
ODEs. To this end, we define a function y2(x) implicitly by the following ODE:

y
′′

1 (x) = p(x)y
′

2(x) + q(x)y2(x), p(x) 6= 0, (2.1)

where p(x) and q(x) are continuously differentiable functions to be specified later on. Differen-
tiating (2.1) we have

y
′′′

1 (x) = p(x)y
′′

2 (x) + (p
′

(x) + q(x))y
′

2(x) + q
′

(x)y2(x). (2.2)

Substituting (2.1) and (2.2) into (1.1), we obtain

µ1(x)y
′

1(x) + µ0(x)y1(x) + p(x)y
′′

2 (x) + ν1(x)y
′

2(x) + ν0(x)y2(x) = σ(x), (2.3)
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where

ν0(x) = q
′

(x) + µ2(x)q(x) and ν1(x) = p
′

(x) + µ2(x)p(x) + q(x).

In order to derive the boundary conditions for y2(x), we define

r(x) = e
−

R q(x)
p(x)

dx
and s(x) =

1

p(x)
e

R q(x)
p(x)

dx
.

Then by solving y2(x) from (2.1) we obtain

y2(x) = r(x)

∫
s(x)y

′′

1 (x)dx.

For any x ∈ [a, b], it follows from setting the integral interval to be [a, x] that y2(a) = 0. This
shows that the boundary condition for y2(x) defined through the ODE (2.1) is y2(a) = 0.

Let y(x) = (y1(x), y2(x))
T . Then a combination of (2.1) and (2.3) immediately leads to the

system of second-order ODEs:





L1y(x) := y
′′

1 (x) − p(x)y
′

2(x) − q(x)y2(x) = 0,

L2y(x) := µ1(x)y
′

1(x) + µ0(x)y1(x) + p(x)y
′′

2 (x)

+ν1(x)y
′

2(x) + ν0(x)y2(x) = σ(x),

y1(a) = 0, y1(b) = 0, y
′

1(a) = 0 and y2(a) = 0,

a < x < b. (2.4)

Obviously, (2.4) is mathematically equivalent to (1.1). Alternatively, we may reformulate (2.4)
into matrix-vector form as follows:

{
Υ2(x)y

′′

(x) + Υ1(x)y
′

(x) + Υ0(x)y(x) = ̥(x),

y(a) = 0, y
′

1(a) = 0 and y1(b) = 0,
(2.5)

where

Υ0(x) =

[
0 −q(x)

µ0(x) ν0(x)

]
, Υ1(x) =

[
0 −p(x)

µ1(x) ν1(x)

]
, Υ2(x) =

[
1 0
0 p(x)

]
(2.6)

and

̥(x) =

[
0

σ(x)

]
. (2.7)

We now specify the choices of p(x) and q(x), with the aim that the discretization matrix of
(2.5)–(2.7) will have special properties and structures, so we can construct efficient precondi-
tioners for the corresponding Krylov subspace iteration methods.

Case (i): µ1(x) > 0,∀x ∈ [a, b]. For this case, we take p(x) = µ1(x) and q(x) = −µ0(x) such
that the coefficient of the second-order term Υ2(x) of (2.5) is symmetric and positive, and the
off-diagonal coefficients of the first-order and the zero-order terms Υ1(x) and Υ0(x) are skew-
symmetric and symmetric, respectively. As a result, the coefficient matrix of the correspondingly
discretized linear system may have positive-definite diagonal blocks, and its off-diagonal blocks
may be symmetric as far as possible.
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Case (ii): µ1(x) < 0,∀x ∈ [a, b]. For this case, we take p(x) = −µ1(x) and q(x) = µ0(x)
such that Υ2(x) is symmetric and positive while the off-diagonal parts of Υ1(x) and Υ0(x) are
symmetric and skew-symmetric, respectively. As a result, the coefficient matrix of the resulting
system may have positive-definite diagonal blocks, and its off-diagonal blocks may be skew-
symmetric as far as possible.

The above two cases can be unified as p(x) = |µ1(x)| and q(x) = −sign(µ1(x))µ0(x), where

sign(µ1(x)) =





1, for µ1(x) > 0,
0, for µ1(x) = 0,
−1, for µ1(x) < 0.

Clearly, there could be other possible choices for p(x) and q(x), which may lead to different
second-order ODE systems (2.4) with other matrix structures.

3 Sinc Discretization Methods

Let D be a simply-connected domain on the complex plane having boundary ∂D. Let a and b
denote two distinct points of ∂D, and t = φ(z) denote a conformal mapping of D onto a strip
region Dd such that φ(a) = −∞ and φ(b) = ∞, where Dd := {t ∈ C : |Im(t)| < d}. Conversely,
z = ψ(t) := φ−1(t) maps Dd onto D with the boundary ∂D on which the points a and b lie.
Here and in the following, we use Re(·) and Im(·) to denote the real and the imaginary parts
of a complex number, and (·)T to denote the transpose of either a vector or a matrix. We
write a function f(x) briefly as f if no confusion arises. In addition, for two vector functions
f = (f1, f2)

T and g = (g1, g2)
T , f ⊙ g ≡ (f1g1, f2g2)

T .

In this section, we discretize the order-reduced ODE system (2.4) by both sinc-collocation
and sinc-Galerkin methods. The sinc function used is

sinc(t) =
sin(πt)

πt
, −∞ < t <∞,

and the set of basis functions adopted are

S(j, h)(t) :=
sin[π(t− jh)/h]

π(t− jh)/h
, −∞ < t <∞, j ∈ Z, (3.1)

where h is the step-size and Z = {0,±1,±2, . . .} denotes the set of all integers [31]. The points
tj = jh, j ∈ Z, are called the sinc-grid points.

We approximate the exact solution y(x) = (y1(x), y2(x))
T of (2.4) by the function yN (x) =

(y1N (x), y2N (x))T : 



y1N (x) = ρ1(x)

N∑

j=−N

ujS(j, h) ◦ φ1(x),

y2N (x) = ρ2(x)
N∑

j=−N

vjS(j, h) ◦ φ2(x),

(3.2)

where ρi(x) (i = 1, 2) are known bounded functions, φi(x) (i = 1, 2) are conformal mappings
from D to Dd, {S(j, h)}j∈ZN

are the sinc-basis functions in (3.1), and {uj}j∈ZN
and {vj}j∈ZN
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are the unknown coefficients. Here, we have used the notation ZN = {−N,−N + 1, . . . , N}.
Moreover, by denoting ρ(x) = (ρ1(x), ρ2(x))

T , ̟j = (uj , vj)
T and S(k, h) ◦ φ(x) = (S(k, h) ◦

φ1(x), S(k, h) ◦ φ2(x))
T , we can briefly express the approximate solution yN (x) defined in (3.2)

in vector form as

yN (x) = ρ(x) ⊙
N∑

j=−N

̟j ⊙ S(j, h) ◦ φ(x).

For the sinc-collocation method [19], the unknown coefficients {uj}N
j=−N and {vj}N

j=−N of the
functions y1N (x) and y2N (x) in (3.2) are determined by imposing the collocating conditions

{
L1yN (xk) = 0,

L2yN (xk) = σ(xk), k ∈ ZN ,
(3.3)

on the sinc grid-points xk = ψi(kh) = φ−1
i (kh) (i = 1, 2), with L1 and L2 being the ODE oper-

ators defined in (2.4). After substituting yN (x) in (3.2) into (3.3) and multiplying h2/[(φ
′

1)
2ρ1]

and h2/[(φ
′

2)
2ρ2] through both sides of the two equations, respectively, we obtain a system of

linear equations ACw = p with respect to {uj}N
j=−N and {vj}N

j=−N , where

AC =

[
T(2) + D

(1)
C T(1) + D

(5)
C D

(2)
C T(1) + D

(6)
C

D
(3)
C T(1) + D

(7)
C D

(0)
C T(2) + D

(4)
C T(1) + D

(8)
C

]
∈ R

2n×2n, (3.4)

and




w = (u−N , u−N+1, . . . , uN , v−N , v−N+1, . . . , vN )T ∈ R2n,

p = −h2

(
0, 0, . . . , 0,

σ

(φ
′

2)
2ρ2

(x−N ),
σ

(φ
′

2)
2ρ2

(x−N+1), . . . ,
σ

(φ
′

2)
2ρ2

(xN )

)T

∈ R
2n,

(3.5)

with n = 2N +1. In addition, T(1) = (δ
(1)
jk ) and T(2) = (−δ(2)jk ) are the n-by-n Toeplitz matrices

given by

T(1) =




0 −1 1
2 . . . (−1)n−1

n−1

1 0
. . .

. . .
...

−1
2 1

. . . −1 1
2

...
. . .

. . . 0 −1

− (−1)n−1

n−1 . . . −1
2 1 0




(3.6)

and

T(2) =




π2

3 −2 2
22 . . . 2(−1)n−1

(n−1)2

−2 π2

3

. . .
. . .

...

2
22 −2

. . . −2 2
22

...
. . .

. . . π2

3 −2
2(−1)n−1

(n−1)2
. . . 2

22 −2 π2

3




, (3.7)
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and
D

(i)
C := diag(g

(i)
C (x−N ), g

(i)
C (x−N+1), . . . , g

(i)
C (xN )), i = 0, 1, . . . , 8,

are diagonal matrices, with g
(0)
C = p and

g
(1)
C = h

φ
′

1ρ
′

1 + (φ
′

1ρ1)
′

(φ
′

1)
2ρ1

, g
(2)
C = −h pφ

′

2ρ2

(φ
′

1)
2ρ1

,

g
(3)
C = h

µ1φ
′

1ρ1

(φ
′

2)
2ρ2

, g
(4)
C = h

p(φ
′

2ρ
′

2 + (φ
′

2ρ2)
′

) + ν1φ
′

2ρ2

(φ
′

2)
2ρ2

,

g
(5)
C = −h2 ρ

′′

1

(φ
′

1)
2ρ1

, g
(6)
C = h2 pρ

′

2 + qρ2

(φ
′

1)
2ρ1

,

g
(7)
C = −h2 µ1ρ

′

1 + µ0ρ1

(φ
′

2)
2ρ2

, g
(8)
C = −h2 pρ

′′

2 + ν1ρ
′

2 + ν0ρ2

(φ
′

2)
2ρ2

.

For the sinc-Galerkin method [19], the unknown coefficients {uj}N
j=−N and {vj}N

j=−N of the
functions y1N (x) and y2N (x) in (3.2) are determined by orthogonalizing the residual elements
L1yN (x) and L2yN(x)−σ(x) with the functions {S(k, h) ◦φ(x)}N

k=−N , where L1 and L2 are the
operators defined in (2.4). This yields the discretized system

{
〈L1yN (x), S(k, h) ◦ φ(x)〉 = 0,

〈L2yN (x) − σ(x), S(k, h) ◦ φ(x)〉 = 0, k ∈ ZN ,
(3.8)

where 〈·, ·〉 represents the inner product defined by

〈f(x), g(x)〉 =

∫ b

a
ω1(x)f1(x)g1(x)dx+

∫ b

a
ω2(x)f2(x)g2(x)dx,

with f(x) = (f1(x), f2(x))
T , g(x) = (g1(x), g2(x))

T , and ω1(x) and ω2(x) being weighting func-
tions. After integrating (3.8) by part and using Corollary 4.2.15 in [31], we obtain a system of
linear equations AG w = p where

AG =

[
T(2) + T(1)D

(1)
G + D

(5)
G T(1)D

(2)
G + D

(6)
G

T(1)D
(3)
G + D

(7)
G T(2)D

(0)
G + T(1)D

(4)
G + D

(8)
G

]
∈ R

2n×2n, (3.9)

T(1) = (δ
(1)
jk ) and T(2) = (−δ(2)jk ) are the Toeplitz matrices defined in (3.6)–(3.7), and w and p

are the unknown and the right-hand side vectors defined in (3.5), with n = 2N +1. In addition,

D
(i)
G := diag(g

(i)
G (x−N ), g

(i)
G (x−N+1), . . . , g

(i)
G (xN )), i = 0, 1, . . . , 8,

are diagonal matrices, with g
(0)
G = p and

g
(1)
G = −h φ

′

1ω
′

1 + (φ
′

1ω1)
′

(φ
′

1)
2ω1

, g
(2)
G = −h pρ2ω2

φ
′

1ρ1ω1
,

g
(3)
G = h

µ1ρ1ω1

φ
′

2ρ2ω2
, g

(4)
G = −h (pω2)

′

φ
′

2 + (pω2φ
′

2)
′ − ν1ω2φ

′

2

(φ
′

2)
2ω2

,

g
(5)
G = −h2 ω

′′

1

(φ
′

1)
2ω1

, g
(6)
G = −h2 ((pω2)

′ − qω2)ρ2

φ
′

1φ
′

2ρ1ω1
,

g
(7)
G = h2 ((µ1ω1)

′ − µ0ω1)ρ1

φ
′

1φ
′

2ρ2ω2
, g

(8)
G = −h2 (pω2)

′′ − (ν1ω2)
′

+ ν0ω2

(φ
′

2)
2ω2

.
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In order to construct a discretized linear system for (2.4) such that its coefficient matrix is
as symmetric/skew-symmetric or as positive-definite1 as possible [5, 4], we follow the strategy
in [3] and average the sinc-collocation matrix AC in (3.4) and the sinc-Galerkin matrix AG in
(3.9), and obtain the system of linear equations

Aw = p, (3.10)

where

A =
1

2
(AC + AG) :=

[
B E
F C

]
, (3.11)

and w and p being defined as in (3.5), with

B = T(2) +
1

2
(D

(1)
C T(1) + T(1)D

(1)
G ) + D(5),

E =
1

2
(D

(2)
C T(1) + T(1)D

(2)
G ) + D(6),

F =
1

2
(D

(3)
C T(1) + T(1)D

(3)
G ) + D(7), (3.12)

C =
1

2
(D(0)T(2) + T(2)D(0)) +

1

2
(D

(4)
C T(1) + T(1)D

(4)
G ) + D(8),

D(0) = D
(0)
C = D

(0)
G ,

D(i) =
1

2
(D

(i)
C + D

(i)
G ), i = 5, 6, 7, 8.

Evidently, each block of the matrix A is more symmetrically or skew-symmetrically structured
than either AC or AG in (3.4) and (3.9), respectively.

Let the functions ρi(x), φi(x) and ωi(x) (i = 1, 2) satisfy ρ1(x) = ρ2(x) ≡ 1, φ1(x) = φ2(x) ≡
φ(x) and ω1(x) = ω2(x) ≡ 1/φ

′

(x). Then we can obtain the actual expressions for the matrix
A corresponding to the two special cases described at the end of Section 2.

Case (i) : For µ1(x) > 0,∀x ∈ [a, b], p(x) = µ1(x), and q(x) = −µ0(x), it holds that

g
(0)
C = g

(0)
G = µ1, g

(1)
C = g

(1)
G = −h

(
1

φ′

)′

, g
(2)
C = g

(2)
G = −hµ1

φ′
, g

(3)
C = g

(3)
G = h

µ1

φ′
,

1A complex system of linear equations is called positive-definite if the Hermitian part of its coefficient matrix
is positive-definite; see, e.g., [5, 4].
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and

g
(4)
C = −h

(
µ1

(
1

φ′

)′

− ν1

φ′

)
, g

(4)
G = −h

(
2
µ

′

1

φ′
+ µ1

(
1

φ′

)′

− ν1

φ′

)
,

g
(5)
C = 0, g

(5)
G = −h2 1

φ′

(
1

φ′

)′′

,

g
(6)
C = −h2 µ0

(φ
′

)2
, g

(6)
G = −h2

(
1

φ
′

(
µ1

φ
′

)′

+
µ0

(φ
′

)2

)
,

g
(7)
C = −h2 µ0

(φ
′

)2
, g

(7)
G = h2

(
1

φ
′

(
µ1

φ
′

)′

− µ0

(φ
′

)2

)
,

g
(8)
C = −h2 ν0

(φ′)2
, g

(8)
G = −h2

(
1

φ′

(
µ1

φ′

)′′

− 1

φ′

(
ν1

φ′

)′

+
ν0

(φ′)2

)
.

It then follows that

D
(1)
C = D

(1)
G := D(1), D

(2)
C = D

(2)
G = −D

(3)
C = −D

(3)
G := D(2) and D

(6)
C = D

(7)
C .

Hence, the matrix A is of the form

A =

[
T(2) + 1

2 (D(1)T(1) + T(1)D(1)) + D(5) 1
2(D(2)T(1) + T(1)D(2)) + D(6)

−1
2(D(2)T(1) + T(1)D(2)) + D(7) C

]
,

with C being defined as in (3.12). Since the elements of the diagonal matrices D(5), D(6),
D(7) and D(8) are all of the order O(h2), we see that the off-diagonal blocks of A are almost

symmetric. If, in particular, D
(4)
C = D

(4)
G , then the symmetric part of A is given by

H(A) =
1

2
(A + AT )

=

[
T(2) + D(5) 1

2(D(2)T(1) + T(1)D(2)) + 1
2 (D(6) + D(7))

−1
2(D(2)T(1) + T(1)D(2)) + 1

2(D(6) + D(7)) 1
2(D(0)T(2) + T(2)D(0)) + D(8)

]

=

[
T(2) 1

2(D(2)T(1) + T(1)D(2))

−1
2(D(2)T(1) + T(1)D(2)) 1

2(D(0)T(2) + T(2)D(0))

]
+ O(h2).

Case (ii) : For µ1(x) < 0,∀x ∈ [a, b], p(x) = −µ1(x), and q(x) = µ0(x), it holds that

g
(0)
C = g

(0)
G = −µ1, g

(1)
C = g

(1)
G = −h

(
1

φ
′

)′

, g
(2)
C = g

(2)
G = h

µ1

φ
′
, g

(3)
C = g

(3)
G = h

µ1

φ
′
,
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and

g
(4)
C = h

(
µ1

(
1

φ′

)′

+
ν1

φ′

)
, g

(4)
G = h

(
2
µ

′

1

φ′
+ µ1

(
1

φ′

)′

+
ν1

φ′

)
,

g
(5)
C = 0, g

(5)
G = −h2 1

φ′

(
1

φ′

)′′

,

g
(6)
C = h2 µ0

(φ′)2
, g

(6)
G = h2

(
1

φ′

(
µ1

φ′

)′

+
µ0

(φ′)2

)
,

g
(7)
C = −h2 µ0

(φ′)2
, g

(7)
G = h2

(
1

φ′

(
µ1

φ′

)′

− µ0

(φ′)2

)
,

g
(8)
C = −h2 ν0

(φ′)2
, g

(8)
G = h2

(
1

φ′

(
µ1

φ′

)′′

+
1

φ′

(
ν1

φ′

)′

− ν0

(φ′)2

)
.

It then follows that

D
(1)
C = D

(1)
G := D(1), D

(2)
C = D

(2)
G = D

(3)
C = D

(3)
G := D(2) and D

(6)
C = −D

(7)
C .

Hence, A is of the form

A =

[
T(2) + 1

2 (D(1)T(1) + T(1)D(1)) + D(5) 1
2(D(2)T(1) + T(1)D(2)) + D(6)

1
2 (D(2)T(1) + T(1)D(2)) + D(7) C

]
,

with C being defined as in (3.12). Again, since the elements of the diagonal matrices D(5), D(6),
D(7) and D(8) are all of the order O(h2), the off-diagonal blocks of A are almost skew-symmetric.

If, in particular, D
(4)
C = D

(4)
G , then the symmetric part of A is given by

H(A) =
1

2
(A + AT )

=

[
T(2) + D(5) 1

2(D(6) + D(7))
1
2(D(6) + D(7)) 1

2(D(0)T(2) + T(2)D(0)) + D(8)

]

=

[
T(2) O

O 1
2(D(0)T(2) + T(2)D(0))

]
+ O(h2),

where O denotes the zero matrix of suitable dimension.

We remark that in Cases (i) and (ii) if D(5) is positive semidefinite, the symmetric part of B
is positive definite. Thereby, B is positive definite and nonsingular. Moreover, if D(8) is positive
semidefinite, the symmetric part of C is positive definite. Thereby, C is positive definite and
nonsingular, too. Evidently, when B is nonsingular, the matrix A is nonsingular if and only if
its Schur complement S = C − FB−1E is nonsingular; see [1, 2].

4 Convergence Analysis

In this section, we show that the approximate solution yN (x) given in (3.2) converges expo-
nentially to the true solution y(x) of (2.4) as N tends to infinity. To this end, similar to



Order-Reducible Sinc Methods for Linear ODEs 11

the treatments for the third-order and the fourth-order ODEs in [3, 29], firstly we estimate
‖Aỹ − p‖2, where ỹ is a 2n-dimensional real vector defined by

ỹ = (ỹ1(x−N ), . . . , ỹ1(xN ), ỹ2(x−N+1), . . . , ỹ2(xN ))T , (4.1)

with ỹi(x) := yi(x)/ρi(x) (i = 1, 2), then we derive an upper bound for ‖A−1‖2, and finally we
prove the boundedness of the error ‖y(x) − yN (x)‖∞. Here and in the following, we denote by
‖ · ‖2 the Euclidean vector or matrix norm, and for f(x) = (f1(x), f2(x))

T , with fi(x) (i = 1, 2)
defined in D, we define the norm ‖f(x)‖∞ as

‖f(x)‖∞ = max

{
sup
x∈D

|f1(x)|, sup
x∈D

|f2(x)|
}
.

We introduce two functional spaces Lα(D) and H∞(D): Lα(D) is the set of all analytic
functions F in D such that

|F (z)| ≤ c|eφ(z)|α
(1 + |eφ(z)|)2α

, ∀z ∈ D,

where c and α are positive constants, and φ : D → Dd is a conformal mapping; and H∞(D) is
the space of all analytic functions in D equipped with the maximum norm.

The following Lemma gives an upper bound for ‖Aỹ − p‖2.

Lemma 4.1 Assume that the second-order ODE system (2.4) has a unique solution y(x). Let
ỹ(x) = (ỹ1(x), ỹ2(x))

T ∈ Lα(D) with ỹi(x) := yi(x)/ρi(x) (i = 1, 2), and σ/[(φ
′

2)
2ρ2] ∈ Lα(D).

Let AC , AG, A, ỹ and p be defined as in (3.4), (3.9), (3.11), (4.1) and (3.5), respectively.

(i) If ρ
′

1/[φ
′

1ρ1], pρ2φ
′

2/[(φ
′

1)
2ρ1], µ1ρ1φ

′

1/[(φ
′

2)
2ρ2], pρ

′

2/[φ
′

2ρ2], (1/φ
′

1)
′

, (1/φ
′

2)
′

and ν1/φ
′

2

belong to H∞(D), then there exists a constant c1, independent of N , such that

‖AC ỹ − p‖2 ≤ c1N
1/2e−(πdαN)1/2

.

(ii) If ω
′

1/[ω1φ
′

1], pρ2ω2/[ρ1ω1φ
′

1], µ1ρ1ω1/[ρ2ω2φ
′

2], (µ1ω2)
′

/[ω2φ
′

2], (1/φ
′

1)
′

, (1/φ
′

2)
′

p and ν1/φ
′

2

belong to H∞(D), then there exists a constant c
′

1, independent of N , such that

‖AGỹ − p‖2 ≤ c
′

1N
1/2e−(πdαN)1/2

.

It follows immediately from both (i) and (ii) that

‖Aỹ − p‖2 ≤ 1

2
(c1 + c

′

1)N
1/2e−(πdαN)1/2

. (4.2)

Proof. We put the lengthy proof in Appendix. 2

We now derive an upper bound for ‖A−1‖2.

Lemma 4.2 Let A be defined as in (3.11). Assume that D(5) and D(8) are positive semidefinite

matrices, D
(1)
C = D

(1)
G , D

(4)
C = D

(4)
G , and p(x) is a positive constant with p(x) ≡ d(0). Then there

exists a constant γ0, with 0 < γ0 < 1, such that

‖A−1‖2 ≤ max

{
1,

1

d(0)

}
τ(N)

4
√

1 − γ0
, (4.3)
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where τ(N) = 1/ sin2
(

π
4(N+1)

)
. Note that there exists a constant c2 such that

τ(N) ≈ 16N2

π2
(1 + c2N

−1) = O(N2)

holds for a sufficiently large N .

Proof. Denote by δ1(·) the smallest singular value of the corresponding matrix. Then from
[22] and the assumptions we have

δ1(B) ≥ min
1≤i≤n

∣∣∣∣λi

(
B + BT

2

)∣∣∣∣ = min
1≤i≤n

∣∣∣λi(T
(2) + D(5))

∣∣∣

≥ min
1≤i≤n

∣∣∣λi(T
(2))
∣∣∣ ≥ 4 sin2

(
π

4(N + 1)

)
(4.4)

and

δ1(C) ≥ min
1≤i≤n

∣∣∣∣λi

(
C + CT

2

)∣∣∣∣

= min
1≤i≤n

∣∣∣∣λi

(
1

2
(D(0)T(2) + T(2)D(0)) + D(8)

)∣∣∣∣

≥ 1

2
min

1≤i≤n

∣∣∣λi(D
(0)T(2) + T(2)D(0))

∣∣∣

= d(0) min
1≤i≤n

∣∣∣λi(T
(2))
∣∣∣

≥ 4d(0) sin2

(
π

4(N + 1)

)
. (4.5)

Based on (4.4), (4.5) and Lemma A.1, we immediately obtain the estimate in (4.3). 2

Now we are ready to derive a bound for the error function y(x) − yN (x).

Theorem 4.1 Let y(x) be the exact solution of the second-order ODE system (2.4), and yN (x)
be its sinc approximation given in (3.2). Under the assumptions of Lemmas 4.1 and 4.2, there
exists a constant c, independent of N , such that

‖y(x) − yN (x)‖∞ ≤ cN5/2e−(πdαN)1/2

(4.6)

holds for a sufficiently large N .

Proof. Define the functions

ζiN (x) := ρi(x)

N∑

j=−N

yi(xj)

ρi(xj)
S(j, h) ◦ φi(x), i = 1, 2,

and denote by ζN (x) = (ζ1N (x), ζ2N (x))T . Then the function ζN (x) can be expressed as

ζN (x) = ρ(x) ⊙
N∑

j=−N

ỹ(xj) ⊙ S(j, h) ◦ φ(x),
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where ỹ(xj) = (ỹ1(xj), ỹ2(xj))
T with ỹi(xj) := yi(xj)/ρi(xj) (i = 1, 2). By making use of the

triangular inequality, we have

‖y(x) − yN (x)‖∞ ≤ ‖y(x) − ζN (x)‖∞ + ‖ζN (x) − yN (x)‖∞. (4.7)

Since ỹ(x) ∈ Lα(D), from [31] we know that there exists a c3 > 0, independent of N , such that

‖y(x) − ζN (x)‖∞ ≤ c3N
1/2e−(πdαN)1/2

. (4.8)

The second term on the right-hand side of (4.7) satisfies

‖ζN (x) − yN (x)‖∞ =

∥∥∥∥∥∥

N∑

j=−N

[ỹ(xj) −̟j ] ⊙ [S(j, h) ◦ φ(x)] ⊙ ρ(x)

∥∥∥∥∥∥
∞

≤
N∑

j=−N

‖ỹ(xj) −̟j‖∞ · ‖[S(j, h) ◦ φ(x)] ⊙ ρ(x)‖∞

≤




N∑

j=−N

‖ỹ(xj) −̟j‖2
∞




1/2


N∑

j=−N

‖[S(j, h) ◦ φ(x)] ⊙ ρ(x)‖2
∞




1/2

,

where ̟j = (uj , vj)
T . Because ρ(x) is a bounded function and x ∈ φ−1((−∞,∞)), the summa-

tion
∑∞

j=−∞ ‖[S(j, h) ◦ φ(x)] ⊙ ρ(x)‖2
∞ is bounded by a constant, say, (c

′

3)
2. Hence, we get

‖ζN (x) − yN (x)‖∞ ≤ c
′

3




N∑

j=−N

‖ỹ(xj) −̟j‖2
∞




1/2

≤ c
′

3‖ỹ − w‖2,

with w, defined in (3.5), being the exact solution of (3.10). By (4.2) and (4.3), we can obtain

‖ỹ − w‖2 = ‖A−1(Aỹ − p)‖2 ≤ ‖A−1‖2‖Aỹ − p‖2 ≤ c
′′

3N
5/2e−(πdαN)1/2

, (4.9)

where c
′′

3 is a constant independent of N . Now the estimate (4.6) follows immediately by sub-
stituting (4.8) and (4.9) into (4.7). 2

5 Block-Diagonal Preconditioning

In this section, we discuss how to construct an efficient preconditioner P for the coefficient
matrix A defined in (3.11), so that the convergence speeds of the Krylov subspace methods such
as GMRES for solving the system of linear equations (3.10) can be further accelerated. To this
end, we propose a block-diagonal preconditioner P based on the special structure and actual
properties of the matrix A. Let Â be the block-diagonal part of A. Then we demonstrate that
‖Â − A‖2 ≤ O(h). Moreover, we prove that the eigenvalues of the matrix P−1Â are uniformly
bounded within a rectangle on the complex plane independent of the size of the linear system.
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5.1 Construction of the Preconditioners

As the block two-by-two matrix A is dominated by its diagonal blocks and each of its blocks is
a combination of Toeplitz and diagonal matrices, following the approach in [24, 27] we construct
the block-diagonal preconditioning matrix

P =

[
B̃ O

O C̃

]
, (5.1)

where

B̃ = B(2) +
1

2
(D

(1)
C B(1) + B(1)D

(1)
G ) + D(5)

and

C̃ =
1

2
(D(0)B(2) + B(2)D(0)) +

1

2
(D

(4)
C B(1) + B(1)D

(4)
G ) + D(8),

with

B(1) = tridiag

[
1

2
, 0,−1

2

]
and B(2) = tridiag[−1, 2,−1]

being tridiagonal matrices approximating the Toeplitz matrices T(1) and T(2), respectively. The
preconditioner P is a tridiagonal matrix and, hence, the linear system with respect to it can be
solved fast and economically.

Hereafter in this section, we use I to denote the identity matrix and focus on the special case

that D(0) = d(0)I with d(0) > 0, D
(1)
C = D

(1)
G := D(1) and D

(4)
C = D

(4)
G := D(4). It turns out that

the block-diagonal preconditioner P is positive definite.

Theorem 5.1 Assume that D(5) and D(8) are positive semidefinite matrices. Then H(P) is
symmetric positive definite. Hence, the matrix P is positive definite and, thus, nonsingular.

Proof. Evidently, the symmetric and skew-symmetric parts of P are given by

H(P) =
1

2
(P + PT ) =

[
B(2) + D(5) O

O 1
2(D(0)B(2) + B(2)D(0)) + D(8)

]

and

S(P) =
1

2
(P − PT ) =

[
1
2 (D(1)B(1) + B(1)D(1)) O

O 1
2(D(4)B(1) + B(1)D(4))

]
,

respectively. Because B(2) is symmetric positive definite, D(5) and D(8) are diagonal and positive
semidefinite, and D(0) = d(0)I with d(0) > 0, we easily see that H(P) is positive definite.
Therefore, the matrix P is positive definite and, thus, nonsingular. 2

5.2 Analysis of the Preconditioned Matrix

Denote by

Â =

[
B O
O C

]
(5.2)

the block-diagonal part of A. Then we can prove the following result.
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Theorem 5.2 Let A and Â be defined as in (3.11) and (5.2), respectively. Then

‖Â− A‖2 ≤ O(h).

Proof. By straightforward computations we have

‖Â − A‖2 =

∥∥∥∥
[

B O
O C

]
−
[

B E
F C

]∥∥∥∥
2

=

∥∥∥∥
[

O E
F O

]∥∥∥∥
2

≤ max {‖E‖2, ‖F‖2} .

Because

‖E‖2 =

∥∥∥∥
1

2
(D

(2)
C T(1) + T(1)D

(2)
G ) + D(6)

∥∥∥∥
2

≤
∥∥∥∥
1

2
(D

(2)
C T(1) + T(1)D

(2)
G )

∥∥∥∥
2

+ ‖D(6)‖2 = O(h)

and

‖F‖2 =

∥∥∥∥
1

2
(D

(3)
C T(1) + T(1)D

(3)
G ) + D(7)

∥∥∥∥
2

≤
∥∥∥∥
1

2
(D

(3)
C T(1) + T(1)D

(3)
G )

∥∥∥∥
2

+ ‖D(7)‖2 = O(h),

we immediately obtain the result. 2

Theorem 5.2 clearly shows that the matrix Â accurately approximates A when the step-size
h is small. Under the assumption that both D(5) and D(8) are positive semidefinite matrices,
analogously to Theorem 5.1 we can demonstrate that the matrix Â is positive definite and, thus,
nonsingular, too.

The generalized Bendixson theorem, established in [8], is an essential tool for deriving a
rectangular domain that bounds the eigenvalues of the preconditioned matrix P−1Â. Based on
Lemma 4.7 in [3], we can readily obtain a rectangular domain that bounds the eigenvalues of
the preconditioned matrix P−1Â.

Theorem 5.3 Let P and Â be defined in (5.1) and (5.2), respectively. Let the diagonal matrices
D(5) and D(8) be positive definite, and denote by

η = max

{
d(1)π√

d(5)(π2 + d(5))
,

d(4)π√
d(8)(d(0)π2 + d(8))

}

and

ξ = max

{
d(1)(

√
4 + d(5) −

√
d(5))√

d(5)
,

d(4)(
√

4d(0) + d(8) −
√
d(8))

d(0)
√
d(8)

}
,

with
d(1) = max

1≤ℓ≤n
{|[D(1)]ℓℓ|}, d(4) = max

1≤ℓ≤n
{|[D(4)]ℓℓ|}

and
d(5) = min

1≤ℓ≤n
{|[D(5)]ℓℓ|}, d(8) = min

1≤ℓ≤n
{|[D(8)]ℓℓ|}.

Then it holds that




(1 − ηξ)

1 + ξ2
≤ Re(λ(P−1Â)) ≤ π2(1 + ηξ)

4
, for ηξ < 1,

−π
2(η + ξ)

4
≤ Im(λ(P−1Â)) ≤ π2(η + ξ)

4
.
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Proof. The symmetric and skew-symmetric parts of the matrices Â and P are given by

H(Â) =
1

2
(Â + ÂT ) =

[
T(2) + D(5) O

O d(0)T(2) + D(8)

]
,

S(Â) =
1

2
(Â− ÂT ) =

[
1
2 (D(1)T(1) + T(1)D(1)) O

O 1
2 (D(4)T(1) + T(1)D(4))

]

and

H(P) =
1

2
(P + PT ) =

[
B(2) + D(5) O

O d(0)B(2) + D(8)

]
,

S(P) =
1

2
(P − PT ) =

[
1
2 (D(1)B(1) + B(1)D(1)) O

O 1
2(D(4)B(1) + B(1)D(4))

]
.

From [3, Lemma 4.7], for all z = (uT ,vT )T ∈ C2n\{0}, we have

h(z) :=
zTH(Â)z

zTH(P)z
=

uT (T(2) + D(5))u + vT (d(0)T(2) + D(8))v

uT (B(2) + D(5))u + vT (d(0)B(2) + D(8))v

≤ max

{
uT (T(2) + D(5))u

uT (B(2) + D(5))u
,

vT (d(0)T(2) + D(5))v

vT (d(0)B(2) + D(5))v

}
<
π2

4
. (5.3)

Similarly, we can obtain

zTH(Â)z

zTH(P)z
> 1. (5.4)

Again, by making use of [3, Lemma 4.7], with straightforward computations we have

fbA(z) :=

∣∣∣∣∣
1

ı

zTS(Â)z

zTH(Â)z

∣∣∣∣∣ =
∣∣∣∣∣

1
2u

T (D(1)T(1) + T(1)D(1))u + 1
2v

T (D(4)T(1) + T(1)D(4))v

uT (T(2) + D(5))u + vT (d(0)T(2) + D(8))v

∣∣∣∣∣

≤ 1

2

∣∣uT (D(1)T(1) + T(1)D(1))u
∣∣+
∣∣vT (D(4)T(1) + T(1)D(4))v

∣∣
uT (T(2) + D(5))u + vT (d(0)T(2) + D(8))v

≤ 1

2
max

{∣∣uT (D(1)T(1) + T(1)D(1))u
∣∣

uT (T(2) + D(5))u
,

∣∣vT (D(4)T(1) + T(1)D(4))v
∣∣

vT (d(0)T(2) + D(8))v

}

< max

{
d(1)π√

d(5)(π2 + d(5))
,

d(4)π√
d(8)(d(0)π2 + d(8))

}
= η (5.5)

and

fP(z) :=

∣∣∣∣
1

ı

zTS(P)z

zTH(P)z

∣∣∣∣ =
∣∣∣∣∣

1
2u

T (D(1)B(1) + B(1)D(1))u + 1
2v

T (D(4)B(1) + B(1)D(4))v

uT (B(2) + D(5))u + vT (d(0)B(2) + D(8))v

∣∣∣∣∣

≤ 1

2

∣∣uT (D(1)B(1) + B(1)D(1))u
∣∣+
∣∣vT (D(4)B(1) + B(1)D(4))v

∣∣
uT (B(2) + D(5))u + vT (d(0)B(2) + D(8))v

≤ 1

2
max

{∣∣uT (D(1)B(1) + B(1)D(1))u
∣∣

uT (B(2) + D(5))u
,

∣∣vT (D(4)B(1) + B(1)D(4))v
∣∣

vT (d(0)B(2) + D(8))v

}

< max

{
d(1)(

√
4 + d(5) −

√
d(5))√

d(5)
,

d(4)(
√

4d(0) + d(8) −
√
d(8))

d(0)
√
d(8)

}
= ξ. (5.6)
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Table 5.1: Estimated and Computed eigenvalue bounds for P−1Â of Example 6.1

N ν Estimated Eigenvalue Bounds Computed Eigenvalue Bounds

8 2 × 103 [0.5011, 3.5549] × [−4.0313, 4.0313] [1.0000, 1.0159] × [−0.1595, 0.1595]
16 4 × 104 [0.5315, 3.4845] × [−3.9288, 3.9288] [1.0000, 1.0198] × [−0.1945, 0.1945]
32 2 × 106 [0.4500, 3.6766] × [−4.2128, 4.2128] [1.0000, 1.0321] × [−0.2702, 0.2702]
64 6 × 108 [0.5553, 3.4300] × [−3.8433, 3.8433] [1.0000, 1.0293] × [−0.2832, 0.2832]

By applying (5.3)–(5.6) to the generalized Bendixson theorem [8, Theorem 2.4] (see also [3,
Theorem 4.3]), we immediately obtain the bounds in Theorem 5.3 for the eigenvalues of P−1Â.
2

When using Theorem 5.3, we should suitably scale (2.4) and appropriately choose the confor-
mal mapping φ(x) such that ηξ < 1, so that correct and accurate estimates about the eigenvalue
bounds may be obtained. For example, if we take φ(x) = ν−1 ln(x/(1−x)) in Example 6.1, with
ν > 0 a scaling factor, then corresponding to different mesh-sizes h = π/

√
2N we can obtain the

computed and estimated eigenvalue bounds about P−1Â as shown in Table 5.1. Clearly, from
Table 5.1 we observe that the estimated rectangles tightly contain the computed eigenvalues
of P−1Â. Moreover, the rectangles bounding the computed eigenvalues are almost unchanged
with respect to h.

6 Numerical Examples

In this section, we verify the feasibility of the order-reduction method, examine the accuracy
of the sinc discretization, and test the effectiveness of the proposed block-diagonal precondi-
tioner. To this end, we apply GMRES and BiCGSTAB, incorporated with the block-diagonal
preconditioner P defined in (5.1), to the system of linear equations (3.10) obtained from the
sinc discretization of the second-order ODE system (2.4).

The two examples of the ODEs used in our tests are given below.

Example 6.1 The third-order ODE (1.1) is given by





y
′′′

1 (x) − 1

x
y
′′

1 (x) + y
′

1(x) −
1

x
y1(x) = σ(x), 0 < x < 1,

y1(0) = 0, y1(1) = 0, y
′

1(0) = 0,

where σ(x) = 3x3 − 4x2 + 13x − 2/x. It can be transformed into the second-order ODE system
(2.4) as follows:





y
′′

1 (x) − y
′

2(x) −
1

x
y2(x) = 0,

y
′

1(x) −
1

x
y1(x) + y

′′

2 (x) − 2

x2
y2(x) = σ(x), 0 < x < 1,

y1(0) = 0, y1(1) = 0, y
′

1(0) = 0 and y2(0) = 0,

which has the exact solution y1(x) = x2(1 − x)2, y2(x) = 3x3 − 4x2 + x.
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Example 6.2 The third-order ODE (1.1) is given by





y
′′′

1 (x) − y
′′

1 (x) − y
′

1(x) +
1

x
y1(x) = σ(x), 0 < x < 1,

y1(0) = 0, y1(1) = 0, y
′

1(0) = 0,

where σ(x) = −(π3 + π) cos(πx) + (π2 + 1/x) sin(πx) − πx− 2π. It can be transformed into the
second-order ODE system (2.4) as follows:





y
′′

1 (x) − y
′

2(x) −
1

x
y2(x) = 0, 0 < x < 1,

−y′

1(x) +
1

x
y1(x) + y

′′

2 (x) + (
1

x
− 1)y

′

2(x) − (
1

x
+

1

x2
)y2(x) = σ(x),

y1(0) = 0, y1(1) = 0, y
′

1(0) = 0 and y2(0) = 0,

which has the exact solution y1(x) = sin(πx) + π(x2 − x), y2(x) = πx+ π cos(πx) − sin(πx)/x.

In Examples 6.1 and 6.2, the conformal mappings are chosen as φ1(x) = φ2(x) = ln(x/(1−x)),
the weighting functions are chosen as ρ1(x) = ρ2(x) = 1 and ω1(x) = ω2(x) = 1/ ln(x/(1 − x)),
and the mesh-size is set to be the optimal one h = π/

√
2N . Both test examples are ODEs

of homogeneous boundary values and with known solutions, so that we can easily verify the
accuracy of both discrete and computed solutions.

In our tests, all codes are written in MATLAB 7.04 and run on a personal computer with
0.98G memory. In addition, the initial guess is taken to be zero and the iteration process is
terminated once ‖Aw− p‖2 ≤ 10−6 ×‖p‖2 or once the number of iteration steps exceeds 1000.

In Table 6.1, we list the errors Es(h) between the approximated solutions yN (x) and the true
solutions y(x) at the sinc points. More precisely, the error Es(h) is defined as

Es(h) = max
−N≤j≤N

‖y(xj) − yN (xj)‖∞

≡ max
−N≤j≤N

{|y1(xj) − y1N (xj)|, |y2(xj) − y2N (xj)|} ,

where the coefficients {wj}N
j=−N in yN (xj) are solved by the direct method w = A \ p with

MATLAB. From this table we see that the error function Es(h) reduces exponentially for both
examples when N is growing up.

Tables 6.2 and 6.3 list the numbers of iteration steps for solving the system of linear equations
(3.10) by two different methods. In the tables, the “new method” denotes the order-reduced sinc-
discretization, incorporated with the block-diagonal preconditioning, proposed in this paper; and
the “method in [3]” represents the sinc-discretization directly applied to the third-order ODE
(1.1), combined with the penta-diagonal preconditioning, presented in [3]. In these two tables,
we use “ ∗ ” to indicate that the iteration method does not converge within 1000 iteration
steps, “I ” to represent the iteration method with no preconditioner, and “P ” to denote the
iteration method with either the block-diagonal preconditioner defined in (5.1) or the penta-
diagonal preconditioner given in [3]. In addition, “Piter” and “Iiter” stand for the numbers of
iteration steps required for convergence corresponding to the preconditioning matrices P and I,
respectively.
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Table 6.1: Errors for Examples 6.1 and 6.2

N Es(h)
Example 6.1 Example 6.2

8 1.94e-03 5.99e-03
16 1.72e-04 5.38e-04
32 4.97e-06 1.56e-05
64 3.01e-08 9.46e-08
128 2.05e-11 6.45e-11
256 4.57e-15 1.24e-14

Table 6.2: Numerical Results for Example 6.1

New Method Method in [3]
N GMRES BiCGSTAB GMRES BiCGSTAB

Iiter Piter Iiter Piter Iiter Piter Iiter Piter

8 31 9 23 5 17 15 34 13
16 50 9 35 5 33 20 206 18
32 82 8 61 4 65 25 ∗ 27
64 92 7 97 4 129 32 ∗ 44
128 125 7 129 4 257 42 ∗ 75
256 168 7 182 5 513 55 ∗ 117

We now discuss and analyze the numerical results in Tables 6.2 and 6.3. If no preconditioner is
used, we see that the new method successfully results in an approximate solution for the second-
order ODE system (2.4) within the required maximal number of iterations when both GMRES
and BiCGSTAB are employed as the linear solvers, while the method in [3] only succeeds when
GMRES is employed, but fails for almost all cases when BiCGSTAB is employed as the linear
solver. For GMRES, the new method also requires considerably less iteration steps than the
method in [3] when N ≥ 64.

If the preconditioners are used, Tables 6.2 and 6.3 show that both methods can successfully
and accurately produce approximate solutions for the second-order ODE system (2.4), and they
require much less numbers of iteration steps than their counterparts without using precondi-
tioners. Therefore, the preconditioners can greatly improve the numerical properties of both
GMRES and BiCGSTAB. Evidently, the new method outperforms the method in [3] in terms
of iteration steps. Moreover, when N is increasing, the iteration steps of both preconditioned
GMRES and BiCGSTAB are nearly constants and even roughly decreasing for the new method,
while they are growing up quickly for the method in [3]. Consequently, the new method shows
h-independent convergence property, but the method in [3] does not. Hence, for both Examples
6.1 and 6.2 our order-reduction approach incorporated with the block-diagonal preconditioner
can produce accurate approximation to the solution of the third-order ODE (1.1) and accelerate
the convergence rates of GMRES and BiCGSTAB.

Figures 6.1–6.4 depict the distributions of the eigenvalues of the original matrix A and the
preconditioned matrix P−1A for Examples 6.1 and 6.2. These figures clearly show that the orig-
inal matrices are very ill-conditioned and, therefore, the corresponding GMRES and BiCGSTAB
may converge very slowly. However, the preconditioned matrices have tightly clustered eigen-
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Figure 6.1: Spectra of A (left) and P−1A (right) for Example 6.1 with N=32.
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Figure 6.2: Spectra of A (left) and P−1A (right) for Example 6.1 with N=64.
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Figure 6.3: Spectra of A (left) and P−1A (right) for Example 6.2 with N=32.
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Figure 6.4: Spectra of A (left) and P−1A (right) for Example 6.2 with N=64.
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Table 6.3: Numerical Results for Example 6.2

New Method Method in [3]
N GMRES BiCGSTAB GMRES BiCGSTAB

Iiter Piter Iiter Piter Iiter Piter Iiter Piter

8 32 9 26 6 17 14 158 13
16 53 9 41 5 33 19 ∗ 20
32 86 8 59 6 65 27 ∗ 29
64 101 7 100 4 129 35 ∗ 32
128 162 7 141 5 257 45 ∗ 70
256 228 7 193 5 513 58 ∗ 121

values and, thus, are well-conditioned; as a result, the corresponding preconditioned GMRES
and BiCGSTAB converge very fast to the exact solution of the discretized system of (2.4).

7 Concluding Remarks

The order-reduction method transforms the third-order ODE (1.1) into the second-order ODE
system (2.4). We prove that the sinc-discretization solution of the latter converges exponen-
tially to its true solution. The coefficient matrix possesses more nice algebraic properties, such
as structured, block-diagonally dominant, and positive definite, and is better conditioned than
that from the direct sinc-discretization of the third-order ODE (1.1). Hence, with a suitable
block-diagonal preconditioning, the system can be solved faster and more economically by the
preconditioned Krylov subspace iteration methods such as GMRES and BiCGSTAB. We con-
firmed these advantages by both theoretical analysis and numerical experiments.

We emphasize that our order-reduction method is quite different from the common approach
used frequently in the literature, where the third-order ODE (1.1) is equivalently transformed
into an ODE system of a first-order and a second-order ODEs. That is to say, the reduced-order
ODE system is of the form





L1y(x) := y2(x) − y
′

1(x) = 0, a < x < b,

L2y(x) := y
′′

2 (x) + µ2(x)y
′

2(x) + µ1(x)y2(x) + µ0(x)y1(x) = σ(x),

y1(a) = 0, y1(b) = 0, y2(a) = 0.

Let y(x) = (y1(x), y2(x))
T and the approximate solution yN (x) be defined by (3.2). Then, by

combining both sinc-collocation and sinc-Galerkin discretizations and averaging the resulting
discretized linear systems, we obtain the system Aw = p, where

A =

[
T(1) + D(1) D(2)

D(3) T(2) + 1
2(D

(4)
C T(1) + T(1)D

(4)
G ) + D(5)

]
∈ R

2n×2n, (7.1)

w,p ∈ R2n are given by (3.5), and

D(i) := diag(g(i)(x−N ), g(i)(x−N+1), . . . , g
(i)(xN )), i = 1, 2, . . . , 5,



Order-Reducible Sinc Methods for Linear ODEs 23

Table 7.1: Numerical Results about GMRES Method for Examples 6.1 and 6.2, with α = 0.01

N Example 6.1 Example 6.2
Iiter Piter Iiter Piter

8 34 16 34 16
16 66 20 66 21
32 129 25 130 25
64 251 30 253 29
128 481 39 489 37
256 945 50 945 51

with

g(1) = h

(
ρ2ω

′

1

ρ1ω1φ
′

1

− ρ
′

1

ρ1φ
′

1

)
, g(2) = h

(
µ0ρ2

ρ1φ
′

1

+
ρ2ω2

ρ1ω1φ
′

1

)
,

g(3) = −h2

(
µ0ρ1

(φ
′

2)
2ρ2

+
µ0ρ1ω1

φ
′

1φ
′

2ρ2ω2

)
, g

(4)
C = h

(
ρ
′

2φ
′

2 + (ρ2φ
′

2)
′

+ µ2ρ2φ
′

2

(φ
′

2)
2ρ2

)
,

g
(4)
G = −h

(
ω

′

2φ
′

2 + (ω2φ
′

2)
′ − µ2ω2φ

′

2

(φ
′

2)
2ω2

)
, g(5) = −h2

(
ρ
′′

2 + µ2ρ
′

2 + µ1ρ2

(φ
′

2)
2ρ2

+
ω

′′

2 − (µ2ω2)
′

+ µ1ω2

(φ
′

2)
2ω2

)
.

Because T(1) +D(1) is nearly singular, the matrix A is almost singular, especially when the step-
size h is small. Moreover, A is likely indefinite and not block-diagonally dominant. Therefore,
this approach can not effectively reduce the ill-conditioning in A. Even if we precondition A in
(7.1) by the block-diagonal matrix

P =

[
B(1) + D(1) + αI O

O B(2) + 1
2 (D

(4)
C B(1) + B(1)D

(4)
G ) + D(5)

]
, with α > 0,

and adopt an experimentally found optimal parameter α, the preconditioned GMRES method
can not exhibit satisfactory numerical performance for both Examples 6.1 and 6.2; see Table 7.1.

A Appendix

A.1 Proof of Lemma 4.1

Part (i): To prove Lemma 4.1 (i), we need an error expression for the cardinal expansion of
ỹ(x) = (ỹ1(x), ỹ2(x))

T with ỹi(x) := yi(x)/ρi(x) (i = 1, 2). For i = 1, 2, m = 0, 1, 2 and j ∈ ZN ,
define Ki,m(x, z) and ωi,m,j(x) as

Ki,m(x, z) =
[ρi(x)]

m−1

2πı

dm

dxm

[
ρi(x) sin[πφi(x)/h]

φi(z) − φi(x)

]
,

ωi,m,j(x) = [ρi(x)]
m−1 dm

dxm
[ρi(x)S(j, h) ◦ φi(x)] .
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Then it follows from ỹ(x) ∈ Lα(D) that ỹ(x)φ
′

(x) ∈ H1(D), where H1(D) is the space of all
analytic functions in D equipped with the 1-norm. Hence, by making use of [19, Theorem 3.2],
we know that the cardinal series expansion of ỹi(x) has an error term

ỹi(x) −
∞∑

j=−∞

ωi,0,j(x)ỹi(xj) =

∫

∂D

Ki,0(x, z)ỹi(z)φ
′

i(z)

sin[πφi(z)/h]
dz, i = 1, 2.

So, in general, we have

dmyi(x)

dxm
−

∞∑

j=−∞

ωi,m,j(x)ỹi(xj)

[ρi(x)]m−1
=

∫

∂D

Ki,m(x, z)ỹi(z)φ
′

i(z)

[ρi(x)]m−1 sin[πφi(z)/h]
dz.

Let r1k and r2k denote the kth and (k+n)th components of the vector AC ỹ−p, respectively.
Then it holds that

r1k = r
(1)
1k + r

(2)
1k and r2k = r

(1)
2k + r

(2)
2k ,

where

r
(1)
1k =

h2

(φ
′

1)
2ρ1

(
y
′′

1 − py
′

2

)
(xk) −

h2

(φ
′

1)
2ρ1

∞∑

j=−∞

[
ω1,2,j

ρ1
(xk)ỹ1(xj) − pω2,1,j(xk)ỹ2(xj)

]

= h2

∫

∂D

[
K1,2(xk, z)

(φ
′

1)
2ρ2

1

· φ
′

1(z)ỹ1(z)

sin[πφ1(z)/h]
− pK2,1(xk, z)

(φ
′

1)
2ρ1

· φ
′

2(z)ỹ2(z)

sin[πφ2(z)/h]

]
dz,

r
(2)
1k =

∑

|j|>N

[
ω1,2,j

ρ1
(xk)ỹ1(xj) − pω2,1,j(xk)ỹ2(xj)

]
,

and

r
(1)
2k =

h2

(φ
′

2)
2ρ2

(
µ1y

′

1 + py
′′

2 + ν1y
′

2

)
(xk)

− h2

(φ
′

2)
2ρ2

∞∑

j=−∞

[
µ1ω1,1,j(xk)ỹ1(xj) +

pω2,2,j

ρ2
(xk)ỹ2(xj) + ν1ω2,1,j(xk)ỹ2(xj)

]

= h2

∫

∂D

[
µ1K1,1(xk, z)

(φ
′

2)
2ρ2

· φ
′

1(z)ỹ1(z)

sin[πφ1(z)/h]

+

(
pK2,2(xk, z)

(φ
′

2)
2ρ2

2

+
ν1K2,1(xk, z)

(φ
′

2)
2ρ2

)
· φ

′

2(z)ỹ2(z)

sin[πφ2(z)/h]

]
dz,

r
(2)
2k =

∑

|j|>N

[
µ1ω1,1,j(xk)ỹ1(xj) +

pω2,2,j

ρ2
(xk)ỹ2(xj) + ν1ω2,1,j(xk)ỹ2(xj)

]
.

In the above expressions, Ki,m(xk, z) (i = 1, 2, m = 0, 1, 2) have the following explicit forms:

Ki,0(xk, z) = 0, Ki,1(xk, z) =
(−1)k

2ıh[φi(z) − kh]
ρiφ

′

i(xk),
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and

Ki,2(xk, z) =
(−1)kρi

2ıh[φi(z) − kh]2

[
2ρi(φ

′

i)
2 + (φi(z) − kh)(2ρ

′

iφ
′

i + ρiφ
′′

i )(xk)
]
.

Since |Im(t)| = d and |t− kh| ≥ d hold on ∂Dd, we have |Im(φi(z))| = d and |φi(z)− kh| ≥ d
on ∂D. Using these facts, as well as the assumptions on the coefficients of the second-order ODE
system (2.4) and on the mapping φi, we obtain

h2

∣∣∣∣
K1,2(xk, z)

(φ
′

1)
2ρ2

1

∣∣∣∣ ≤
c
′

4h

[(Re(φ1(z)) − kh)2 + d2]1/2
,

h2

∣∣∣∣
pK2,1(xk, z)

(φ
′

1)
2ρ1

∣∣∣∣ ≤
c
′′

4h

[(Re(φ2(z)) − kh)2 + d2]1/2
,

h2

∣∣∣∣
µ1K1,1(xk, z)

(φ
′

2)
2ρ2

∣∣∣∣ ≤
c
′

5h

[(Re(φ1(z)) − kh)2 + d2]1/2
,

h2

∣∣∣∣
pK2,2(xk, z)

(φ
′

2)
2ρ2

2

+
ν1K2,1(xk, z)

(φ
′

2)
2ρ2

∣∣∣∣ ≤
c
′′

5h

[(Re(φ2(z)) − kh)2 + d2]1/2
,

where c
′

4, c
′′

4 , c
′

5 and c
′′

5 are positive constants depending on the bounds for the coefficients of the
second-order ODE system (2.4), on the bounds for derivatives of the inverses of the mappings
φi, and on the half-band-width d of the strip region Dd. Therefore, it holds that

‖AC ỹ − p‖2 =

(
N∑

k=−N

|r1k|2 +
N∑

k=−N

|r2k|2
)1/2

(A.1)

≤
(

N∑

k=−N

|r(1)1k |2
)1/2

+

(
N∑

k=−N

|r(2)1k |2
)1/2

+

(
N∑

k=−N

|r(1)2k |2
)1/2

+

(
N∑

k=−N

|r(2)2k |2
)1/2

.

The first term in the right-hand side of (A.1) satisfies

N∑

k=−N

|r(1)1k |2 ≤
∞∑

k=−∞

[∣∣∣∣∣

∫

∂D

c
′

4h

[(Re(φ1(z)) − kh)2 + d2]1/2

|φ′

1(z)ỹ1(z)|
| sin[πφ1(z)/h]|

|dz|
∣∣∣∣∣

+

∣∣∣∣∣

∫

∂D

c
′′

4h

[(Re(φ2(z)) − kh)2 + d2]1/2

|φ′

2(z)ỹ2(z)|
| sin[πφ2(z)/h]|

|dz|
∣∣∣∣∣

]2

≤
∞∑

k=−∞

h2

k2h2 + d2

[
c
′

4

∫

∂D

|φ′

1(z)ỹ1(z)dz|
| sin[πφ1(z)/h]|

+ c
′′

4

∫

∂D

|φ′

2(z)ỹ2(z)dz|
| sin[πφ2(z)/h]|

]2

≤ c4
[sinh(πd/h)]2

. (A.2)

We remark that the second inequality in (A.2) comes from the fact that there exists a k0 ∈ Z

such that k0h ≤ Re(φi(z)) − kh ≤ (k0 + 1)h, and the last inequality in (A.2) comes from the
bounds sin[πφi(z)/h] ≥ sinh[πd/h] on ∂D and from the existence of the integrals about both
φ

′

1ỹ1 and φ
′

2ỹ2.
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Analogous to the derivation of (A.2), we know that the third term in the right-hand side of
(A.1) also satisfies

N∑

k=−N

|r(1)2k |2 ≤ c5
[sinh(πd/h)]2

.

For the second term in the right-hand side of (A.1), using the assumptions on the mappings

φ1, φ2 and on the coefficients of (2.4), and utilizing the expressions for {δ(m)
jk }N

j,k=−N (m = 1, 2),
we have

N∑

k=−N

|r(2)1k |2 =

N∑

k=−N

∣∣∣∣∣∣

∑

|j|>N

[
(δ

(2)
jk + g

(1)
C δ

(1)
jk )ỹ1(xj) + g

(2)
C δ

(1)
jk ỹ2(xj)

]
∣∣∣∣∣∣

2

≤ c
′′

6

N∑

k=−N

∣∣∣∣∣∣

∑

|j|>N

γjke
−α|j|h

∣∣∣∣∣∣

2

≤ c
′′

6

∑

|j|>N

∑

|ℓ|>N

∞∑

k=−∞

γjkγℓke
−α|j|he−α|ℓ|h

≤ c6
h2
e−2αNh, (A.3)

where γjk is the maximum of |δ(m)
jk | (m = 1, 2). We remark that the first inequality in (A.3)

results from the fact that |ỹ1(xj)| and |ỹ2(xj)| are bounded by exponentially decaying factors.

Analogous to the derivation of (A.3), we know that the fourth term in the right-hand side of
(A.1) also satisfies

N∑

k=−N

|r(2)2k |2 ≤ c
′

6

h2
e−2αNh.

Finally, by replacing h with its optimal choice [πd/(αN)]1/2, through substituting the bounds

with respect to r
(1)
1k , r

(2)
1k , r

(1)
2k and r

(2)
2k into (A.1), and after computing and re-arranging the

terms in the estimate we straightforwardly obtain

‖AC ỹ − p‖2 ≤ c1N
1/2e−(πdαN)1/2

.

Part (ii): We select an arbitrary integer in the range [−N,N ], and simply write S(k, h) ◦ φ(x)
as S(x) and S(k, h) ◦ φi(x) as Si(x) (i = 1, 2). Then it holds that

0 =
h

ρ1ω1φ
′

1

〈L1y(x), S(x)〉

=
h

ρ1ω1φ
′

1

∫ b

a

{
(S1ω1)

′′

(x)y1(x) +
[
(pS2ω2)

′ − qS2ω2

]
(x)y2(x)

}
dx

= r
(1)
1k + r

(2)
1k + r

(3)
1k
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and

0 =
h

ρ2ω2φ
′

2

〈L2y(x) − σ(x), S(x)〉

=
h

ρ2ω2φ
′

2

∫ b

a

{[
−(µ1S1ω1)

′

+ µ0S1ω1

]
(x)y1(x)

+
[
(pS2ω2)

′′ − (ν1S2ω2)
′

+ ν0S2ω2

]
(x)y2(x) − σ(x)S2ω2(x)

}
dx

= r
(1)
2k + r

(2)
2k + r

(3)
2k ,

where r
(1)
1k and r

(1)
2k denote the kth and (k+n)th components of the vector AGy−p, respectively,

r
(2)
1k =

∑

|j|>N

[
(δ

(2)
kj − g

(1)
G δ

(1)
kj )ỹ1(xj) − g

(2)
G δ

(1)
kj ỹ2(xj)

]
,

r
(2)
2k =

∑

|j|>N

[
−g(1)

G δ
(1)
kj ỹ1(xj) + (g

(0)
G δ

(2)
kj − g

(4)
G δ

(1)
kj )ỹ2(xj)

]
,

and r
(3)
1k and r

(3)
2k represent the errors of infinite-point quadratures, which can be explicitly

expressed by means of Theorem 4.2.1 in [31] as follows:

r
(3)
1k =

ıh

2ρ1ω1φ
′

1





∫

∂D

κ2(z, h)
[
(pS2ω2)

′ − qS2ω2

]
(z)y2(z)

sin[πφ2(z)/h]
dz

+

∫

∂D

κ1(z, h)(S1ω1)
′′

(z)y1(z)

sin[πφ1(z)/h]
dz

}
, (A.4)

r
(3)
2k =

ıh

2ρ2ω2φ
′

2





∫

∂D

κ2(z, h)
[
(pS2ω2)

′′ − (ν1S2ω2)
′

+ ν0S2ω2

]
(z)y2(z) − σS2ω2(z)

sin[πφ2(z)/h]
dz

+

∫

∂D

κ1(z, h)
[
(−µ1S1ω1)

′

+ µ0S1ω1

]
(z)y1(z)

sin[πφ1(z)/h]
dz



 , (A.5)

with

κi(z, h) = exp{(ıπφi(z)/h) sign(Im(φi(z)))}, i = 1, 2,

such that |κi(z, h)| = e−πd/h holds for z ∈ ∂D, where sign(x) denotes the sign function; see
Section 2. Recall that if z ∈ ∂D, then |φi(z) − kh| ≥ d. Therefore, under the assumptions in
(ii), with the explicit expressions of the numerators in (A.4) and (A.5), we know that there exist
positive constants c7 and c

′

7, independent of h, such that

∣∣∣r(3)1k

∣∣∣ ≤ c7e
−πd/h

∫

∂D

|dz|
[(Re(φ1(z)) − kh)2 + d2]1/2

,

∣∣∣r(3)2k

∣∣∣ ≤ c
′

7e
−πd/h

∫

∂D

|dz|
[(Re(φ2(z)) − kh)2 + d2]1/2

.
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Analogous to (A.2), we obtain

(
N∑

k=−N

|r(3)1k |2
)1/2

≤ c8h
−1/2e−πd/h and

(
N∑

k=−N

|r(3)2k |2
)1/2

≤ c
′

8h
−1/2e−πd/h.

Also, similar to (A.3), we have

(
N∑

k=−N

|r(2)1k |2
)1/2

≤ c9h
−1e−αNh and

(
N∑

k=−N

|r(2)2k |2
)1/2

≤ c
′

9h
−1e−αNh.

It then follows that

‖AGỹ − p‖2 ≤ c
′

1N
1/2e−(πdαN)1/2

.

2

A.2 Upper Bound for Inverse of Block Two-by-Two Matrix

Lemma A.1 Let the matrix A be nonsingular and of the block two-by-two structure

A =

[
B E
F C

]
,

where B ∈ Rn×n, C ∈ Rm×m, E ∈ Rn×m and F ∈ Rm×n. Then there exists a constant γ0 ∈ (0, 1)
such that

‖A−1‖2 ≤ 1√
1 − γ0

max

{
1

δ1(B)
,

1

δ1(C)

}
,

where δ1(·) denotes the smallest singular value of the corresponding matrix.

Proof. From the definition of the Euclidean norm of a matrix, we know that

‖A−1‖2 = max
z6=0

‖z‖2

‖Az‖2
= max

‖z‖2=1

1√
zTAT Az

=
1√

z̃TATAz̃
,

where z̃ ∈ Rn+m is the vector such that 1/
√

zTATAz attains the maximum at z̃ on the region
{z : ‖z‖2 = 1}. Because

ATA =

[
BTB + FTF BT E + FTC
ETB + CTF ETE + CTC

]
,

for z̃ = (ũT , ṽT )T ∈ Rn+m, with ũ ∈ Rn and ṽ ∈ Rm, we can obtain

z̃TATAz̃ = ũT (BT B + FTF)ũ + ũT (BTE + FTC)ṽ

+ ṽT (ETB + CTF)ũ + ṽT (ET E + CTC)ṽ

≥ ũT (BT B + FTF)ũ + ṽT (ETE + CTC)ṽ − 2|ũT (BT E + FTC)ṽ|
≥ ũT (BT B + FTF)ũ + ṽT (ETE + CTC)ṽ − 2|ũT BTEṽ| − 2|ũT FTCṽ|. (A.6)
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Now, we further estimate a lower bound for z̃TATAz̃ in three cases.

Case (a) If ũ 6= 0, ṽ = 0 and ‖ũ‖2 = 1, from (A.6) we have

z̃T ATAz̃ ≥ ũT (BTB + FTF)ũ ≥ ũTBT Bũ ≥ [δ1(B)]2.

Therefore, it holds that ‖A−1‖2 ≤ 1/δ1(B).

Case (b) If ũ = 0, ṽ 6= 0 and ‖ṽ‖2 = 1, from (A.6) we have

z̃T ATAz̃ ≥ ṽT (ETE + CTC)ṽ ≥ ṽT CTCṽ ≥ [δ1(C)]2.

Therefore, it holds that ‖A−1‖2 ≤ 1/δ1(C).

Case (c) If ũ 6= 0, ṽ 6= 0 and ‖ũ‖2
2 + ‖ṽ‖2

2 = 1, by making use of the Cauchy-Schwarz
inequality [1] we have

|ũTBT Eṽ| ≤
√

ũTBT Bũ · ṽTETEṽ.

This inequality becomes equality if and only if Bũ = βEṽ, with β 6= 0 a constant. Therefore,
there must exist a constant γ1 ∈ (0, 1] such that

|ũTBT Eṽ| ≤ γ1

√
ũTBTBũ · ṽT ETEṽ ≤ γ1

2
(ũTBT Bũ + ṽT ETEṽ). (A.7)

Similarly, there must exist a constant γ2 ∈ (0, 1] such that

|ũT FTCṽ| ≤ γ2

√
ũT FTFũ · ṽT CTCṽ ≤ γ2

2
(ũTFTFũ + ṽT CTCṽ). (A.8)

By substituting (A.7) and (A.8) into (A.6) we immediately obtain

z̃TATAz̃ ≥ (1 − γ1)(ũ
T BT Bũ + ṽT ETEṽ) + (1 − γ2)(ṽ

T CTCṽ + ũTFTFũ)

≥ (1 − γ1)ũ
T BTBũ + (1 − γ2)ṽ

T CTCṽ.

Note that both γ1 and γ2 can not be simultaneously equal to 1 if the matrix A is nonsingular.
Let γ0 = max{γ1, γ2} for γ1 < 1 and γ2 < 1, γ0 = γ1 for γ1 < 1 and γ2 = 1, and γ0 = γ2 for
γ1 = 1 and γ2 < 1. Then it follows that γ0 ∈ (0, 1) and

‖A−1‖2 ≤ 1√
(1 − γ1)ũTBT Bũ + (1 − γ2)ṽT CTCṽ

≤ 1√
1 − γ0

max

{√
ũT ũ

ũTBT Bũ
,

√
ṽT ṽ

ṽT CTCṽ

}

≤ 1√
1 − γ0

max

{
1

δ1(B)
,

1

δ1(C)

}
.

In summary, we have demonstrated the upper bound for ‖A−1‖2. 2
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