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Abstract: In this paper, we first note that Method III in Friedland, Nocedal, and Overton
[SIAM J. Numer. Anal., 24 (1987), pp. 634-667) may not converge quadratically in the
quotient sense. Then, we show that the method is convergent quadratically under a
weaker notion of convergence — the root convergence. We also extend our results to the
algorithm given in Chu [SIAM J. Numer. Anal., 29 (1992), pp. 885-903] for inverse
singular value problems.
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1. INTRODUCTION

Let {A;}", be real symmetric n-by-n matrices. For any vector ¢ = (cy, ¢y, ...,¢,)" € R?,
we define A(c) = Ay + >, c;A;. We denote the eigenvalues of A(c) by {\;(c)}?, with
A1(c) < Aa(c) <--- < Ay(c). The inverse eigenvalue problem is defined as follows:

IEP: Given n real numbers {Af}!" ;, which are ordered as \} < --- < \*, find a vector
c* € R* such that A\;(c*) =\ fori=1,...,n.

An IEP can be viewed as a problem of solving the nonlinear system of equations
f(c) = (M(e) = Af,--, Au(e) = Ap)" = 0. (1)

Four numerical methods for solving (1) were given in the important paper by Friedland,
Nocedal, and Overton [4]. They are related to Newton’s method and have fast local
convergence. Their methods have been widely used in many different applications, see for
instance [2, 5, 7, 8, 9]. In particular, Method III in their paper was extended by Chu [1]
to solve inverse singular value problems.

In this paper we will study the convergence rate of Method III in their paper in depth.
The method is claimed to generate a sequence of iterates {c;} converging to c* quadrat-
ically in the quotient sense, i.e.

le* — e[l = O(fle" — e”[13). (2)



This claim is stated without an explicit proof in [4]. The aim of this paper is to investigate
this claim. More precisely, we will point out that (2) may not hold for Method III without
additional conditions.

Then we will show that a weaker convergence result, called the root-convergence or
simply R-convergence (see [6, Chap. 9] or §4 for its definition), holds for Method III, and
the R-convergence rate is at least 2. In contrast, the convergence claimed in (2) is called
the quotient-convergence (or simply Q-convergence) with Q-convergence rate 2, see |6,
Chap. 9]. We remark that the R-convergence rate of a sequence is always larger than or
equals to its Q-convergence rate [6, p. 296]. Thus our results do not contradict the claim
in [4]. Our aim here is intended to point out that the Q-quadratic convergence of Method
ITT does not hold trivially and that a precise proof is needed.

The outline of the paper is as follows. In §2, we briefly review Method III. In §3, we
give an example to show that one cannot derive (2) with the results that are explicitly
proven in [4]. In §4, we show that the R-order of Method III is at least 2. In §5, we extend
our results to the method given in [1] for inverse singular value problems. Concluding
remarks are given in §6.

2. Method III

Method III is an iterative method based on Cayley transforms. Here we briefly recall it
for the case where the given eigenvalues Aj, ---, A\r are distinct. For details we refer to
[4].

Let c* be a solution to the IEP. There exists an orthogonal matrix (* such that

(Q)TA(CH)Q* = A* and A* = diag(A],...,\). (3)

Suppose that ¢ and the orthogonal matrix Q*) are the current approximations of ¢* and
Q*, respectively. Then, Q* = Q®e* where Y} is a skew-symmetric matrix and (3) can
be written as

1 1
(Q(k))TA(c*)Q(k):eYkA*e*Yk = ([+YVe+ Y2+ - INT - Y+ Y2+

2 2
= A+ YA =AY+ O()Vill?), (4)
where we use || - || to denote both the matrix and the vector 2-norms. The iterate c* is
updated by neglecting the term O(]|Y,]|?) in (4). Namely, cFT! satisfies
(QU)TAEMQY = A"+ VA" — A, (5)

and can be computed by equating the diagonal elements of (5), i.e.

(@) A" Ngf =N, i=1,...,n, (6)



where {qF}?_, are the column vectors of Q*). The n equations in (6) can be written as
Jpchtl = A* bk, (7)

where A = (A}, -+, An)", bP = ((a})" Aodf, -+ -, (a5)" Aoqy)”, and
[l = (@) Ajaf, ij=1,....n. (8)

Once we get cf*!, the matrix Y}, is determined by equating the off-diagonal elements of
(5), i.e.
[Yk]ij ()‘; —A) = (Qf)TA(CkH)Qf, I<i<y<n. 9)

Finally, Q®) is updated by setting Q**t1) = Q" P, where P, is an orthogonal matrix
computed using the Cayley transform: P, = (I + 3Y;)(I — 3Y,)
We summarize the algorithm as follows:

Algorithm I (Method IIT)

1. Given ¢°, compute the exact eigenvectors {q;(c)}™, of A(c®). Let
QY =lai, .., an] = [ai(c”), ..., qn(c")].
2. For k=0,1,2, ...

(a) Form the matrix .Jy, by (8).

(b) Solve c**! from (7).

(c¢) Form the skew-symmetric matrix Yy by (9).
(d) Compute Q*+V) = [¢¥™ ... "] by solving

(T + V@) = (T~ V) (@)

Notice that the Jacobian of the function f defined in (1) has the the form: [J(c)];; =
q; (¢)A4;qi(c), i,j = 1,...,n, where {q;(c)}?", are the exact eigenvectors of A(c). Thus
the matrix Jj, given in (8) can be viewed as an approximation to .J(c*) and Method IIT is
a Newton-like method.

3. Q-Convergence Rate of Method III
In [4], the error matrix E®) = Q%) — @Q* is shown to converge Q-quadratically to zero:

Theorem 1 [4, Theorem 3.4] There exists a scalar € > 0 such that, if ||[EQ|| < ¢, then
{I|IE®||} converges quadratically to zero.



If one checks the proof of Theorem 3.4 in [4], one sees that it basically provided two
relationships. One of them is the statement of the theorem, i.e.

|E®*D) =O(|E®|?), k=0,1,2,..., (10)

see [4, Equation (3.65)]. The other is shown in the course of proving the theorem and it
has the form
It — el = O(IEWI?). k=0,1,2,..., (11)

see [4, Equation (3.61)]. At the end of the proof of the theorem, it was stated that it is
easy to modify the proof so as to show that {c*} converges Q-quadratically to c*, i.e. (2)
holds.

We believe that the Q-quadratic convergence of {c¥} cannot be established with only
(10) and (11) alone, without additional conditions or proofs. Our reasons are as follows:

1. We first note that (2) does not follow from (10) and (11) alone. This can be shown
by the following example. Consider

1\

and

ok
up = ||Ck . C*H — (%)k for k even, (12)
(L)*  for k odd.

It is obvious that both z; and uy converge to 0 as k — oco. Also, for all k, zp11 = 22
Hence {2} = {||E®||} satisfies (10). Moreover, for k even, uj,; = 2,11 = 27, and
for k odd, ugy1 < z7. Therefore {u;} = {||cF — ¢*||} satisfies (11) too. However, for
all k£ even,

o= =

2k+1

Uk+1 ( ) 16 2 ok+1
(0r)? = ( )2k.2 =3 =2 — 400, ask — o0.

oo

N

Hence, the Q-convergence rate (or Q-order) of {u} = {||cF — c*||} is strictly less
than 2. In fact, we can easily show that ux,; = O(u,°) for all k, i.e. its Q-order is
1.5. From this example, we see that (10) and (11) alone cannot lead to (2).

2. We observe that in the proof of Theorem 3.4 in [4], there are no estimates of the
form || - || = O(||c* — ¢*||?) for any 3, and they are needed in order to complete the
proof of (2). For example, an additional relation like

IE®] = O(llc* —e*ll) (13)



is sufficient to complete the proof. The proof of (13) for Method III is missing in
[4]. However, for Method II in [4], this relation is proven explicitly [4, Equations
(3.50) and (3.57)], and therefore one can establish the Q-quadratic convergence of
Method II. We note that (13) cannot be derived trivially from (10) and (11) as the
definition of O(+) is O(wy) < a - wg and not O(wy) = a - wy.

. We remark that one can obtain a necessary and sufficient condition for the Q-
quadratic convergence in the form ||-|| = O(||cF — c*||?) as follows. By the definition
of J(c*) and (8), one can prove that .J; is close to J(c*) when Q® is close to
*. However, one cannot apply the standard Q-quadratic convergence analysis of
Newton’s method to Method IT1. This is because in Method IT1, we have J(c*)(ck*1—
c®) = —f(c*) + ry where

r, = (J(c") — Jp)c" + b(c*) —b* £ 0,

b(cF) = (qf (cF)Apqi(c?), -+, ql(c*)Apqn(cF))T, and b* is given in (7). Thus,
Method III can be viewed as an inexact Newton method, see [3]. Since J(-) is
Lipschitz continuous (cf. [4, Equation (3.24)]), by Lemma 3.1 of [3], O(||f(c¥)||) =
O(||c* — ¢*||). Hence by Theorem 3.3 of [3], one can conclude that Method IIT
converges Q-quadratically if and only if ||rg| = O(]|ck — ¢*||?). However, it is not
easy to see from the expression of r; that the condition holds trivially.

. Finally, we remark that one may proceed as in the proof of Method II in [4] and
write
B® = QW — Q(c) +Q(e") - Q"

where Q(c*) is the matrix of the exact eigenvectors of A(c¥). The relation ||Q(c*) —
Q*|| = O(]|ck — ¢*||) is known to hold for c* close to c*, see for instance [4, Equation
(3.29)] and [9, p. 249]. However, we cannot bound [|Q*) —Q(c*)|| by O(||c* — c*||)
as was done in the proof of Method II in [4]. The main reason is that in Method II,
Q™ is obtained by the inverse power method and is therefore related to Q(c*). But
in Method III, Q® is obtained via Cayley transforms and has no direct relationship
with Q(c*).

4. R-Convergence Rate of Method III

In the last section, we point out that it is not obvious from the proof of Theorem 3.4 of [4]
that Method III converges Q-quadratically. In this section, however, we show that Method
IIT converges quadratically under a weaker notion of convergence — the root-convergence.
We first give its definition, see [6, Chap. 9].

Definition 1 Let {x*} be a sequence that converges to x*. Then the numbers

lim sup |xk — x*||VE, ifp=1
k k—o00 ) )

R {x"} = 14
p{x} { lim supy, ., [|x* — x*||'/2", ifp > 1, (14)



are the R-convergence factors of {x*}. The quantity

00 if R,{x"} =0,Vp € [1,00),

0n) ={ it 1,00 | 7y = 1), orheneie "

is called the R-convergence rate, or R-order, of {x*}.

We remark that the R-order is always larger than or equal to the Q-order, see [6, p.
296] (in fact, the R-order of {uy} in (12) is 2 while its Q-order is 1.5). It follows from the
Q-quadratic convergence claim in Method III that the R-order of Method III is at least 2.
Since it is not obvious that the Q-quadratic convergence claim of Method III is true, here
we give a proof of the R-quadratic convergence of the method independent of the claim.

Theorem 2 Under the assumptions of [4, Theorem 3.4], {c*} converges to c* with R-
order at least 2.

Proof: As mentioned, it was already proven in [4, Theorem 3.4] that (10) and (11) hold.
Let e, = ||[E®)]|. Then by (10) and (11), there exists a positive scalar o > 1 such that

er <oep, and |c"—c||<oep |, k=1,2,....

Hence, we have

I — el < ok <o(oeh,) =0t
22 2 93
< g2 (‘76%_3) — glH2e2 ei_3
< < 01+2+22+---+2k—1€gk_ (16)
Since for any k£ > 1,
1+2+2Z+"'+2H—1+1+ R /2
2k 2 22 2k = 1-1/2 7
we see that (16) becomes
k * 142422 4. 42k —1 2 ok
||C —C ||2 S o 2k €0 S (0’60) . (17)

Let eg = ||[E©@]|| be sufficiently small such that oey < 1. From (17), we see that {c*}
converges to ¢*. Using (17), we now compute the root convergence factors of {c¥} for
different values of p (see (14)):

1. If p=1, then

Ri{c*} =limsup ||c* — c”‘||§/lc < lim sup (aeo)Qk/’c =0.

k— o0 k—o0



2. If 1 < p <2, then

R,{c*} = limsup ||c* — c*||;/plc < lim sup ((7(50)(2/”)1c = 0.

k—o0 k—o0
3. If p=2, then
k
Ro{c*} =limsup ||c* — ¢*||3/* < oep < 1.
k— 00

4. If p > 2, then

R,{c*} = limsup ||c* — c*||;/pk < lim sup (060)(2/p)k =1.
—o0 k—o00

Thus R,{c*} <1 for any p € [1,2] and R,{c*} <1 for any p € (2,00). Hence according
o (15), Og(c*) > 2. 0

5. Extension to Inverse Singular Value Problems

In this section, we extend our results to the method given in Chu [1] for inverse singular
value problems. We first state the problem.

ISVP: Given {B;}! , C C™*" and n nonnegative real numbers o] > o5 > --- > o},
find a vector ¢ = (c1,¢o,...,¢,)" € R" such that the singular values of the matrix
B(c) = By + Y7, ¢;B; are precisely of,...,0}.

Suppose ¢* is an exact solution of the ISVP. Let B(c*) = UXVT be the singular value
decomposition of B(c*). Denote by U®), V() and c* the approximations of U, V and c*
as obtained by the method in [1]. Let E®) = (U®) — U, V(® — V') be the error matrix at
the kth iteration. Then it was shown in [1, Theorem 4.2] that

IE® D) = 0| E®), (18)
(see [1, Equation (71)]) and

It —e*[| = O(| E®I%), (19)
(see [1, Equation (82)]). Here || - || denotes the Frobenius norm.

As was shown by the example given in Item 1 in section 3, (18) and (19) alone are
not sufficient to guarantee that {c*} converges Q-quadratically. However, using the same
technique as in section 4, we can easily conclude that the R-order of {c*} is at least 2.

6. Concluding Remarks

In this paper, we point out that in [4] (respectively in [1]), only (10) and (11) (respectively
only (18) and (19)) are explicitly proven. An example is given to show that these equations
alone are not sufficient to prove the Q-quadratic convergence of their methods. We hope
that our paper can motivate someone to give a precise Q-quadratic proof for the methods.
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