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Abstract

The preconditioned conjugate gradient method is employed to solve Toeplitz
systems T,,x = b where the generating functions of the n-by-n Toeplitz matrices T},
are functions with zeros. In this case, circulant preconditioners are known to give
poor convergence, whereas band-Toeplitz preconditioners only offer linear conver-
gence and can only handle real-valued functions with zeros of even orders. We here
propose preconditioners which are products of band-Toeplitz matrices and circulant
matrices. The band-Toeplitz matrices are used to cope with the zeros of the given
generating function and the circulant matrices are to speed up the convergence rate
of the algorithm. Owur preconditioner can handle complex-valued functions with
zeros of arbitrary orders. We prove that the preconditioned Toeplitz matrices have
singular values clustered around 1 for large n. We apply our preconditioners to
solve the stationary probability distribution vectors of Markovian queueing models
with batch arrivals. We show that if the number of servers is fixed independent
of the queue size n, then the preconditioners are invertible and the preconditioned
matrices have singular values clustered around 1 for large n. Numerical results are
given to illustrate the fast convergence of our methods.
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1 Introduction

In this paper, we discuss the solutions of linear systems 7x = b where 7" is Toeplitz matrix.
Direct methods that are based on the Levinson recursion formula are in constant use; see
for instance, Trench [25]. For an n-by-n Toeplitz matrix T,,, these methods require O(n?)
operations. Faster algorithms that require O(n log? n) operations have been developed,
see Ammar and Gragg [1] for instance. The stability properties of these direct methods
for symmetric positive definite matrices are discussed in Bunch [5].

Here we will consider solving Toeplitz systems by the preconditioned conjugate gra-
dient squared (PCGS) method. There are many circulant preconditioning strategies for
Toeplitz systems, see for instance [23, 11, 16, 15, 26]. The convergence results for these
circulant preconditioners are all based on the regularity of the function ¢g(f) whose Fourier
coefficients give the diagonals of T,,. The function g() with § € [—m, 7] is called the gen-
erating function of the sequence of Toeplitz matrices T,,. A general result is that if g(6)
is a positive function in the Wiener class, then for large enough n, the preconditioned
matrix has eigenvalues values clustered around 1. In particular, the PCG method applied
to the preconditioned system converges superlinearly and the n-by-n Toeplitz system can
be solved in O(nlogn) operations. However, we remark that if g(¢) has a zero, then the
result fails to hold and the circulant preconditioned systems can converge at a very slow
rate, see the numerical examples in §4 or in [9].

To this end, Chan in [6] has used trigonometric functions of the form sin®(f — ) to
approximate the function g(f) around the zeros 6y of g. The power ¢ is the order of the
zero Ay and is required to be an even number. The resulting preconditioner is a band-
Toeplitz matrix which gives linear convergence. The band-width of the preconditioner is
(¢ +1). To speed up the convergence rate, Chan and Tang [9] have considered using the
Remez algorithm to find the best trigonometric polynomial that approximates g in the
supremum norm and yet matches the order of the zeros of ¢ in a neighborhood of the
zeros. The resulting band-Toeplitz preconditioner can significantly reduce the condition
number of the preconditioned systems at the expense of enlarging the band-width. We
remark both methods work only for real-valued generating functions with zeros of even
orders and fail for complex-valued functions or real-valued functions have zeros of odd
order. A typical example is the Toeplitz matrix tridiag[—1, 1, 0]. Its generating function
is given by g(f) = 1 — e~ and it has a zero of order 1 at # = 0. We note that if we write
2z =" then g as a function of z has a zero of order 1 at z = 1.



In this paper, we will design preconditioners that give superlinear convergence and
work for generating functions that are complex-valued and have zeros with arbitrary
orders. Our idea is to approximate g, as a function of the complex variable z, around
its zeros zp by functions of the form (z — z)* where £ is the order of the zero z;. Then
we approximate the quotient g(z)/(z — 20)* by using the usual circulant approach. This
results in a preconditioner which is a product of a band-Toeplitz matrix with band-width
(£41) and a circulant matrix. We will prove that if the quotient is a nonvanishing Wiener
class function, then the preconditioner is invertible and the iterative method converges
superlinearly for large n.

We then apply our preconditioner to solve the stationary probability distribution vec-
tors for Markovian queueing networks with batch arrivals. We note that the generator ma-
trices A,, for these queueing networks are singular matrices with a Toeplitz-like structure.
In fact, when there is only one server in the system, A, differs from a lower Hessenberg
Toeplitz matrix by a rank one matrix. The preconditioner P, is constructed by exploiting
the near-Toeplitz structure of A,, and will also be a product of a band-Toeplitz matrix and
a circulant matrix. We prove that if the number of servers is independent of the queue size
n, then for all sufficiently large n, P, are invertible and that the preconditioned matrices
have singular values clustered around 1.

The outline of the paper is as follows. In §2, we define our preconditioners P, for
general Toeplitz matrices with generating functions that have zeros. We then prove that
the preconditioned systems have singular values clustered around 1. In §3, we consider
solving Markovian queueing networks with batch arrivals by using our preconditioners.
In §4, numerical results are given to illustrate the fast convergence of our methods when
compared to other methods and other preconditioners in solving Toeplitz systems and
queueing networks. Finally, concluding remarks are given in §5.

2 Construction and Analysis of Preconditioners

In this section, we discuss how to construct preconditioners for Toeplitz systems T}, whose
generating functions are functions having zeros. Then we analyze the convergence rate of
the resulting preconditioned systems.

Let us first recall the definitions of Toeplitz and circulant matrices. An n-by-n matrix
T, = (t;;) is said to be Toeplitz if ¢; ; = t,_;, i.e. if T}, is constant along its diagonals. It
is said to be circulant if its diagonals t; further satisfies ¢, , =1, for 0 <k < n—1. The
idea of using circulant matrices as preconditioners for Toeplitz matrices has been studied
extensively in recent years, see for instance [23, 11, 16, 26, 15]. In this paper, we will
concentrate ourselves in the T. Chan circulant preconditioners. The results for the other
circulant preconditioners can be obtained similarly, see §5.



For a given Toeplitz matrix 7,, with diagonals {tj};.’:_i(n_l), the T. Chan circulant pre-
conditioner to 7}, is defined to be the circulant matrix €, which minimizes the Frobenius
norm ||T;, — C,||r amongst all circulant matrices. The (4, j)th entry of C,, is given by ¢;_;

where
(n - k‘)tk + k‘tk_n
Cr — {

<
n y 0 =~ k < n, (1)
Cntks 0< —k<n,

see T. Chan [11]. We note that the diagonals {Cj}?:_i(nfl) and hence the matrix C), can
be obtained in O(n) operations. The eigenvalues of C,,, which are required in the inver-
sion of C,,, can be computed in O(nlogn) operations by using Fast Fourier Transforms,
see Strang [23] for instance. Because of the good approximating properties of the T.
Chan circulant preconditioners, they have been used in solving numerical elliptic partial
differential equations [7] and signal processing problems [8].

We are going to analyze the convergence rate of the preconditioned systems C T}, in
the limit n — oo, assuming that a fixed sequence of entries {#;}22 , has been prescribed.
As usual in the study of Toeplitz matrices and operators, see for instance Grenander and
Szegd [14], we consider the Laurent series

g(z) = Y ;7

j=—o0

whose coefficients {t;} are the entries of T,,, with ¢;, = t;_j for 0 < j,k < n. We will call
g(z) the generating function of the sequence of Toeplitz matrices T, and for clarity, we
will denote such T}, by 7,[¢] and the corresponding T. Chan’s circulant preconditioner by

Cnlg]-
We note that if

> It < o0,
j=—o00
i.e., if g(2) belongs to the Wiener class of functions W defined on the unit circle |z| = 1

and if g(z) has no zeros on |z| = 1 then C,[g] is a good approximation to T,[g] as far as
PCG methods are concerned.

Lemma 1 Let ¢ € W and has no zeros on |z| = 1. Then for large n, C,[g] will be
invertible and the sequence of matrices Cn[g)™"Tolg] will have singular values clustered
around 1. More precisely, for any fized € > 0, there exist integers M, N > 0 such that for
all n > N, Cylg] is invertible and the matriz C,[g]™"Talg] have no more than M singular
values lying outside the interval (1 — €, 1 + €).



Proof: We just note that by the Weierstrass M-test, g(z) is a 2m-periodic complex-valued
function defined on the unit circle |z| = 1 with respect to the angle 6, see for instance
Conway [12, p.29]. The Lemma now follows from Lemma 3 and Theorem 2 of Chan and
Yeung [10].

In this paper, we are going to relax the requirement that g(z) has no zeros on |z| = 1.
In particular, we consider g(z) that are of the form

9(2) = {H(Z — 2)" } h(z),

J
where z; are the roots of g(z) on |z| = 1 with order ¢; and h(z) is a non-vanishing function
in W. Our Toeplitz-circulant preconditioner P, is defined to be

P=T, [H(z - zjw] Calh].
J

By expanding the product [;(z — zj)% we see that the Toeplitz matrix T,z — zj)4]

is a lower triangular matrix with band-width equal to (£ + 1) where

0=>"1
J

Moreover, its main diagonal entry is 1 and therefore it is invertible for all n.

In each iteration of the PCG method, we have to solve a linear system of the form
P,y = r. We first claim that P, is invertible for large n. As mentioned above, the
Toeplitz matrix T,[[];(z — z;)%] is invertible for all n. Since h € W and has no zeros,
the invertibility of C,[h] for large n is guaranteed by Lemma 1. Hence P, is invertible for
large n. Let us consider the cost of solving the system

Py ="T, [H(z - zj)lj] Colhly =r.
J
As the matrix To[[[;(z — z;)%] is a lower triangular matrix with band-width (¢ + 1), the
system involving 7,[[];(z — zj)%] can be solved by forward substitution and the cost is
O(¢n) operations. Given any vector x, the matrix-vector product C,[h]~'x can be done by
using Fast Fourier Transforms in O(nlogn) operations, see Strang [23] and O’Leary [20].
Thus the system P,y = r can be solved in O(nlogn)+ O(¢n) operations. In comparison,
the systems involving the preconditioners proposed by Chan [6] and Chan and Tang [9]
require O(nlogn) + O(¢*n) operations to be solved.
We now investigate the convergence rate of the preconditioned systems.
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Theorem 1 The sequence of matrices P, T,[g] has singular values clustered around 1
for all sufficiently large n.

Proof: Since T,[[];(z — z;)%] is a lower triangular Toeplitz matrix of band-width (£+1),

we see that the matrix

{mgl -7, [H(z - zjw] mh]}

J

only has non-zero entries in the first [ + 1 rows. Hence it is clear that

ﬁ[h] +L17

Talgl = Ta [H(Z — 2;)"

J
where rank L; < £+ 1. Therefore

- 1 -1

P Talgl = Gl T ][ =2)% ] Tl
= G T[] =) (T[] - )T+ 1)

L Jj d J

= Co[h] ' Tnlh] + Lo, (2)

where rank Ly < £. Since h has no zeros, by Lemma 1, C,[h] ' T, [h] has clustered singular
values. In particular, we can write C,[h]™'T,[h] = I + L3 + U where U is a small norm
matrix and rank Ls is fixed independent of n, see [10, Corollary 1]. Hence (2) becomes

P Tl =T+ L,+U

where the rank of L, is again fixed independent of n. By using Cauchy interlace theorem
[28, p.103] on

(P Talgl) (P Talgl) = (I + Ly + U)'(I + Ly + U),

it is straightforward to show that P, '7,[g] has singular values clustered around 1, see
[10, Theorem 2] for details.

Accordingly, the PCG methods will converge fast when applied to solving the precon-
ditioned systems, see Axelsson and Barker [2, p.26] for instance. Numerical examples are
given in §4 to illustrate this fast convergence.
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3 Markovian Queueing Networks

In this section, we consider using the PCG method with our Toeplitz-circulant precondi-
tioners for solving the stationary probability distribution vectors for Markovian queueing
models with batch arrivals. This kind of queueing system occurs in many applications,
such as telecommunication networks [19] and loading dock models [21]. We will see that
the generator matrices of these systems have a near-Toeplitz structure and our precondi-
tioners are constructed by exploiting this fact.

Let us first introduce the following queueing parameters. Definitions of queueing
theory terminologies used below can be found in Cooper [13]. The input of the queueing
system will be an exogenous Poisson batch arrival process with mean batch inter-arrival
time A%, For k > 1, denote A\ to be the batch arrival rate for batches with size k. We
note that

)\k = )\pk (3)
where py is the probability that the arrival batch size is k. Clearly we have

i A = A (4)

k=1

The number of servers in the queueing system will be denoted by s. The service time of
each server is independent of the others and is exponentially distributed with mean p=!.
The waiting room is of size (n — s — 1) and the queueing discipline is blocked customers
cleared. If the arrival batch size is larger than the number of waiting places left, then only
part of the arrival batch will be accepted; the other customers will be treated as overflows
and will be cleared from the system.

By ordering the state-space lexicographically, i.e. the i-th variable corresponds to
the state where there are ¢ — 1 customers in the system, the queueing model can be
characterized by the infinitesimal generator matrix

A — i 0 0 0 0
AN Ad+p =24 0 0 0
X =M A+ 2 '
A, = : — Ao . T —su : (5)
' ' oo Adsp . 0
M2 —An_s : A+ sp —spu
- —T2 —r3 o TTs4l T SH

where r; are such that each column sum of A, is zero, see Seila [21].



Clearly A, has zero column sum, positive diagonal entries and non-positive off diagonal
entries. Moreover the matrix A, is irreducible. In fact, if \; =0 foralli=1,...,n — 2,
then r; = A and the matrix is irreducible. If the \;’s are not all zero, say A; is the first
nonzero A;, then r,_; = A, and hence A, is also irreducible. From Perron and Frobenius
theory [27, p.30], A, has a 1-dimensional null-space with a positive null vector.

The stationary probability distribution vector p of the queueing system is the normal-
ized null-vector of the generator matrix A, given in (5). Many useful information about
the queueing system, such as the blocking probability and the expected waiting time of
customers can be obtained from p. Since A, has a 1-dimensional null-space, p can be
found by deleting the last column and the last row of A,, and solving the (n—1)-by-(n—1)
reduced linear system Q,_1y = (0,...,0,su)’. After getting y, the distribution vector p
can then be obtained by normalizing the vector (y*, 1)’

Thus let us concentrate ourselves in solving nonhomogeneous systems of the form

Qnx=Db (6)
where
A — i 0 0 0 0
A A4+p =2 0 0 . 0
Qn = : —A2 . —sp . : (7)
' ' A+sp . 0
B W N Y
—An—1 —An—2 e =X =AM A+sp

Notice that if all of the \;, 2 =1,...,n —1 are zeros, then @), will be a bidiagonal matrix
and can easily be inverted. Therefore in the following, we assume that at least one of
the \; is non-zero. Then clearly, Q! is an irreducibly diagonally dominant matrix. In
particular, if the system (6) is solved by classical iterative methods such as the Jacobi or
the Gauss-Seidel methods, both methods will converge for arbitrary initial guesses, see
for instance Varga [27, Theorem 3.4].

We will see in §3.2 that the costs per iteration of the Jacobi and the Gauss-Seidel
methods are O(nlogn) and O(n?) respectively. The memory requirement is O(n) for both
methods. We remark that the system (6) can also be solved by Gaussian elimination in
O(n?) operations with O(n?) memory. In the remaining of this section, we are interested
in solving (6) by the PCG method. We will see that the cost per iteration of the method
is O(nlogn) and memory requirement is O(n), the same as those of the Jacobi method.
However, we are able to show that if s is independent of n, then with our Toeplitz-circulant
preconditioner, the PCG method converges superlinearly for all sufficiently large n. In



particular, the method converges in finite number of steps independent of the queue size n.
Therefore the total cost of finding the steady-state probability distribution is O(nlogn)
operations.

3.1 Construction of the Preconditioner

We observe that in the single server case, i.e. when s = 1, the matrix @), given in (7)
differs from a lower Hessenberg Toeplitz matrix by only its (1,1) entry. In general, @,
can be written as

Qn =T, + Rn, (8)
where T, is a Toeplitz matrix:
A+sp —sp 0 0 0 0
AN A+sp —sp O 0 0
— ) —A1 A+ sp :
T, = : —Xo LT —su e , 9)
' A+sp . 0
B — Sl
—Anc1 —Ap_o e = A A+ su

and R, is a matrix of rank s. From (9), we see that T,, = T,[g], where the generating
function ¢(z) of T), is given by

1 (o0}
= —spu—+ A — Y 2R 1
9(2) = —sp— + A+ sp ; K? (10)

We note that by (4), g € W.

Unfortunately, it is also clear from (10) and (4) that g(z) has a zero at z = 1 and
therefore Lemma 1 is not applicable. However, if we look at the real part of g(z) on the
unit circle |z| = 1, we see that

Re{g(2)} = —spcosl + X\ + sy — Z A cos(kl) > spu — spcos.
k=1

Hence the zeros of g(z) can only occur at z = 1. In particular, we can write

9(z) = (= = 1)"b(2), (11)



where ( is the order of the zero of g(z) at z = 1 and b(z) will have no zeros on the unit
circle. According to the discussion in §2, we define our preconditioner for @2, as

Py = Tal(z = 1)Calb]. (12)

Let us consider cases where the quotient function b(z) will be in W. We first note
that if the radius of convergence p of the power series >~ | A¢2* in (10) is greater than 1,
then ¢g(z) and hence b(z) are analytic functions in a neighborhood of |z| = 1, see Conway
[12, p.31]. In particular, h(z) will be in W. A formula for computing p is given by

1 .
= = limsup |\;|'7, (13)
p

see Conway [12, p.31].
Next we consider the case ¢ = 1 in more depth. By straightforward division of g(z) in
(10) by (» — 1), we have

00 k

1
b(z) = sp— — X — Z()\ - Z)\j)zk. (14)
z k=1 =1
Therefore, by (3) and (4),

b(l):su—z Z )\j:su—)\kak:su—)\E(B) (15)

k=0 j=k+1

where E(B) is the expected value of the arrival batch size. Thus if sy # AE(B) then
b(1) # 0 and hence ¢ = 1. Moreover, if E(B) < oo, then b € W. Clearly from (14), the
first n Laurent coefficients of b(z), i.e. Z?Zl Aj— A k=1,2,...,n, can be computed
recursively in O(n) operations. Hence by using (1), C,[h] and also P, can be constructed
in O(n) operations.

3.2 Convergence Analysis and Computation Cost

In this section, we prove the fast convergence of the PCG method and discuss its compu-
tational cost.

Theorem 2 Let b(z) defined in (11) be in W and the number of servers s in the queue
be independent of the queue size n. Then the sequence of preconditioned matrices P, Q)
has singular values clustered around 1 for large n.
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Proof: By (8) and (12),
PrlQu = Call ™' Tul(2 = 1) (Talg] + Ra) = Calb] ™' Tul(2 = 1) Talg] + Ls

where rank Ls < s. By Theorem 1 and Cauchy interlace theorem, we see that P, '@, has
singular values clustered around 1 for sufficiently large n.

It follows from standard convergence theory of the PCG method that the method will
converge superlinearly and in particular in finite number of steps independent of n.

In each iteration of the PCG method, the main computational cost consists of solving
a linear system P,y = r and multiplying ), to some vector r. We first recall from §2
that the cost of solving P,y = r is of O(nlogn) + O(¢n) operations. To compute Q,r,
we make use of the partitioning (8). Note that R, in (8) is a matrix containing only
2s — 1 nonzero entries, we therefore need O(s) operations for computing R,r. Since T, is
a Toeplitz matrix, T,,r can be computed in O(nlogn) operations by embedding T, into
a 2n-by-2n circulant matrix, see Strang [23]. Hence @Q,r can be obtained in O(nlogn)
operations. Thus the number of operations required for each iteration of the PCG method
is of order O(nlogn).

Finally, we consider the memory requirement. We note that besides some n-vectors,
we only have to store the first column (or eigenvalues) of the matrices T},, T,[(z — 1)] and
C,[b] but not the whole matrices. Thus we need O(n) memory for the PCG method.

4 Numerical Results

In this section, we test the performance of our Toeplitz-circulant preconditioners P, on
solving Toeplitz systems and the queueing problems discussed in §3. All computations
were done by Matlab on an HP 715 workstation.

For the tests on Toeplitz systems, we tried the following generating functions:

: A I R | 13 7 11, 65¢=x 2z,
(i) 91(z) = G-3(z-1) 8 kz:; 2oF 247367 54 m k:3( 3)

(z+12(z—1)2:_9§: 1 5 47 29, 25002_z)k
. .

oo Taatagrt et T 23
k=3

(iil) g3(z) = ).

= +———z——=>) (
(z—3)(z—13) c (2z)F 12 18" 12423

k
(z+1)2(z—1)_9§°°: 1 117 25X 2z
4

Clearly the functions g;, i« = 1,2,3, all have zeros on |z| = 1. We remark that the
preconditioners proposed in Chan [6] and Chan and Tang [9] are not applicable here
because g; are complex-valued functions on |z] = 1.
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We note that the Toeplitz matrices formed by g¢;’s are nonsymmetric, therefore the
systems 7,[g;]x = b are solved by the preconditioned conjugate gradient squared (PCGS)
method, see Sonneveld [22]. The stopping criterion we used is

||z |]2
[ro|[2

<10, (16)

where rj, is the residual at the kth iteration. The right hand side vector is (1,1,...,1)"
and the initial guess is the zero vector. Table 1 gives the numbers of iterations required
for convergence by using preconditioners I, P, and C,[g]. The symbol *x there denotes
that the method does not converge in 5000 iterations. We see that the circulant precondi-
tioner does not work well when the generating function has zeros on |z| = 1 and that the
number of iterations required for convergence actually grows with n. However, our pre-
conditioner P, gives very fast convergence in all cases and the rate is actually improving
with increasing n.

g1 92 93

8 8 7 8 8 8 7 8 9 7
16 22 6 9 26 7 9 26 5 12
32 68 5 9 132 6 11 68 6 12
64 | 315 4 9 6 14 202 5 13
128 | 3417 4 10 5 15 573 5 17
256 | ** 4 10 5 18 5 22
512 | ** 4 10 5 25 b 28

Table 1. Numbers of Iterations for Different Preconditioners.

Next we test our preconditioner for queueing networks mentioned in §3. Since @), in
(7) is irreducibly diagonally dominant, both Jacobi and Gauss-Seidel methods converge
when applied to solving the system (6). However, by using the partitioning of @, as in (8)
and taking advantage of the Toeplitz matrix-vector multiplication (see §3.2), we see that
each iteration of the Jacobi method can be done in O(nlogn) operations, the same count
as that of the PCGS method. This special property is not enjoyed by the Gauss-Seidel
method which will still require O(n?) operations per iteration. Thus in our comparisons,
we used only the Jacobi method.

We tried two sets of queueing parameters:

: I
(i) )\jZE,]zl,Z..., and
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We note that, in both cases, A = > 77, Ay = 1. The service rate y is set to p = A/s.
By (15), we see that b(1) # 0 and hence ¢ = 1. Clearly, in both cases the mean arrival
batch size E(B) is finite because ), jA; < oo. Therefore, b(z) € W and is given by (14).
We remark that by using (13), the radius of convergence p for the first set of queueing
parameters is 2. Hence regardless of the values of p, its b(z) will always be in W.

The initial guess for both methods is (1,1,...,1)/n. The stopping criteria for the
PCGS method is again given by (16), whereas for the Jacobi method, it is ||x; —xx_1||]2 <
107, where x;, is the solution obtained at the kth iteration. Tables 2-3 give the numbers
of iterations required for convergence for s = 1,4 and n — 1. The symbol J there means
the Jacobi method is used. Again *x signifies that the method does not converge in 5000
iterations. The symbol “kflop” means 1000 floating point operations. Note that the case
s = n — 1 is not covered by our Theorem 2. However, we note that in all the cases we

tested, our preconditioner P, is clearly the best choice.

s 1 4 n—1
n | I P, Cug J I P, C)g J I P, Cug J
8 | 8 5 6 9% | 8 5 7 8|18 6 6 45
16 |15 4 6 115 |15 5 7 86 |13 7 8 70
32 128 4 7 213 |27 5 8 209 |21 7 9 114
64 | ** 4 7 307 |5 8 306 | 48 7 10 173
128 | ** 3 7 470 | ** 5 8 469 | ** 7 10 267
256 | ** 3 8 768 | ** 5 8 768 | ** 7 10 434
512 | ** 3 8 1331 |** 5 8 1331 |* 6 10 746
Table 2: Numbers of iterations for \; = 1/27.
s 1 4 n—1
n I P, Cig J I P, Cig J I P, Cug J
8 8 5 6 389 | 8 5 7 264 | 8 6 8 112
16 | 16 4 7 1050 16 6 9 899 |16 8 12 212
32 | 32 4 9 2253 32 6 10 213932 12 15 372
64 | 64 4 11 3431 64 5 12 3398 |79 15 23 577
128 | 125 4 13 3874|124 5 15 3842 | % 18 29 1005
256 | 365 4 17 1388 5 18 R 21 34 1841
512 | ** 3 21 GO B 21 e 17 38 3163

—_
w




Table 3: Numbers of iterations for \; = 90/(7j)*.

n| I P Clg J

8 | 21 20 23 413
16 | 82 37 56 2410
32 | 340 80 150 11213
64 | 1437 172 388 37042
128 | 5997 373 977 90536
256 | 37423 807 2696  **
512 | ** 1421 7060 %

Table 4: Numbers of kflops for \; = 90/(7j)* and s = 1.

5 Concluding Remarks

We remark that although we concentrate ourselves in the T. Chan circulant precondition-
ers here, the convergence results in Theorems 1 and 2 can easily be extended to include
other circulant preconditioners. For instance, results for Strang’s circulant precondition-
ers can be obtained if we replace Lemma 1 by theorems in [24]. In particular, using
Theorem 6 there, we can show that if the quotient function A(z) is a rational function of
type (i, v), then our method converges in at most (1 + 2 max{u, v} + ¢) steps for large n.
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