
An Inexact Cayley Transform Method For Inverse Eigenvalue

Problems

Zheng-Jian Bai∗ Raymond H. Chan∗ Benedetta Morini†

Abstract

The Cayley transform method is a Newton-like method for solving inverse eigenvalue
problems. If the problem is large, one can solve the Jacobian equation by iterative
methods. However, iterative methods usually oversolve the problem in the sense that
they require far more (inner) iterations than is required for the convergence of the
Newton (outer) iterations. In this paper, we develop an inexact version of the Cayley
transform method. Our method can reduce the oversolving problem and improves the
efficiency with respect to the exact version. We show that the convergence rate of our
method is superlinear and that a good tradeoff between the required inner and outer
iterations can be obtained.

Keywords. Nonlinear equation, inverse eigenvalue problem, Cayley transform
AMS subject classifications. 65F18, 65F10, 65F15.

1 Introduction

Inverse eigenvalue problems arise in a variety of applications, see for instances the pole
assignment problem [5, 32], the inverse Toeplitz eigenvalue problem [8, 31, 35], the inverse
Sturm-Liouville problem [1, 21], and also problems in applied mechanics and structure de-
sign [18, 19, 22], applied geophysics [30], applied physics [23], numerical analysis [27], and
dynamics systems [14]. A good reference for these applications is the recent survey paper
on structured inverse eigenvalue problems by Chu and Golub [10]. In many of these appli-
cations, the problem size n can be large. For example, large Toeplitz eigenvalue problems
have been considered in [31]. Moreover, in the discrete inverse Sturm-Liouville problem, n
is the number of grid-points, see Chu and Golub [10, p. 10]. Our goal in this paper is to
derive an efficient algorithm for solving inverse eigenvalue problems when n is large.

Let us first define the notations. Let {Ak}n
k=0 be n + 1 real symmetric n-by-n matrices.

For any c = (c1, . . . , cn)T ∈ Rn, let

A(c) ≡ A0 +
n∑

i=1

ciAi, (1)

∗(zjbai, rchan@math.cuhk.edu.hk) Department of Mathematics, Chinese University of Hong Kong,
Shatin, NT, Hong Kong. The research of the second author was partially supported by the Hong Kong
Research Grant Council Grant CUHK4243/01P and CUHK DAG 2060257.

†(benedetta.morini@unifi.it) Dipartimento di Energetica ‘S. Stecco’ Università di Firenze, Via C. Lom-
broso 6/17, 50134 Firenze. Research was partially supported by MIUR, Rome, Italy, through “Cofinanzia-
menti Programmi di Ricerca Scientifica di Interesse Nazionale”.

1

and denote the eigenvalues of A(c) by {λi(c)}n
i=1, where λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c). An

inverse eigenvalue problem (IEP) is defined as follows: Given n real numbers λ∗1 ≤ · · · ≤ λ∗n,
find c ∈ Rn such that λi(c) = λ∗i for i = 1, . . . , n.

We note that the IEP can be formulated as a system of nonlinear equations

f(c) ≡ (λ1(c)− λ∗1, . . . , λn(c)− λ∗n)T = 0. (2)

It is easy to see that a direct application of Newton method to (2) requires the computation
of λi(c) at each iteration. To overcome the drawback, different Newton-like methods for
solving (2) are given in [17]. One of these methods, Method III, forms an approximate
Jacobian equation by applying matrix exponentials and Cayley transforms. As noted in
[7], the method is particularly interesting and it has been used or cited in [8, 9, 25, 33] for
instances.

If (2) is solved by Newton-like methods, then in each Newton iteration (the outer itera-
tion), we need to solve the approximate Jacobian equation. When n is large, solving such a
linear system will be costly. The cost can be reduced by using iterative methods (the inner
iterations). Although iterative methods can reduce the complexity, they may oversolve the
approximate Jacobian equation in the sense that the last tens or hundreds inner iterations
before convergence may not improve the convergence of the outer Newton iterations [13]. In
order to alleviate the oversolving problem, we propose in this paper an inexact Newton-like
method for solving the nonlinear system (2). The inexact Newton-like method is a method
that stops the inner iterations before convergence. By choosing suitable stopping criteria,
we can minimize the oversolving problem and therefore reduce the total cost of the whole
inner-outer iterations. In essence, one does not need to solve the approximate Jacobian
equation exactly in order that the Newton method converges fast.

In this paper, we give an inexact version of Method III where the approximate Jacobian
equation is solved inexactly by stopping the inner iterations before convergence. We propose
a new criterion to stop the inner iterations at each Newton step and provide theoretical and
experimental results for the procedure. First, we will show that the convergence rate of
our method is superlinear. Then, we illustrate by numerical examples that it can avoid the
oversolving problem and thereby reduce the total cost of the inner-outer iterations.

We remark that our proposed method is locally convergent. Thus, how to select the
initial guess becomes a crucial problem. However, global continuous methods such as the
homotopy method can be used in conjunction with our procedure. In these continuous
methods, our inexact method can be used as the corrector step where a valid starting point
is provided by the globalization strategy, see for examples [3] and [37, pp. 256–262].

This paper is organized as follows. In §2, we recall Method III for solving the IEP. In §3,
we introduce our inexact method. In §4, we give the convergence analysis of our method.
In §5, we present numerical tests to illustrate our results.

2 The Cayley Transform Method

Method III in [17] is based on Cayley transforms. In this section, we briefly recall this
method. Let c∗ be a solution to the IEP. Then there exists an orthogonal matrix Q∗
satisfying

QT
∗A(c∗)Q∗ = Λ∗, Λ∗ = diag(λ∗1, . . . , λ

∗
n). (3)

Suppose that ck and Qk are the current approximations of c∗ and Q∗ in (3) respectively
and that Qk is an orthogonal matrix. Define eZk ≡ QT

k Q∗. Then Zk is a skew-symmetric

2

matrix and (3) can be written as

QT
k A(c∗)Qk = eZkΛ∗e−Zk = (I + Zk +

1
2
(Zk)2 + · · ·)Λ∗(I − Zk +

1
2
(Zk)2 + · · ·).

Thus QT
k A(c∗)Qk = Λ∗ + ZkΛ∗ − Λ∗Zk + O(‖Zk‖2), where ‖ · ‖ denotes the 2-norm.

In Method III, ck is updated by neglecting the second order terms in Zk, i.e.

QT
k A(ck+1)Qk = Λ∗ + ZkΛ∗ − Λ∗Zk. (4)

We find ck+1 by equating the diagonal elements in (4), i.e. ck+1 is given by

(qk
i)

T A(ck+1)qk
i = λ∗i , i = 1, . . . , n, (5)

where {qk
i }n

i=1 are the column vectors of Qk. By (1), (5) can be rewritten as a linear system

J (k)ck+1 = λ∗ − b(k), (6)

where λ∗ ≡ (λ∗1, . . . , λ
∗
n)T , and

[
J (k)

]
ij

= (qk
i)

T Ajqk
i , i, j = 1, . . . , n, (7)

[b(k)]i = (qk
i)

T A0qk
i , i = 1, . . . , n. (8)

Once we get ck+1 from (6), we obtain Zk by equating the off-diagonal elements in (4),
i.e.

[Zk]ij =
(qk

i)
T A(ck+1)qk

j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n. (9)

Finally we update Qk by setting Qk+1 = QkUk, where Uk is an orthogonal matrix con-
structed by the Cayley transform for eZk , i.e.

Uk = (I +
1
2
Zk)(I − 1

2
Zk)−1.

We summarize the algorithm here.

Algorithm I: Cayley Transform Method

1. Given c0, compute the orthonormal eigenvectors {qi(c0)}n
i=1 of A(c0). Let Q0 =

[q0
1, . . . ,q

0
n] = [q1(c0), . . . ,qn(c0)].

2. For k = 0, 1, 2, . . ., until convergence, do:

(a) Form the approximate Jacobian matrix J (k) by (7) and b(k) by (8).

(b) Solve ck+1 from the approximate Jacobian equation (6).

(c) Form the skew-symmetric matrix Zk by (9).

(d) Compute Qk+1 = [qk+1
1 , . . . ,qk+1

n] = [wk+1
1 , . . . ,wk+1

n]T by solving

(I +
1
2
Zk)wk+1

j = gk
j , j = 1, · · · , n, (10)

where gk
j is the jth column of Gk = (I − 1

2Zk)QT
k .

3

This method was proved to converge quadratically in [17]. Note that in each outer
iteration (i.e. Step 2), we have to solve the linear systems (6) and (10). When the systems
are large, we may reduce the computational cost by solving both systems iteratively. One
could expect that it requires only a few iterations to solve (10) iteratively. This is due to
the fact that, as {ck} converges to c∗, ‖Zk‖ converges to zero, see [17, Equation (3.64)].
Consequently, the coefficient matrix on the left hand side of (10) approaches the identity
matrix in the limit, and therefore (10) can be solved efficiently by iterative methods. On the
other hand, iterative methods may oversolve the approximate Jacobian equation (6), in the
sense that for each outer Newton iteration, the last few inner iterations may not contribute
much to the convergence of the outer iterations. How to stop the inner iterations efficiently
is the focus of our next section.

3 The Inexact Cayley Transform Method

The main aim of this paper is to propose an efficient version of Algorithm I for large
problems. To reduce the computational cost, we solve both (6) and (10) iteratively with
(6) being solved inexactly. First, we derive a computable stopping criterion for (6), then
we establish the convergence rate of the resulting procedure.

For general nonlinear equation f(c) = 0, the stopping criterion of inexact Newton meth-
ods is usually given in terms of f(c), see for instances [13, 15, 26]. By (2), this will involve
computing λi(ck) of A(ck) which are costly to compute. Our idea is to replace them by the
Rayleigh quotients, see (14) and (16) below. We will prove in §4 that this replacement will
retain superlinear convergence.

Algorithm II: Inexact Cayley Transform Method

1. Given c0, compute the orthonormal eigenvectors {qi(c0)}n
i=1 and the eigenvalues

{λi(c0)}n
i=1 of A(c0). Let P0 = [p0

1, . . . ,p
0
n] = [q1(c0), . . . ,qn(c0)], and

ρ0 = (λ1(c0), . . . , λn(c0))T .

2. For k = 0, 1, 2, . . ., until convergence, do:

(a) Form the approximate Jacobian matrix Jk and bk as follows:

[Jk]ij = (pk
i)

T Ajpk
i , 1 ≤ i, j ≤ n, (11)

[bk]i = (pk
i)

T A0pk
i , 1 ≤ i ≤ n. (12)

(b) Solve ck+1 inexactly from the approximate Jacobian equation:

Jkck+1 = λ∗ − bk + rk, (13)

until the residual rk satisfies

‖rk‖ ≤ ‖ρk − λ∗‖β

‖λ∗‖β
, β ∈ (1, 2]. (14)

(c) Form the skew-symmetric matrix Yk:

[Yk]i j =
(pk

i)
T A(ck+1)pk

j

λ∗j − λ∗i
, 1 ≤ i 6= j ≤ n.

4

(d) Compute Pk+1 = [pk+1
1 , . . . ,pk+1

n] = [vk+1
1 , . . . ,vk+1

n]T by solving

(I +
1
2
Yk)vk+1

j = hk
j , j = 1, · · · , n, (15)

where hk
j is the jth column of Hk = (I − 1

2Yk)P T
k .

(e) Compute ρk+1 = (ρk+1
1 , . . . , ρk+1

n)T by

ρk+1
i = (pk+1

i)T A(ck+1)pk+1
i , i = 1, . . . , n. (16)

Since P0 is an orthogonal matrix and Yk are skew-symmetric matrices, we see that Pk

so generated by the Cayley transform in (15) must be orthogonal, i.e.

P T
k Pk = I, k = 0, 1, (17)

To maintain the orthogonality of Pk, that would mean that (15) cannot be solved inexactly.
However, we will see in §4 that ‖Yk‖ converges to zero as ck converges to c∗ (see (35) and
(44)). Consequently, the matrix on the left hand side of (15) approaches the identity matrix
in the limit. Therefore we can expect to solve (15) accurately by iterative methods using
just a few iterations.

The expensive step in Algorithm II will be the solution of (13). The aim of our next
section is to show that with our stopping criterion in (14), the convergence rate of Algorithm
II is equal to β given in (14).

4 Convergence Analysis

In the following, we let ck be the kth iterate produced by Algorithm II, and {λi(ck)}n
i=1

and {qi(ck)}n
i=1 be the eigenvalues and normalized eigenvectors of A(ck). We let Q∗ =

[q1(c∗), . . . ,qn(c∗)] be the orthogonal matrix of the eigenvectors of A(c∗). Moreover, we
define

Ek ≡ Pk −Q∗, (18)

the error matrix at the kth outer iteration. As in [17], we assume that the given eigenvalues
{λ∗i }n

i=1 are distinct and that the Jacobian J(c∗) defined by
[
J(c∗)

]
ij
≡ qi(c∗)T Ajqi(c∗), 1 ≤ i, j ≤ n, (19)

is nonsingular.

4.1 Preliminary Lemmas

In this subsection, we prove some preliminary results which are necessary for the convergence
analysis of our method. First we list three lemmas that are already proven in other papers.

Lemma 1 Let the given eigenvalues {λ∗i }n
i=1 be distinct and qi(c∗) be the normalized eigen-

vectors of A(c∗) corresponding to λ∗i for i = 1, . . . , n. Then there exist positive numbers δ0

and τ0 such that, if ‖ck − c∗‖ ≤ δ0, we get

‖qi(ck)− qi(c∗)‖ ≤ τ0‖ck − c∗‖, 1 ≤ i ≤ n. (20)

5

Proof: It follows from the analyticity of eigenvectors corresponding to simple eigenvalues,
see for instances [37, p. 249, Equation (4.6.13)].

Lemma 2 Let Jk, J(c∗) and Ek be defined as in (11), (19) and (18) respectively. Then
‖Jk − J(c∗)‖ = O(‖Ek‖). Hence if J(c∗) is nonsingular, then there exist positive numbers
ε0 and τ1 such that if ‖Ek‖ ≤ ε0, then Jk is nonsingular and

‖J−1
k ‖ ≤ τ1. (21)

Proof: The first part follows easily from the formula of Jk and J(c∗), and the second part
follows from the continuity of matrix inverses, cf. [6] or [37, p. 249, Equation (4.6.11)].

Lemma 3 [17, Corollary 3.1] There exist two positive numbers ε1 and τ2 such that, if
‖Ek‖ ≤ ε1, the skew-symmetric matrix Xk defined by eXk ≡ P T

k Q∗ satisfies ‖Xk‖ ≤ τ2‖Ek‖.
We now express our stopping criteria (14) in terms of ‖ck − c∗‖ and ‖Ek‖.

Lemma 4 Let the given eigenvalues {λ∗i }n
i=1 be distinct and ρk be given by (16). Then for

k ≥ 0,
‖ρk − λ∗‖ = O(‖ck − c∗‖+ ‖Ek‖). (22)

Proof: By (16), ρk
i = (pk

i)
T A(ck)pk

i . For 1 ≤ i ≤ n, we write

|ρk
i − λ∗i | ≤ |(pk

i)
T A(ck)pk

i − (pk
i)

T A(c∗)pk
i |+ |(pk

i)
T A(c∗)pk

i − λ∗i |. (23)

We claim that each term in the right hand side of (23) is bounded by O(‖ck − c∗‖+ ‖Ek‖).
For the first term, by (1) and (17), we have

|(pk
i)

T A(ck)pk
i − (pk

i)
T A(c∗)pk

i | = |(pk
i)

T
n∑

j=1

(ck
j − c∗j)Ajpk

i | = O(‖ck − c∗‖). (24)

For the second term, we have

|(pk
i)

T A(c∗)pk
i − λ∗i |

= |(pk
i)

T A(c∗)pk
i − (qi(c∗))T A(c∗)qi(c∗)|

≤ |(pk
i)

T A(c∗)pk
i − (qi(c∗))T A(c∗)pk

i |+ |(qi(c∗))T A(c∗)pk
i − (qi(c∗))T A(c∗)qi(c∗)|

≤ (‖pk
i ‖+ ‖qi(c∗)‖)‖A(c∗)‖‖qi(c∗)− pk

i ‖ ≤ O(‖pk
i − qi(c∗)‖).

Since [pk
i − qi(c∗)] is the ith column of Ek, ‖pk

i − qi(c∗)‖ ≤ ‖Ek‖, and we have

|(pk
i)

T A(c∗)pk
i − λ∗i | = O(‖Ek‖), 1 ≤ i ≤ n. (25)

Putting (24) and (25) into (23), we have (22).

As remarked already, the main difference between Algorithm II and Algorithm I is that
we solve (13) approximately rather than exactly as in (6). Thus by comparing with (4), we
see that the matrix Yk and vector ck+1 of Algorithm II are defined by

Λ∗ + YkΛ∗ − Λ∗Yk = P T
k A(ck+1)Pk −Rk, (26)

where Rk = diag([rk]1, . . . , [rk]n) and [rk]i is the ith entry of the residual vector rk given in
(13). Using (26), we can estimate ‖ck+1 − c∗‖ and ‖Ek+1‖ in terms of ‖ck − c∗‖ and ‖Ek‖.

6

Lemma 5 Let the given eigenvalues {λ∗i }n
i=1 be distinct and the Jacobian J(c∗) defined in

(19) be nonsingular. Then there exist two positive numbers δ1 and ε2 such that the conditions
‖ck − c∗‖ ≤ δ1 and ‖Ek‖ ≤ ε2 imply

‖ck+1 − c∗‖ = O(‖ρk − λ∗‖β + ‖Ek‖2), (27)
‖Ek+1‖ = O(‖ck+1 − c∗‖+ ‖Ek‖2). (28)

Proof: Let Xk be defined by eXk ≡ P T
k Q∗. By Lemma 3, if ‖Ek‖ ≤ ε1, then

‖Xk‖ = O(‖Ek‖). (29)

By (3), eXkΛ∗e−Xk = P T
k A(c∗)Pk. Hence, if ‖Ek‖ is small enough, we have

Λ∗ + XkΛ∗ − Λ∗Xk = P T
k A(c∗)Pk + O(‖Ek‖2). (30)

Subtracting (26) from (30), we have

(Xk − Yk)Λ∗ − Λ∗(Xk − Yk) = P T
k (A(c∗)−A(ck+1))Pk + Rk + O(‖Ek‖2). (31)

Equating the diagonal elements yields

Jk(ck+1 − c∗) = rk + O(‖Ek‖2),

where Jk is defined by (11). Thus if ‖Ek‖ is sufficiently small, then by (21) and (14), we
get (27).

To get (28), we note from (15) that

Ek+1 = Pk+1 −Q∗

= Pk

[
(I +

1
2
Yk) (I − 1

2
Yk)−1 − eXk

]

= Pk

[
(I +

1
2
Yk)−

(
I + Xk + O(‖Xk‖2)

)
(I − 1

2
Yk)

]
(I − 1

2
Yk)−1

= Pk

[
Yk −Xk + O(XkYk + ‖Xk‖2)

]
(I − 1

2
Yk)−1.

Therefore by (17) and (29), we have

‖Ek+1‖ ≤
[‖Yk −Xk‖+ O(‖Ek‖‖Yk‖+ ‖Ek‖2)

] ‖(I − 1
2
Yk)−1‖. (32)

We now estimate the norms in the right hand side of (32) one by one. For 1 ≤ i 6= j ≤ n,
the off-diagonal equations of (31) give

[Xk]ij − [Yk]ij =
1

λ∗j − λ∗i
(pk

i)
T (A(c∗)−A(ck+1))pk

j + O(‖Ek‖2).

It follows that
|[Xk]ij − [Yk]ij | = O(‖ck+1 − c∗‖+ ‖Ek‖2),

and hence

‖Xk − Yk‖ ≤ ‖Xk − Yk‖F = O(‖ck+1 − c∗‖+ ‖Ek‖2), (33)

7

where ‖ · ‖F denotes the Frobenius norm. By (29) and (33),

‖Yk‖ = O(‖ck+1 − c∗‖+ ‖Ek‖+ ‖Ek‖2). (34)

By (27) and (22), we have

‖Yk‖ = O(‖ρk − λ∗‖β + ‖Ek‖) = O((‖ck − c∗‖+ ‖Ek‖)β + ‖Ek‖). (35)

Thus if ‖ck − c∗‖ and ‖Ek‖ are sufficiently small, we have ‖Yk‖ ≤ 1, and therefore

‖(I − 1
2
Yk)−1‖ ≤ 1

1− 1
2‖Yk‖

≤ 2. (36)

Finally, by putting (33), (34) and (36) into (32), we have (28).

4.2 Convergence Rate of Algorithm II

In the following, we show that the root-convergence rate of our method is at least β. Here,
we recall the definition of root-convergence, see [29, Chap. 9].

Definition 1 Let {xk} be a sequence with limit x∗. Then the numbers

Rp{xk} =
{

lim supk→∞ ‖xk − x∗‖1/k, if p = 1,

lim supk→∞ ‖xk − x∗‖1/pk
, if p > 1,

(37)

are the root-convergence factors of {xk}. The quantity

OR(x∗) =
{ ∞, if Rp{xk} = 0, ∀p ∈ [1,∞),

inf{p ∈ [1,∞)|Rp{xk} = 1}, otherwise,
(38)

is called the root-convergence rate of {xk}.
We begin by proving that our method is locally convergent.

Theorem 1 Let the given eigenvalues {λ∗i }n
i=1 be distinct and J(c∗) defined in (19) be

nonsingular. Then there exists δ > 0 such that if ‖c0−c∗‖ ≤ δ, the sequence {ck} generated
by Algorithm II converges to c∗.

Proof: Suppose that ‖ck− c∗‖ ≤ δ1, and ‖Ek‖ ≤ ε = min{1, ε2}, where δ1 and ε2 are given
in Lemma 5. By Lemmas 4 and 5, there exists a constant µ > 1 such that for any k ≥ 0,

‖ρk − λ∗‖ ≤ µ(‖ck − c∗‖+ ‖Ek‖), (39)
‖ck+1 − c∗‖ ≤ µ(‖ρk − λ∗‖β + ‖Ek‖2), (40)

‖Ek+1‖ ≤ µ(‖ck+1 − c∗‖+ ‖Ek‖2). (41)

Putting (39) into (40), we have

‖ck+1 − c∗‖ ≤ µ[µβ(‖ck − c∗‖+ ‖Ek‖)β + ‖Ek‖2]

≤ µ[(2µ)β + 1] max
{
‖ck − c‖β, ‖Ek‖β

}
. (42)

8

Putting (42) into (41), and using the fact that µ > 1, we have

‖Ek+1‖ ≤ 2µ max
{
‖ck+1 − c‖, ‖Ek‖2

}

≤ 2µ2[(2µ)β + 1] max
{
‖ck − c‖β, ‖Ek‖β

}
. (43)

Let ϕ ≡ max{τ0
√

n, 2µ2[(2µ)β + 1]} > 1. Then by (42) and (43), we have

max
{
‖ck+1 − c‖, ‖Ek+1‖

}
≤ ϕmax

{
‖ck − c‖β, ‖Ek‖β

}
, k = 0, 1, (44)

We now prove the theorem by using the mathematical induction. In particular, we show
that if ‖c0 − c∗‖ ≤ δ where

δ ≡ min
{

1, δ0, δ1,
ε

ϕ
,

1
ϕβ2/(β−1)2

}
< ε, (45)

then for each k ≥ 1, the following inequalities hold:

max{‖ck − c∗‖, ‖Ek‖} ≤ δ, (46)

max{‖ck − c∗‖, ‖Ek‖} ≤ ϕ1+β+···+βk‖c0 − c∗‖βk
. (47)

We first note that from (20), we have

‖E0‖ ≤
√

nmax
i
‖qi(c0)− qi(c∗)‖ ≤ τ0

√
n‖c0 − c∗‖ ≤ ϕ‖c0 − c∗‖. (48)

Hence by using (45), ‖E0‖ ≤ ϕ‖c0 − c∗‖ ≤ ϕδ ≤ ε.
We now verify (47) for k = 1. By (44) and (48),

max{‖c1 − c∗‖, ‖E1‖} ≤ ϕmax
{
‖c0 − c‖β, ‖E0‖β

}

≤ ϕ‖c0 − c‖β max
{

1, ϕβ
}
≤ ϕ1+β‖c0 − c‖β. (49)

Moreover, if we define ζ ≡ ϕ
β

β−1 δ, then by (45),

ζβ ≤ δ. (50)

Hence by (49),

max{‖c1 − c∗‖, ‖E1‖} ≤ ϕ1+βδβ = (ϕ
1+β

β δ)β ≤ (ϕ
β

β−1 δ)β = ζβ ≤ δ.

Thus (46) holds for k = 1.
Next we assume that at the kth iteration, (46) and (47) hold. We first prove that (47)

holds for k + 1. In fact, by (44) and (47) for k, we have

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤ ϕ ·
(
ϕ1+β+···+βk‖c0 − c∗‖βk

)β

= ϕ1+β+···+βk+1‖c0 − c∗‖βk+1
. (51)

9

To prove that (46) holds for k + 1, we use (51):

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤
(

ϕ
1+β+···+βk+βk+1

βk+1 ‖c0 − c∗‖
)βk+1

=
(

ϕ

(
1

βk+1 + 1

βk +···+1
)
‖c0 − c∗‖

)βk+1

≤ (ϕ
β

β−1 ‖c0 − c∗‖)βk+1 ≤ ζβk+1
. (52)

By (50), we have ζ ≤ δ1/β ≤ 1. Hence

max{‖ck+1 − c∗‖, ‖Ek+1‖} ≤ ζβk+1 ≤ ζβ ≤ δ.

Thus we have proved that (46) and (47) hold for any k ≥ 1. Moreover, from (52), we see
that {ck} converges to c∗.

We end this section by establishing the root convergence of our method.

Theorem 2 Under the same conditions as in Theorem 1, the iterates {ck} converges to c∗

with root-convergence rate at least equal to β.

Proof: By Theorem 1, we know that {ck} converges to c∗. From (52), we have for any
k ≥ 1, ‖ck− c∗‖ ≤ ζβk

, where ζ < 1. We now estimate the root-convergence factors of {ck}
defined in (37) for different values of p:

1. If p = 1, then

R1{ck} = lim sup
k→∞

‖ck − c∗‖1/k ≤ lim sup
k→∞

ζβk/k = 0.

2. If 1 < p < β, then

Rp{ck} = lim sup
k→∞

‖ck − c∗‖1/pk ≤ lim sup
k→∞

ζ(β/p)k
= 0.

3. If p = β, then
Rβ{ck} = lim sup

k→∞
‖ck − c∗‖1/βk ≤ ζ < 1.

4. If p > β, then

Rp{ck} = lim sup
k→∞

‖ck − c∗‖1/pk ≤ lim sup
k→∞

ζ(β/p)k
= 1.

Therefore, Rp{ck} = 0 for any p ∈ [1, β) and Rp{ck} ≤ 1 for any p ∈ [β,∞). Thus according
to (38), OR(c∗) ≥ β.

10

5 Numerical Experiments

In this section, we compare the numerical performance of Algorithm I with that of Algorithm
II on two problems. The first one is the inverse Toeplitz eigenvalue problem, see [8, 31, 35],
and the second one is the inverse Sturm-Liouville problem, see [17] and [10, p. 10]. Our
aim is to illustrate the advantage of our method over Algorithm I in terms of minimizing
the oversolving problem and the overall computational complexity.

Example 1. In this example, we use Toeplitz matrices as our Ai in (1):

A0 = O, A1 = I, A2 =




0 1 0 · · · 0

1 0 1
. . .

...

0 1
. 0

...
. 0 1

0 · · · 0 1 0




, · · · , An =




0 0 · · · 0 1

0
. · · · 0

...
.

...

0 · · · 0
1 0 · · · 0 0




.

Thus A(c) is a symmetric Toeplitz matrix with the first column equals to c.
In [31], very large inverse Toeplitz eigenvalue problem were solved on parallel architec-

tures. Here we consider three problem sizes: n = 100, 200, and 300. For each value of n,
we constructed ten n-by-n test problems where the exact solutions c∗ are chosen randomly.
Then we computed the eigenvalues {λ∗i }n

i=1 of A(c∗) as the prescribed eigenvalues. Since
both algorithms are locally convergent, c0 was formed by chopping the components of c∗

to four decimal places for n = 100 and to five decimal places for n = 200 and 300.
The linear systems (6), (10), (13), and (15) are solved iteratively by the QMR method

[16] using the Matlab-provided QMR function. To guarantee the orthogonality of Qk in (10)
and Pk in (15), both systems are solved up to machine precision eps (which is ≈ 2.2×10−16).
We use the right-hand side vector as the initial guess for these two systems.

For the Jacobian systems (6) and (13), we use ck, the iterant at the kth iteration,
as the initial guess for the iterative method at the (k + 1)th iteration. We note that
both systems are difficult to solve and one can use preconditioning to speed up the con-
vergence. Here we have used the Matlab-provided Modified ILU (MILU) preconditioner:
LUINC(A,[drop-tolerance,1,1,1]) since the MILU preconditioner is one of the most ver-
satile preconditioners for unstructured matrices [12, 20]. The drop tolerance we used is 0.05
for all the three problem sizes. We emphasize that, we are not attempting to find the
best preconditioners for these systems, but trying to illustrate that preconditioning can be
incorporated into both systems easily.

The inner loop stopping tolerance for (13) is given by (14). For (6) in Algorithm I, we
are supposed to solve it up to machine precision eps. Here however, we first try to solve
(6) with a larger stopping tolerance of 10−13 and compare the two algorithms. Later we
will vary this and see how it affects the performance of Algorithm I. The outer iterations of
Algorithms I and II are stopped when

‖QT
k A(ck)Qk − Λ∗‖F ≤ 10−10, and ‖P T

k A(ck)Pk − Λ∗‖F ≤ 10−10. (53)

In Table 1, we give the total numbers of outer iterations No averaged over the ten tests
and the average total numbers of inner iterations Ni required for solving the approximate
Jacobian equations. In the table, “I” and “P” respectively mean no preconditioner or the
MILU preconditioner is used. We can see from Table 1 that No is small for Algorithm I and

11

also for Algorithm II when β ≥ 1.5. This confirms the theoretical convergence rate of the
two algorithms. In terms of Ni, Algorithm II is more effective than Algorithm I for β ≈ 1.5.
We also note that the MILU preconditioner is quite effective for the Jacobian equations.

β in Alg. II
n Alg. I

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
No 3.2 12 5.2 4 3.3 3.2 3.2 3.2 3.2 3.2 3.2100 I
Ni 397 755 445 379 327 323 325 329 336 339 349
No 3.2 7.7 5.3 4.2 3.7 3.2 3.2 3.2 3.2 3.2 3.2P
Ni 37.7 15.3 15.7 15.6 19 17.9 20.8 24 27.4 28.1 30.9
No 3 10.9 6 4 3 3 3 3 3 3 3200 I
Ni 818 1444 1144 855 684 719 725 732 738 747 763
No 3 7.4 5.1 4 3 3 3 3 3 3 3P
Ni 49.8 22.5 24.4 27.6 24.5 29.6 35.8 41 42.2 44 48.7
No 3 11 6 4 3 3 3 3 3 3 3300 I
Ni 1329 2086 1729 1348 1106 1171 1207 1241 1257 1259 1286
No 3 7.8 5.2 4 3 3 3 3 3 3 3P
Ni 74.2 35 35.7 37.3 32.9 40.2 48.4 56.1 62.3 65.4 67.5

Table 1: Averaged total numbers of outer and inner iterations.

To further illustrate the oversolving problem, we give the convergence history of Algo-
rithms I and II for one of the test matrices with n = 100 in Figure 1. The figure depicts
the logarithm of the error versus the number of inner iterations for solving the Jacobian
systems (6) and (13) by the preconditioned QMR method. We have labeled the error at
the outer iterations with special symbols. We can see that for Algorithm I, the oversolving
problem is very significant (see the horizontal lines between iteration numbers 5 to 15, and
20 to 28), whereas there are virtually no oversolving for Algorithm II with β = 1.5.

0 5 10 15 20 25 30 35 40
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Total number of inner iterations for the Jacobian equations

log
10

 ||
ck −

c* ||

+ Algorithm I
o Algorithm II with β=2
* Algorithm II with β=1.5

Figure 1: Convergence history of one of the test matrices.

In Table 1, (6) is solved with stopping tolerance η = 10−13. One may expect that by

12

increasing this stopping tolerance η, i.e. by solving (6) more inexactly, one can obtain
an inexact method that may be better than our Algorithm II. To illustrate that it is not
the case, we tried solving (6) with different η for ten matrices with n = 100 and 200, and
compare their results with our Algorithm II with β = 1.5. We also repeated the experiments
with four different iterative methods: the BiCG [36] and the CGS [34] methods together
with their MILU-preconditioned versions. From Table 2, we see that our method is better
than just solving (6) with increasing η. In fact, if η is big, the outer iteration does not
converge within 20 iterations; and if η is small, the number of inner iterations will be bigger
than that of our method. We also see that when n is larger, η should be smaller in order
that the outer iteration converges.

Also from Table 2, we see that CGS performs better than the other two iterative solvers if
preconditioning is used, but is worse if not. Since in general, we do not have any information
regarding the structure of the Jacobian matrix in (6) and (13), choosing a good iterative
solver for these systems will not be an easy problem, not to mention the choice of an effective
preconditioner for them. However, the results in Table 2 show that the oversolving problem
is independent of the solvers we choose. Our method is always better than Algorithm I if the
same iterative solver is used. Clearly, a greater gain can be made if a better preconditioner
is available. But since the Jacobian matrices (see (7) and (11)) are in general nonsymmetric
and dense, how to choose a good preconditioner needs a further study, see for instance a
survey paper [4].

n = 100 n = 200
Alg. II Alg. I Alg. II Alg. I
β = 1.5 Stopping tolerance η for (6) β = 1.5 Stopping tolerance η for (6)

10−13 10−12 10−11 10−10 10−13 10−12 10−11

No 3.2 3.2 3.2 3.2 > 20 3 3 3 > 20
QMR Ni 323 397 356 344 * 719 818 738 *
BiCG Ni 322 371 359 347 * 715 783 745 *
CGS Ni 372 446 425 392 * 825 943 874 *

PQMR Ni 17.9 37.7 32.7 28.2 * 29.6 49.8 41.8 *
PBiCG Ni 18.3 37.7 33.1 28.5 * 30.5 49.5 42 *
PCGS Ni 10.6 21.3 19 15.1 * 18.2 28.4 24.4 *

Table 2: Averaged total numbers of inner iterations.

As mentioned in §§2–3, solving the linear systems (10) and (15) iteratively will require
only a few iterations since the coefficient matrices of these systems converge to the identity
matrix as ck converges to c∗. We report in Table 3 the numbers of iterations required for
convergence for these systems, averaged over the ten test problems with n = 100 and 200.
From the table, we see that the number of inner iterations required is small and decreases
as the outer iteration progresses. Thus it is reasonable to solve these systems by iterative
solvers without any preconditioning.

Example 2. Consider the Sturm-Liouville problem:

−u′′ + q(x)u = λu, u(0) = u(π) = 0. (54)

The inverse Sturm-Liouville problem is to determine q(x) from λ. By the central difference
scheme with uniform mesh h = π/(n + 1), the differential equation (54) is reduced to the

13

n = 100 n = 200
Outer iteration 1st 2nd 3rd 1st 2nd 3rd

Alg. I 9.7 5.4 2.6 8.6 4.8 2.0
Alg. II with β = 2.0 9.8 5.3 2.6 8.6 4.8 2.0
Alg. II with β = 1.5 9.9 5.3 2.6 8.5 4.7 2.0

Table 3: Averaged numbers of inner iterations required by Step (d) of Algorithms I and II.

matrix eigenvalue problem with tridiagonal structure:
(
A0 + h2X

)
u = h2λu, (55)

where A0 is the Laplacian matrix with zero boundary condition and X is a diagonal matrix
representing the discretization of q(x).

The discrete analogue of the inverse Sturm-Liouville problem is an inverse eigenvalue
problem. It is to determine the diagonal matrix X so that the matrix on the left hand side
of (55) possesses a prescribed spectrum. Let Aj = h2ejeT

j , for j = 1, · · · , n, where ej is the
jth unit n-vector. Thus we have the form (1) with X = diag(c).

In [2], inverse Sturm-Liouville problem of size n = 50 was considered. Here for demon-
stration purposes, we consider n = 100. Given the exact solution c∗ with entries [c∗]i = e3ih,
1 ≤ i ≤ n, i.e. q(x) = e3x, we use the eigenvalues {h2λ∗i }n

i=1 of A(c∗) as the prescribed
spectrum. We perturb each entry of c∗ by a random number uniformly distributed between
−1 and 1, and then use the perturbed vector as the initial guess c0 for both Algorithms I
and II. In practice, the available data will be eigenvalues of (54), not eigenvalues of (55).
Before our methods can be implemented, it is necessary to use the given eigenvalues of (54)
to obtain adequate estimates of the eigenvalues of (55). A simple method of doing this is
described in [1, 2], which also contain some important references giving further details.

We also note that though the coefficient matrix in (55) is tridiagonal and sparse, the
Jacobian matrices in (6) and (13) are still nonsymmetric and dense. Therefore, for large n,
iterative methods with appropriate preconditioner will be better than direct methods for
solving the corresponding Jacobian equations. Here, the linear systems (6), (10), (13), and
(15) are solved by the MILU-preconditioned QMR method as in Example 1. Table 4 gives
the total numbers of outer and inner iterations N0 and Ni averaged over ten different initial
guesses. From the table, we can see again that our method with β ≈ 1.5 is better than
Algorithm I.

Alg. I β in Alg. II
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

No 3 7.8 5.3 4.4 4 3 3 3 3 3 3
Ni 71.6 65.1 60.3 60 62.8 48.6 56.6 60.4 65.7 68.1 73.2

Table 4: Averaged total numbers of outer and inner iterations for Example 2.

We end by remarking that in practice, the number of eigenvalues which can be measured
is strictly limited. However, if we are to obtain the coefficient function q(x) with sufficient
accuracy, then we have to solve the inverse problem on more grid points and hence we have
to supplement the observed spectrum with eigenvalues that are assigned in a systematical
way. One way to do it is to use the ideas from finite element model updating [11, 24]. For

14

example, if we are only given m measured eigenvalues {λ∗i }m
i=1, then we can compute q(x) on

m uniform grid-points by using our method above. To obtain q(x) on n uniform grid-points,
where n > m, one can interpolate the obtained q(x) on n grid-points. But the spectrum of
the resulting system, denoted by {λi(q)}n

i=1, may not contain {λ∗i }m
i=1. Following Equation

(17) in [24], we can replace those λi(q) that are closest to λ∗i by λ∗i , and keep the remaining
(n −m) eigenvalues. Then we will have n prescribed eigenvalues. The q(x) thus obtained
by our method will be defined on n grid-points and its corresponding system will have the
measured eigenvalues {λ∗i }m

i=1 as part of its spectrum.

Acknowledgment: We would like to thank the referees and Prof. S.F. Xu for their
insightful and valuable comments.

References

[1] A. L. Andrew, Some Recent Developments in Inverse Eigenvalue Problems, in Com-
putational Techniques and Applications, CTAC93, D. Stewart, H. Gardner, and D.
Singleton, eds., World Scientific, Singapore, 1994, pp. 94–102.

[2] A. L. Andrew, Numerical Solution of Inverse Sturm–Liouville Problems, ANZIAM J.,
45 (E) (2004), pp. C326–C337.

[3] E. L. Allgower and K. Georg, Continuation and Path Following, Acta Numer., (1993),
pp. 1–64.

[4] M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, J. Comput.
Phys., 182 (2002), pp. 418-477.

[5] C. I. Byrnes, Pole Placement by Output Feedback, in Three Decades of Mathematics
Systems Theory, Lecture Notes in Control and Inform. Sci. 135, Springer-Verlag, New
York, 1989, pp. 31–78.

[6] R. H. Chan, H. L. Chung, and S. F. Xu, The Inexact Newton-Like Method for Inverse
Eigenvalue Problem, BIT, 43 (2003), pp. 7–20.

[7] M. T. Chu, Inverse Eigenvalue Problems, SIAM Rev., 40 (1998), pp. 1–39.

[8] M. T. Chu, On a Newton Method for the Inverse Toeplitz Eigenvalue Problem, preprint
available at http://www4.ncsu.edu/˜mtchu/ Research/Papers/itep.ps.

[9] M. T. Chu, Numerical Methods for Inverse Singular Value Problems, SIAM J. Numer.
Anal., 29 (1992), pp. 885–903.

[10] M. T. Chu and G. H. Golub, Structured Inverse Eigenvalue Problems, Acta Numer.,
11 (2002), pp. 1–71.

[11] B. N. Datta, Finite-Element Model Updating, Eigenstructure Assignment and Eigen-
value Embedding Techniques for Vibrating Systems, Mech. Syst. Signal Proc., 16 (2002),
pp. 83–96.

[12] T. Dupont, R. P. Kendall, and H. H. Rachford JR., An Approximate Factorization
Procedure for Solving Self-adjoint Elliptic Difference Equations, SIAM J. Numer. Anal.,
5 (1968), pp. 559–573.

15

[13] S. C. Eisenstat and H. F. Walker, Choosing the Forcing Terms in an Inexact Newton
Method, SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[14] S. Elhay and Y. M. Ram, An Affine Inverse Eigenvalue Problem, Inverse Problems, 18
(2002), pp. 455–466.

[15] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Accelerated Inexact Newton
Schemes for Large Systems of Nonlinear Equations, SIAM J. Sci. Comput., 19 (1998),
pp. 657–674.

[16] R. W. Freund and N. M. Nachtigal, QMR: A Quasi-Minimal Residual Method for
Non-Hermitian Linear Systems, Numer. Math., 60 (1991), pp. 315–339.

[17] S. Friedland, J. Nocedal, and M. L. Overton, The Formulation and Analysis of Nu-
merical Methods for Inverse Eigenvalue Problems, SIAM J. Numer. Anal., 24 (1987),
pp. 634–667.

[18] G. M. L. Gladwell, Inverse Problems in Vibration, Appl. Mech. Rev., 39 (1986), pp.
1013–1018.

[19] G. M. L. Gladwell, Inverse Problems in Vibration, II, Appl. Mech. Rev., 49 (1996), pp.
25–34.

[20] I. Gustafsson, A Class of First Order Factorizations, BIT, 18 (1978), pp. 142–156.

[21] O. H. Hald, On Discrete and Numerical Inverse Sturm-Liouville Problems, Ph.D. the-
sis, New York University, New York, 1972.

[22] K. T. Joseph, Inverse Eigenvalue Problem in Structural Design, AIAA Ed. Ser., 30
(1992), pp. 2890–2896.

[23] N. Li, A Matrix Inverse Eigenvalue Problem and Its Application, Linear Algebra Appl.,
266 (1997), pp. 143–152.

[24] C. Mares, M. I. Friswell, and J. E. Mottershead, Model Updating Using Robust Esti-
mation, Mech. Syst. Signal Proc., 16 (2002), pp. 169–183.

[25] C. M. McCarthy, Recovery of a Density From the Eigenvalues of a Nonhomogeneous
Membrane, Proceedings of the Third International Conference on Inverse Problems in
Engineering: Theory and Practice, Port Ludlow, Washington, June 13–18, 1999.

[26] B. Morini, Convergence Behaviour of Inexact Newton Methods, Math. Comput., 68
(1999), pp. 1605–1613.

[27] M. Müller, An Inverse Eigenvalue Problem: Computing B-Stable Runge-Kutta Methods
Having Real Poles, BIT, 32 (1992), pp. 676–688.

[28] M. Neher, Ein Einschlieβungsverfahren für das Inverse Dirichletproblem, Doctoral the-
sis, University of Karlsruhe, Karlsruhe, Germany, 1993.

[29] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, 1970.

16

[30] R. L. Parker and K. A. Whaler, Numerical Methods for Establishing Solutions to the
Inverse Problem of Electromagnetic Induction, J. Geophys. Res., 86 (1981), pp. 9574–
9584.

[31] J. Peinado and A. M. Vidal, A New Parallel Approach to the Toeplitz Inverse Eigen-
problem Using Newton-like Methods, Lecture Notes in Computer Science, 1981/2001,
Springer-Verlag, 2003, pp. 355–368.

[32] M. S. Ravi, J. Rosenthal, and X. A. Wang, On Decentralized Dynamic Pole Placement
and Feedback Stabilization, IEEE Trans. Automat. Control, 40 (1995), pp. 1603–1614.

[33] V. Scholtyssek, Solving Inverse Eigenvalue Problems by a Projected Newton Method,
Numer. Funct. Anal. Optim., 17 (1996), pp. 925–944.

[34] P. Sonneveld, CGS: A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems,
SIAM J. Sci. Stat. Comput., 10 (1989), pp. 36–52.

[35] W. F. Trench, Numerical Solution of the Inverse Eigenvalue Problem for Real Symm-
metric Toeplitz Matrices, SIAM J. Sci. Comput., 18 (1997), pp. 1722–1736.

[36] H. A. van der Vorst, BiCGSTAB: A Fast and Smoothly Converging Variant of the Bi-
CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. and Stat. Comp.,
13 (1992), pp. 631–644.

[37] S. F. Xu, An Introduction to Inverse Algebraic Eigenvalue Problems, Peking University
Press and Vieweg Publishing, 1998.

17

