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Abstract. We study an operator ¢ which maps every n-by-n matrix A, to a circulant
matrix ¢(A,) that minimizes the Frobenius norm ||A4,, — C,||r over all n-by-n circulant
matrices C),. The circulant matrix ¢(A,,), called the optimal circulant preconditioner, has
proved to be a good preconditioner for a general class of Toeplitz systems. In this paper, we
give different formulations of the operator, discuss its algebraic and geometric properties
and compute its operator norms in different Banach algebras of matrices. Using these
results, we are able to give an efficient algorithm for finding the super-optimal circulant
preconditioner which is defined to be the minimizer of ||I — C; 1A, ||r over all nonsingular

circulant matrices C,,.

Abbreviated Title. Circulant Operator

Key Words. Toeplitz matrix, circulant matrix, optimal preconditioner, circulant opera-

tor, preconditioned conjugate gradient method
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§1 Introduction.

Preconditioned conjugate gradient methods have been used successfully in solving
many large matrix problems. Strang [6] first proposed using the method with circulant
preconditioners for solving Toeplitz systems. R. Chan and Strang [1] then proved that for
Toeplitz systems with generating functions that are positive functions in the Wiener class,
the method has a super-linear convergence rate due to the clustering of the eigenvalues of

the preconditioned matrices.

Several circulant preconditioners have been proposed since then, see for example T.
Chan [4] and Tyrtyshinkov [7]. For any n-by-n matrix A,, the circulant preconditioner
proposed in T. Chan [4], called the optimal circulant preconditioner, is defined to be
the minimizer of ||C,, — A,||r over the space of all n-by-n circulant matrices C,,. Here
| - || denotes the Frobenius norm. The circulant preconditioner given in Tyrtyshinkov
[7] is defined to be the minimizer of ||[I — C;!A,||F over the space of all nonsingular
circulant matrices C,,, and is called the super-optimal circulant preconditioner. From the
computational point of view, these optimal circulant preconditoners are better than the
one proposed in Strang [6] because they are symmetric positive definite whenever A,, is.
Numerical results in these papers showed that they are very good preconditioners. The
analysis of the convergence rates of these preconditioned systems are given in R. Chan
[2] and R. Chan et al. [3], and it is proved that for the same class of Toeplitz systems
mentioned above, these methods converge at the same rate as the Strang’s preconditioned

systems.

In this paper, we study these circulant preconditioners from the operator point of
view. Let (M, xn,| - ||) be the Banach algebra of all n-by-n matrices over the complex
field, equipped with a matrix norm || -||. Let (C,,xn, || - ||) be the subalgebra of all circulant
matrices. We note that C,x, is an inverse-closed, commutative algebra. Let ¢ be an
operator defined on (M, xn, ||-||) such that for any A,, in M, %, ¢(4;,) is the minimizer of

|A,, — CyllF over all C,, in C,,x,,. Obviously, ¢(A,,) is the optimal circulant preconditioner
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proposed in T. Chan [4] and ¢ is an operator from (M, «y,]|| - ||) into the subalgebra
(Crxn, |l - 1I)- We call ¢ the circulant operator. In R. Chan et al. [3], we utilized this
operator to analyze the convergence rate of Toeplitz systems preconditioned by super-

optimal circulant preconditioners.

The purpose of this paper is to discuss some other aspects of this operator. The
outline of the paper is as follows. In §2, we introduce other formulations of the operator
and prove some of its algebraic and geometric properties. In §3, we compute its operator
norms for different Banach algebras of matrices. In §4, we apply these results to derive an
algorithm for finding the super-optimal circulant preconditioner. Our algorithm is more

efficient than the one proposed in Trytyshinkov [7].

§2 The Circulant Operator.

In this section, we discuss some properties of the circulant operator. For any A,, in
M xn, let 6(A,) denote the diagonal matrix whose diagonal is equal to the diagonal of

the matrix A,,. We first give two methods for finding c¢(4,,).

Theorem 1. Let A, = (a;;) € Mpxn and c(A,) be the minimizer of ||C,, — A, ||r over

all Cp, € Cpxn- Then ¢(Ay) is uniquely determined by A,. Moreover,

(i) c(Ay) is given by
)= Y e (1)

J=0  p—g¢=j (mod n)

where Q) is the n-by-n circulant matriz

(ii) c(A,) is also given by

c(A,) = F*§(F A, F*)F, (3)
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Wy »
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where F' is the Fourier matriz and denotes conjugate transposition.

Proof. For the proof of (i), see Theorem 2.1 in Tyrtyshnikov [7]. For (ii), we first note
that any circulant matrix C,, can be expressed as F*A, F, where A,, is a diagonal matrix
containing the eigenvalues of C,,, see Davis [5]. Since the Frobenius norm is unitary-

invariant, we have
“Cn - AnHF = HF*AnF - An“F = “An - FAnF*“F-

Thus the problem of minimizing ||C,, — A,||r over C,x, is equivalent to the problem
of minimizing ||A, — FA,F*||r over all diagonal matrices. Since A,, can only affect
the diagonal entries of F A, F*, we see that the solution for the latter problem is A,, =
d(FA,F*). Hence F*§(FA,F*)F is the minimizer of ||C,, — A,,||r. It is clear from the

argument above that A, and hence ¢(A4,,) are uniquely determined by A,,. 0

We remark that by (1), the j-th entry in the first column of ¢(A,,) is given by
1 1 —j .
CAlp=— D ay = (4,Q7), j=0L-n-1 (4)
p—q=j (mod n)
where tr () denotes the trace. By (3), the eigenvalues of ¢(A,,) are given by §(F A, F*). We

also notice that the nonsingularity of A,, cannot guarantee §(F A, F*) to be nonsingular.

Hence ¢(A,,) may be singular for nonsingular A,,.

The following Lemma is on the algebraic properties of the circulant operator.

Lemma 1.

(i) For all A,, B, € Mpxn and o, B complez scalars, c(aAy, +BBy) = ac(Ay)+Bc(By).
Moreover, for all A, € Mpxn, ¢2(A,) = c(c(A)) = c(A,). Thus c is a linear

projection operator.

(ii) Let A, € Myxn, tr (c(An)) = tr (An) = DY Nj(Ay), where \j(Ay,) are the eigenval-

J=0

ues of A,,.
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(i1i) For all A,, € Myxn, we have c¢(A}) = c(An)*.
(iv) Let A, € Myxn and Cy,, € Cpxn. Then

c(CrAp) =C, - c(4,),

c(A,Cp) =c(A,) - C.

Proof. The proofs of (i) and (ii) are trivial, therefore we omit them. By using (3) and the
fact that 0(A)) = (6(Ay))*, one can easily prove (iii). For the proof of (iv), see Theorem

2 in R. Chan et al. [3]. 0

Next we are going to give some geometric properties of the circulant operator. For all
A, By, € Myuxn, let (A, B,)r = % tr (A, B;:). Obviously (4, B,,)r is an inner product
in My, xp and (A, A,)p = L[| A, ||%. Tt is easy to show that {Q7] j =0, ,n—1}, where
( is given in (2), is an orthonormal basis of (C,,xn, || -||7). We show below that A,, —c(A,,)

is perpendicular to the space Cy, xp.
Lemma 2. Let A, € M, xn, then we have
(i) (A, —c(An),Cp)r =0 for all C,, € Cpxn,
(i) (An,c(An))F = :lle(An)[I%,
(iii) || An — c(An)|IF = [[AnllF = lle(An)[I7-
Proof. For (i), since {Q’ }?:_01 is an orthonormal basis of C,,xn, it suffices to show that
(A, —c(A,),Q")r =0 for j =0,--- ,n — 1. However, by (4) and Lemma 1 (i), we have
. 1 o 1 . 1 .
<An - C(An)an>F = E tr [(An - C(An))Q j] = E tr (AnQ j) - ﬁ tr (C(An)Q j)
= [c(An)]jo — [e(c(An))]jo = [e(An)]j0 — [¢(An)]jo = 0.
Now (ii) follows directly from (i). For (iii), we have, by parts (i) and (ii) above,
1A, — c(An)H%J =n(A, — c(An), An — c(An))r = n(A, — c(4An), An)F

= 1(An, An)F —n{c(4n), An)F = [[4nlF — lc(4n) 7 0
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83 Spectral Properties of the Circulant Operator.

In this section, we discuss some spectral properties of the circulant operator. The
following theorem was first proved for the real scalar field in Tyrtyshnikov [7]. His proof

uses equation (1) and our proof here uses equation (3).

Theorem 2. If A, is Hermitian, then c(A,) is Hermitian. Moreover, we have
)\min(An) < )\min(C(An)) < )\max(c(An)) < Amax(An) )

where Amax(+) and Amin(-) denote the largest and the smallest eigenvalues respectively. In

particular, if A, is positive definite, then c(Ay) is also positive definite.

Proof. By Lemma 1 (iii), it is clear that ¢(A,,) is Hermitian when A,, is Hermitian. By (3),
we know that the eigenvalues of ¢(A,,) are given by §(F A, F*). Suppose that 6(F A, F*) =
diag(Xo, -+, Ap—1) With A\j = Amin(c(Ay)) and Ay, = Amax(c(4,)). Let e; and e denote

the j-th and the k-th unit vectors respectively. Since A,, is Hermitian, we have

*FA,F* *FA,F* *A,
Amax(C(Ap)) = A = ek*iek < max THET T opax 208 Amax (4n)-
€L Ek z#0 r*x z#0 IT*x
Similarly,
A, “FA F*z e FA,F*e;
Amin(An) = min r r = min z L S J " J = )\j = Amln(c(An))
z#0 T*T z#0 T*T €;€;j

From the inequality above, we can easily see that ¢(A,) is positive definite when A,, is

positive definite. H
Lemma 3. Forall A,, € My, xn, c(A,AY)—c(An)c(Ar) is a semi-positive definite matriz.
Proof. Let A,, = (a;;) and [F; = ﬁé’f, where &; = e~ 25 If we let

=c(AnA}) —c(An)c(A)) = F*(0(FALAF*) — 6(FA,F*)j(F A, F*))F,

then for all k =0,--- ,n — 1, we have

nlnl

[O(FAp Ay F ) ki = [6((F An) (FAp)*)kk = — Z > ek} Z%qfk

quO
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and
n—1ln—1 ln—ln—l
(P A F)SF AL o = (37 3 a3 3 a7,
p 0 ¢q=0 p=0 ¢=0

Hence the k-th eigenvalue of D,, is given by

— n—1ln—1
(o) =15 z o€~y 2 3 P
p=0 p=0g¢

q=0 =0

Since
n—1ln—1 n—1 n—1 n—1 n—1
|_Zzamfﬁ_q| = Z|Zapq§k||§kq| = Z|Zapq§k
p=0 ¢=0 q 0 p=0 q 0 p=0
we have
1 n—1 n—1 1 — —
Ak(Dn) > E | quk - E Z Z qup
g=0 p=0 g=0 p=0

n—1
Let dgi, = %| > apeér|, then by Cauchy-Schwartz inequality, we have
=0

n—1 n—1
)>n Y di— (O dw)? >0, k=0, ,n—1.
q=0 q=0
Thus D,, is semi-positive definite. 0

Theorem 3. For all n > 1, we have

(i) llelr = sup le(An)lls =1,

ni1=

(ii) [leflc =  sup  [le(An)lles =1,
[An|leo=1

(iii) fle|lr = sup Jc(An)llr =1,
lAnll =1

(iv) llellz = sup [le(An)ll2 =1 .

n||2:1
Proof. To prove (i), we first note that if A, = I, then |c(A,)||1 = ||I||1 = 1. For general

A, in My, xp, we have by (1)

n—1 1 ln—l
le(A)li =371~ D aw[<=D D an
7=0 pP—q=j (mod 'n,) 7=0 P—q=j (mod n)
n—1ln—1
:_ZZ\MK— n - || Anllr.
1=0 k=0
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Hence ||c||; =1 for all n. By a similar argument, we can prove (ii).
To prove (iii), we notice that if A, = LI, then ||c(4,)||r = 2||I||r = 1. For general
Ay, in My, xp, by Lemma 2 (iii), we have

le(An)lE = 14nllE — 14 — c(An)lIF < | An 7

Thus ||c(An)||F < ||An||F. Hence ||c||p =1 for all n.

To prove (iv), by Lemma 1 (iii), Lemma 3 and Theorem 2, we have

“C(An)H% = Amax(€(A4n)"c(An)) = Amax(c(4;,)c(Ay))

< Amax(C(A:(LAn)) < )\max(A;An) = HAn“%a

for all Ay, in Myxp. Since [e(I)llz = Iz =1, [l =1. g

84 The Super-optimal Circulant Preconditioner.

In this section, we apply the results in previous sections to analyze the super-optimal
circulant preconditioner proposed in Tyrtyshnikov [7]. For A, in M, «,, the precondi-
tioner is defined to be the minimizer of || — C;1A,||F over all nonsingular C,, € Cpxy-
First, we generalize Thoerem 4.1 in Tyrtyshnikov [7] from the real field to the complex

field. As with Theorem 2, his proof uses equation (1) and ours uses equation (3).

Theorem 4. Let A,, € M« be such that both A, and c(A,) are nonsingular. Then the

super-optimal circulant preconditioner for A, exists and is equal to c(An AX)c(A%)™1.

Proof. Instead of minimizing ||I — C,; ' A, ||, we consider the problem of minimizing || —

@AnuF over all nonsingular én in Cpxn. Letting én = F*A,F, we have
1T = CrAnllr =l — F*AyFA,||p = ||I — AyFA,F*||F

= tr (I — AyFA,F* — FA*F*A* + A, F A, A% F*A?)

= tr (I — Apd(FALF*) — §(FAF*)A: + A, 0(FA, AZ F*)A%).
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Let A,,, 6(F A, F*) and §(FA, A} F*) be given by diag(\o, -, A\n—1), diag(ug, -+ ,Un_1)

and diag(wp, - ,w,_1) respectively. We have

min || — C, Ap||p =min { tr [I — A,6(FA,F*) — §(FALF* )AL + A, 0(FA, AL F*)A%]}

n—1
= min Z(l — AU — ﬂkxk + Akwkxk)
N0y An_1} —

Notice that by (3) and Lemma 3, wg > uguy for all kK = 0,--- ,n — 1. Hence for all
complex scalars A\, k = 0,---,n — 1, the terms 1 — A\yur — Tp i + AWk Ag are non-
negative. Differentiating them with respect to the real and imaginary parts of Ay and

setting the derivatives to zero, we get

=k k=0, n—1.

)
Wk

Since A,, and ¢(A,) are nonsingular, both wy and uj are nonzero. Hence )\, are also

nonzero. Thus the minimizer of ||I — C,, A, ||F is nonsingular and is given by

Co =F*A,F = F*§(FA* F*)[§(FA, A F*)|~'F

=(F*§(FAXF*)F)(F*0(FA, A F*)F)™ = ¢(AX)c(A, AX)~ L.

Therefore the super-optimal circulant preconditioner is given by 6; V= c(A,A%)c(AX) L.

O

We remark that by Theorem 2, if A,, is Hermitian positive definite, then ¢(A,) is
nonsingular. Hence the super-optimal circulant preconditioner is defined for all Hermitian

positive definite matrices.

When the system A,z = b is solved by preconditioned conjugate gradient method
with the super-optimal circulant preconditioner ¢(A,, A%)c(A%)™!, then in each iteration,
we have to compute a matrix-vector multiplication of the form c(A%)c(A,A%) ly. We
now derive an algorithm for finding c(A})c(A,A%)~!. We begin by considering a general

A,, that has no special structure. We first note that c(A})c(A, A%)™! = C,, is circulant.
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Hence it is determined by its first column, which is given by

Cheo = c(A)[c(An AX)] teg = F*§(FALF*)[6(F A, A: F*)]"'Fe,

= F*§(F AL F*)[0(FA, AL F*)] 1. (5)

Here 1 is the vector of all ones. To compute d(F A} F*), it is clear from (1) that the first
column ¢(A})eq of ¢(A}) can be computed in n? additions and n multiplications. Since
by (3), d(F A} F*)1 = Fc(A})ep, one FFT is required to obtain §(F A} F*). To compute
S(FA,ALF*) = §((FA,)(FA,)*), we first need n FFTs to get FA,, then another n?
additions and n? multiplications to obtain the diagonal entries of §((FA,,)(FA,)*). Now
S(FAXF*)[6(FA,A: F*)]~! can be obtained by n multiplications. By (5), one additional
FFT is required to get aneg. Thus for an arbitrary n-by-n matrix A,, én can be computed

within 2n? additions, 2n + n? multiplications and (n + 2) FFTs.

We remark that from the computational point of view, we do not require the explicit
form of én, we only need its eigenvalues and they are given by the diagonal entries of

S(FA:LF*)[0(FA,A;F*)]71. In fact, given any vector y, 6ny can be computed by
Chy = F*§(FAXF*)[§(FA, A F*)| "' Fy.

Hence the last FFT in the above algorithm can usually be saved.

Next we study how a Toeplitz structure can be exploited to accelerate the computation
of én The algorithm presented here is more efficient than the one proposed in Trytyshinov
[7] where a Toeplitz matrix is partitioned into the sum of low and upper triangular Toeplitz
matrices. Here we will partition a Toeplitz matrix into the sum of a circulant matrix C,
and a skew-circulant matrix S,,. Let A = (a;;) = (a;—;) be Toeplitz, define C), and S,, by

ao a_1+ Ap—1 a—(n—l) + a1
a1+ a_(p-1) ap

an—1t+a_1 ao
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and

Qo a_1 —0anp-1 a_(p-1) — 01
_(a’—(n—l) —a) ao

_(a—l _an—l) ao

Clearly C,, is circulant and S,, is skew-circulant. Moreover, we have A,, = C,, + 5, and
that C),eq and S, ep can be computed by 2n multiplications and 2n additions. We remark

that 2 - C,, is the circulant preconditioner proposed in R. Chan [2].

We will compute the first column of C,, by (5). We first compute §(FA, A% F*). Since
A, =C,+ S, =F*A.F+5,, where A, is the diagonal matrix containing the eigenvalues
of C,,, we have

FA,F* =\, + FS,F*. (6)

Hence

=AA* + §(FS, F*)A: + A S(FS:F*) + §(FS, S F*). (7)

We now consider the terms in the right hand side of (7) one by one.

(i) For the first term in (7), we first compute A, by using A1 = A Fey = FCpey. That

requires one FFT. Then A.A} can be computed in n multiplications.

(ii) For 6(F'S, F*)A}, we know that by (3),
I(FS,F*)1 =6(FS,F*)Fey = Fc(Sy)ep.

Since S,, is skew-circulant, ¢(S,)ey can be computed in 3n multiplications and n
additions. Then §(F'S,, F*)A’ can be obtained by an additional n multiplications and

one FFT.

(iii) The third term in (7) is just the conjugate transpose of the second term in (7). Hence

it can be computed without any work at all.
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(iv) Finally for 6(F'S, S} F*), we have by (3) again,
(FS,S;F*)1 =0(FS,S;F*)Fey = Fc(S,S})eq. (8)

Thus the main work is to compute ¢(S,,S;;)eo. We first find S,,S). We note that for

all skew-circulant matrices, and in particular for S,,, they can be written as

S, = O F*A,FO, (9)

where © = diag(1,en?,--- ,e(n_nl)”) and A, is the diagonal matrix containing the

eigenvalues of S,,, see for instance, Davis [5]. Because A;1 = A;FOey = FOS e, Ag
can be computed in n multiplications and one FFT. Since S,, S}, is still skew-circulant,

it is determined by its first column S, S} eq. By (9),
SnSreg = O"F AN FOey = ©O"F AACL,

which can be computed by using one FFT and 2n multiplications. Once we know
SnSreg, c(SpSk)ep can be computed by using another 3n multiplications and n ad-

ditions. Finally by (8), one additional FFT is required to get 6(F'S,, S} F*).

By adding the four terms in (7), we see that §(F A, A}, F*) can be obtained by using

11n multiplications, 5n additions and 5 FFTs. We note that by (6),
S(FAF*)=0(FA,F*)" =[A.+ 6(FS,F*)]*,

where A, and 6(F'S,, F*) are already computed in part (i) and (ii) above. Thus 6(F A} F')
can be computed in n additions. By (5), we see that aneg can be computed by an
additional n multiplications and one FFT. Finally, by recalling that C,eq and S,ey are
computed in 2n additions and 2n multiplications, we see that én can be obtained in
totally 8n additions, 14n multiplications and 6 FFTs. As remarked above, the last FFT
can be saved because we only need to know the eigenvalues of én but not its explicit form.
Comparing with the algorithm proposed in Tyrtyshnikov [7] which requires 9 FFTs and

O(n) operations, we see that our method is more efficient.
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