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Abstract

Backtesting has always been an indispensable component in analyzing the pro�tability of
trading strategies in empirical �nance literature. When measuring return, while the majority
of literature implicitly assumes that a trade can be implemented at the same closing price
as the one generating the trading signal, others �nd empirical evidence suggesting that this
assumption presents a signi�cant challenge to the robustness of their results. Hence, several
alternative return measurements have been proposed, including the incorporation of a one-day
delay to mitigate this execution latency. The mixture of opinions regarding this issue triggers
us to quantify the achievability of backtesting results in the presence of this implementation
uncertainty. In particular, we propose a framework for implementing and backtesting trading
strategies. A new concept called return at risk (RaR) is introduced to quantify such achievability,
and we illustrate the proposed framework on a representative class of trading strategies. Results
show that a signi�cant number of technical trading strategies with positive returns are found to
be not achievable in the presence of implementation uncertainty.

Keywords� Uncertainty Quanti�cation; Quantitative Trading Strategies; Trading Strategies;
Risk Management; Financial Simulation

1 Introduction

Backtesting is a key component in gauging the e�ectiveness of trading strategies. In essence, it
provides various measures of the pro�tability of a trading strategy such as return by reproducing
the strategy on historical data. While there is a myriad of studies on trading strategies, the vast
majority of them uses only end-of-day market data for backtesting instead of intraday data due to
its limited availability. An important question concerning the backtesting procedure remains: if a
trading signal is generated upon observing a closing price, should the same closing price be used as
the execution price? This issue is important as it directly a�ects the calculation of return which is
at the core of pro�tability measurement.

However, literature on the pro�tability of trading rules is mixed regarding this issue. Some
studies calculated trading returns by using the same closing prices as the ones generating the trading
signals. In other words, an implicit assumption of these studies was that traders could perform
transactions at the prices which were used to make decisions. Earlier papers include Fama and
Blume (1966), Brock et al. (1992), LeBaron (1999), Knez and Ready (1996), Allen and Karjalainen
(1999), and more recent papers include Zhu and Zhou (2009), Teixeira and De Oliveira (2010), Fang
et al. (2014), Wang et al. (2015), Chan et al. (2016). In practice, however, if a trading decision is
made based on the closing price, it is not feasible to execute the trade until the market reopens on
the next day.

On the other hand, other studies recognized the infeasibility of such a transaction. Consequently,
to ensure that there were no such �look-ahead� bias, a one-day delay was imposed by assuming that
trades were executed at the closing price one day after a trading decision had been made. These
studies include Lo et al. (2000), Ma et al. (2013). Similarly, some studies conducted a robustness
test by comparing technical trading returns with and without a one-day delay. The studies by
Sweeney (1988), Taylor (1992), Bessembinder and Chan (1995), Day and Wang (2002) documented a
substantial decrease in portfolio excess returns upon incorporating a one-day delay. While imposing
a one-day delay resolves the feasibility of execution, such a delay may distort the trading strategy in
the sense that the trading signal after the one-day delay may deviate from the originally generated
trading signal. This inconsistency may render the execution according to the original trading signal
con�icting, and consequently such a robustness test may not have any implication on the trading
strategy itself. Kozhan and Tham (2012) investigated the execution risk in high-frequency trading
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and demonstrated that the risk arises from the crowding e�ect of competing traders using arbitrage
strategies. In light of the mixture of opinions regarding the above implementation uncertainty, we
quantify in this paper the achievability of backtesting results in the presence of this implementation
uncertainty by proposing an uncertainty quanti�cation framework.

Uncertainty quanti�cation was originally developed in the engineering community. It is used to
seek bounds on a system's behavior such as the probability of system failure without full knowledge
of the underlying probability structure. Recently, it has been applied to the �eld economics and
�nance as regulatory agencies place heavier emphasis on stress testing. In particular, uncertainty
quanti�cation frameworks have been proposed to test the soundness of �nancial portfolios. For
example, in Chen et al. (2015), a new measure of fundamental economic uncertainty was developed
from the yield curve in order to stress test a �xed-income portfolio. The measure is based on
McDiarmid's distance and optimal uncertainty quanti�cation methods.

In this paper, the proposed uncertainty quanti�cation framework consists of a trading system
and an accompanying backtesting system. The trading system is based on a trading strategy and
a decision rule, while the backtesting system is based on a probability distribution of the return
di�erence, and a newly de�ned concept called return at risk (RaR). We illustrate the proposed
framework on a representative class of trading strategies found in Brock et al. (1992). Results
show that a signi�cant number of technical trading rules with positive returns are found to be not
achievable when implementation uncertainty is taken into account.

The rest of the paper is organized as follows. Section 2 discusses the data assumption of the
framework, which involves a stochastic model to be used later in both the trading and backtesting
system. Section 3 describes the trading system, with trading strategy and decision rule as the core
components of the system. The trading system is to be used alongside the backtesting system.
Section 4 lays the groundwork for the backtesting system by describing methods to obtain the
probability distribution of the return di�erence. Section 5 continues to discuss the backtesting
system by proposing a new concept called return at risk (RaR) to quantify the achievability of
backtesting results. Section 6 then illustrates the framework with a representative class of trading
rules in Brock et al. (1992), and Section 7 concludes the paper.

2 Data Assumption

Before proceeding to describe the trading and backtesting system, it is worthwhile to note that
both of them require a stochastic model of price. We model it with the geometric Brownian motion
piecewisely for the trading hours of each trading day, and assume that the price dynamics of each
trading day are independent of each other. We adopt this common model since Brownian motion has
been well-studied, which makes the theoretical derivation of our framework easier. In the future,we
will develop models that can be extended beyond the geometric Brownian motion to more general
price models, and to models with multiple inputs such as price and volume. More precisely, we can
choose another stochastic model to compute the joint probability distribution of the inputs, and
the rest of the framework follows similarly.

To begin with, suppose the backtesting period is from day 0 to day N . From most major
statistical databases, one can obtain the opening price Oi and closing price Ci for each trading day
i = 0, . . . , N . Denote the intraday price of day i by Sit , where t ∈ [0, 1], so that Si0 represents the
opening price at day i, and Si1 represents the closing price at day i. The above assumption that
price movements of each trading day are independent implies

f
(
S0
t , . . . , S

N
t

∣∣O0, . . . , ON , C0, . . . , CN
)

=
N∏
i=0

fi
(
Sit
∣∣Oi, Ci) ,
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where the function on the left-hand side is the joint probability distribution of the random variables
S0
t , S

1
t . . . , S

N
t given S0

0 = O0, S
1
0 = O1, . . . , S

N
t = ON , and S

0
1 = C0, S

1
1 = C1, . . . , S

N
1 = CN , and

all the functions on the right-hand side are the probability distribution of the random variables Sit
given Si0 = Oi and S

i
1 = Ci. With the above independence property, we can formulate the geometric

Brownian motion for each day i = 0, . . . , N as follows: denoting the intraday drift by µ and intraday
volatility by σ, we have

Sit =

(
Si0 exp

((
µ− σ2

2

)
t+ σBt

)∣∣∣∣Si0 = Oi, S
i
1 = Ci

)
, for t ∈ [0, 1] , (1)

where Bt is the general Brownian bridge with B0 = 0 and B1 = 1
σ

(
log
(
Ci
Oi

)
−
(
µ− σ2

2

))
.

To calibrate µ and σ, we simply calculate the mean and sample standard deviation of the log re-
turns from the historical opening and closing prices of the backtesting period. More precisely, denote
the historical opening and closing prices of the backtesting period by O0, . . . , ON and C0, . . . , CN

respectively. Let Ui = log
(
Ci
Oi

)
for i = 0, . . . , N be the daily log returns. Here the opening price

at day i is used instead of the closing price at day i − 1 to avoid incorporating any discontinuity
between the previous day's closing price and the subsequent day's closing price in the estimation of
intraday drift and volatility. Then µ and σ can be estimated from the return series U0, . . . , UN by

σ2 =
1

N

N∑
i=0

(
Ui − Ū

)2
and µ = Ū + σ2/2,

where Ū = 1
N+1

N∑
i=0

Ui is the mean of the return series. Notice that µ and σ are constant throughout

the entire backtesting period, which are di�erent from the µi's and σi's that will be introduced
below. Once µ and σ are calibrated for the backtesting period, we use this model to evaluate the
achievability of backtesting results of trading strategies.

3 Trading System

3.1 Trading Strategy

The �rst component of the trading system is the underlying trading strategy. Interday trading
strategies of a security take various types of day-end data as inputs and return the desired position.
We use integers to pinpoint the exact amount of securities being long (represented by a positive
integer) or being short (represented by a negative integer). Since many well-known technical trading
strategies take historical closing prices as the input only, we denote the closing price of day i
(starting from i = 0) by Si1 = Ci as introduced in Section 2. In the future, we will develop models
that can be extended to accommodate trading strategies that take input other than closing price,
or even strategies that take more than one input (see Section 6.2 below) such as closing price,
and trading volume. More precisely, instead of using the geometric Brownian motion to model
the probability distribution of the closing price Si1 (which will be illustrated in a moment), we may
choose another suitable stochastic model to obtain the joint probability distribution of di1, a column
vector containing the inputs. All the rest can then be proceeded in a similar manner. However, for
notational convenience, we will restrict the description below to trading strategies that take closing
price Si1 as the only input.

Let Di
1 =

[
S0
1 S1

1 · · · Si1
]
be the (i+ 1)-vector containing the closing prices including and

up to day i. We can describe the trading rule by a function as follows: let gi : Ri+1
>0 −→ Z be given
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by Di
1 7−→ Yi, where Yi is the desired position taken at day i after observing all the closing prices

including and up to day i, with positive Yi's indicating long positions and negative Yi's indicating
short positions. Let ni = Yi − Yi−1, the number of shares to be executed. A positive ni represents
buying ni shares and a negative ni represents short-selling ni shares.

After the market closes on day i − 1, all closing prices including and up to day i − 1, i.e.
{Sj1}

i−1
j=0 are known. Therefore, we can use the previously de�ned gi to de�ne ĝi : R>0 −→ Z by

Si1 7−→ gi
(
Di

1

)
= Yi, which is a function taking the closing price of day i and returning the desired

position. For each integer ni, the execution region of ni number of shares can then be de�ned by
Rni =

{
Si1 ∈ R>0 : ĝi

(
Si1
)
− Yi−1 = ni

}
. More precisely, Rni is a buy region if ni is positive, a

sell region if ni is negative, and a no-action region if ni is zero. Note that the execution regions
constitute a partition of the whole domain R>0 in the sense that they are disjoint and exhaustive.

After obtaining the execution regions of trading strategies, the next step is to predict the closing
price based on the price a short time δ before the market closes on day i. More precisely, we may
obtain the probability distribution of Si1 (closing price at day i) from Si1−δ (price a short time δ
before the closing time of day i) by utilizing the geometric Brownian motion model described in
Section 2. However, the µ and σ described above can only be found after the backtesting period, it
cannot be known during real-time trading. For this reason, when trading real-time near the closing
time of day i, we calibrate µi and σi from the most recent K days of historical data available at
day i. In other words, we use Oi−K , . . . , Oi−1 and Ci−K , . . . , Ci−1 to form the log return series and
calculate µi and σi using the same procedure above, so that

Si1 = Si1−δ exp

((
µi −

σ2i
2

)
δ + σiBδ

)
, (2)

where Bt is the standard Brownian motion. Note that µi and σi are rolling, as the closing price is
known up to day i− 1 only when one is trading at day i. Clearly the expected closing price is

E
(
Si1
)

= Si1−δ exp

(
µi −

σ2i
2

)
δE (exp (σiBδ)) = Si1−δ exp (µiδ) . (3)

Furthermore, we can construct the (1− α) 100% con�dence interval of the closing price Si1 as follows:
taking the logarithm of (2), we have

log
(
Si1
)
∼ N

(
log
(
Si1−δ

)
+

(
µi −

σ2i
2

)
δ, σ2i δ

)
,

where N
(
µ, σ2

)
denotes a normally distributed random variable with mean µ and variance σ2.

Therefore, the (1− α) 100% con�dence interval of the closing price Si1 on day i is given by

Iα,i = exp

(
log
(
Si1−δ

)
+

(
µi −

σ2i
2

)
δ ± zασi

√
δ

)
,

where zα is the critical value of the standard normal distribution for a con�dence level of 1 − α.
Clearly, the probability P (Iα,i) = 1 − α. For convenience, we let L and U be the lower and upper
bound of Iα,i, so that

Iα,i = (L,U) . (4)

3.2 Decision Rule

The second component of the trading system is a decision rule, which allows us to make a trading
decision a short time δ before the market closes on day i. Once a trading decision is made, a market-
on-close order can be placed before the market closes on day i. Admittedly, placing trade orders just
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before the market closes might potentially be suspectible to heightened scrutiny, as addressed in
Hillion and Suominen (2004) and Comerton-Forde and Putnins (2011). Such market manipulation,
however, is more prevalent in over-the-counter trades, for example as noted in Aggarwal and Wu
(2006). The framework also alleviates the problem by avoiding placing trades directly at the market
close but instead at an earlier time. Moreover, the potential for market manipulation may be lessened
if we place the trades earlier by taking a larger δ.

With the above execution regions Rni , expected closing price E
(
Si1
)
and con�dence interval Iα,i,

we consider the following common decision rules as samples for our study:

1. The �rst decision rule is to trade according to which execution region the expected closing
price falls into. In other words, if E

(
Si1
)
falls into Rni , execution of ni shares is decided.

2. The second decision rule is to trade according to the execution region which has the largest
probability of containing Si1. In other words, we decide to execute ni shares if P (Rni) is the
largest among all execution regions.

3. The third decision rule utilizes the con�dence interval Iα,i together with risk-averse behavior.
Speci�cally, if Iα,i∩Rni 6= ∅ for some unique ni, execution of ni shares at the closing time can
be planned. If there are multiple ni's satisfying Iα,i∩Rni 6= ∅, this indicates that we are unsure
about which execution region the closing price will fall into. Therefore, a risk-averse approach
is to choose among the intersecting ni's the one which minimizes the resulting exposure |Yi|.

4. Finally, to complement the risk-averse behavior in the third decision rule, the fourth and
�nal decision rule is essentially the same as the third one except that instead of adopting the
risk-averse approach, we adopt a risk-loving approach by maximizing the resulting exposure
|Yi|.

Figures 1 to 4 illustrate the four decision rules in the case of three execution regions such that
R+1 = (Mi,∞), R0 = [mi,Mi], R−1 = (0,mi).

4 Backtesting System

As mentioned in Section 1, the backtesting system below is to be used alongside the trading system
described in Section 3. Also, as intraday data are more expensive and less accessible, a practical
bene�t is added since the backtesting system uses only opening and closing prices, which are end-
of-day data.

We recall some terminologies which will be used below. A sample path refers to a path of positions
initiated according to the trading system. Since the backtesting system uses only opening and closing
prices but the trading system makes use of the price Si1−δ a short time before the market closes,
we need to simulate it according to the geometric Brownian motion model introduced in Section
2. This is the reason why randomness is involved and each sample path generated is di�erent.
Meanwhile, the perfect path refers to the path of positions initiated with the assumption that the
closing prices can be used in both trading signal generation and execution. We emphasize again that
this assumption cannot be accomplished in practice as it is not possible to conduct transactions
after the market has closed. Finally, the return di�erence refers to the di�erence in return of a
sample path with that of the perfect path. As there is randomness involved in a sample path, the
return di�erence is regarded as a random variable denoted by D. The �rst step of the backtesting
system is to obtain the probability distribution of the return di�erence D. There are two methods
to accomplish it.
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Time

Price

0 1− δ 1

Oi

Si1−δ

E(Si1)

Mi

mi

R+1

R0

R−1

Figure 1 The �gure illustrates the �rst
decision rule. As the expected closing
value of the stock price falls in R+1,
buying 1 share is decided.

Time

Price

0 1− δ 1

Oi

Si1−δ Mi

mi

Iα,i

P(R+1)

P(R0)

P(R−1)

Figure 2 The �gure illustrates the sec-
ond decision rule. For example, if R0

has the largest area under the probabil-
ity distribution of Si1, we decide to do
nothing.

Time

Price

0 1− δ 1

Oi

Si1−δ Mi

mi

Iα,i

R+1

R0

R−1

Figure 3 The �gure illustrates the
third decision rule. As the con�dence
interval intersects both R+1 and R0, if
the initial position held at time i− 1 is
−1, we decide to minimize our resultant
exposure by buying 1 share.

Time

Price

0 1− δ 1

Oi

Si1−δ Mi

mi

Iα,i

R+1

R0

R−1

Figure 4 The �gure illustrates the
forth decision rule. As the con�dence
interval intersects both R+1 and R0, if
the initial position held at time i− 1 is
0 (neutral), we decide to maximize our
exposure by buying 1 share.
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4.1 Probability Distribution of the Return Di�erence by Monte Carlo Simula-

tion

The method of obtaining the probability distribution of return di�erence by Monte Carlo simulation
is applicable to all four decision rules. In order to do the simulation, we �rst have to obtain the
probability density function of the price Si1−δ a short period δ before the market closes for each
day of the backtesting period. With σ calibrated from the entire backtesting period (described in
Section 2), for each day i = 1, . . . , N , we have the probability density function of Si1−δ given by

fSi1−δ

(
si1−δ

)
=

1

σsi1−δ
√

2πδ (1− δ)
exp

−
(

log

(
si1−δ
Oi

)
+ (δ − 1) log

(
Ci
Oi

))2

2σ2δ (1− δ)

 , (5)

for si1−δ ∈ (0,∞). The details of the derivation are given in appendix 8.1. We can then simulate a
single value of Si1−δ, for each day i = 1, . . . , N according to the above probability density function.
After that, utilizing one of the four decision rules of our choice, we can determine the trading
decision for each day i = 1, . . . , N . Then we can calculate the return of this sample path from day
1 to day N by recording the closing prices corresponding to the trades. The return di�erence D
of this sample path with the perfect path can be calculated. By repeating the above procedure
for a large number of sample paths, the probability distribution of the return di�erence D can be
obtained.

4.2 Probability Distribution of the Return Di�erence by Analytical Derivation

Among the four decision rules introduced in Section 3.2, this method of obtaining the probability
distribution of return di�erence by analytical derivation is applicable only to the �rst decision rule.
For simplicity, we describe the method for strategies with only 3 possible positions +1, 0, −1 for each
day i with execution regions (Mi,∞), [mi,Mi], (0,mi) respectively. The method can be extended
in a similar manner to treat strategies with an arbitrary number of execution regions.

From (3), we have E
(
Si1
)

= Si1−δ exp (µiδ) with µi calibrated from the most recent K days of
historical data available at day i. According to the �rst decision rule, positions of +1, 0,−1 corre-
sponds to the cases which E

(
Si1
)
lies in (Mi,∞), [mi,Mi], (0,mi) respectively. Equivalently, they

correspond to the cases that Si1−δ lies in
(
Mie

−µiδ,∞
)
,
[
mie

−µiδ,Mie
−µiδ

]
,
(
0,mie

−µiδ
)
respec-

tively. Subsequently, for each historical day i = 1, . . . , N , we have the probabilities of each possible
position as follows:

Pi (+1) =

ˆ ∞
Mie−µiδ

fSi1−δ

(
si1−δ

)
dsi1−δ,

Pi (0) =

ˆ Mie
−µiδ

mie−µiδ
fSi1−δ

(
si1−δ

)
dsi1−δ,

Pi (−1) =

ˆ mie
−µiδ

0
fSi1−δ

(
si1−δ

)
dsi1−δ.

where fSi1−δ
is given by (5). Let

{
Xj (i) : j = 1, . . . , 3N

}
be all the possible sample paths of the

positions taken, where Xj : {1, . . . , N} −→ {+1, 0,−1}. From historical closing prices, we can
calculate the return di�erence D of each sample path with that of the perfect path. The return
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di�erence of each sample path can then be associated with the probability of the path
N∏
i=1

Pi (Xj (i)).

Combining all such pairs, the probability distribution of the return di�erence D can be obtained.

5 Return at Risk (RaR)

5.1 De�nition of RaR

From the probability distribution of the return di�erence D, it would be nice to have a single value
to quantify the risk of obtaining a return of a sample path lower than that of the perfect path (i.e.
obtaining a negative return di�erence). To that end, we introduce the concept of return ratio at

risk (RaR), which is analogous to the de�nition of the well-known value at risk (VaR) introduced
by Artzner et al. (1999). It is de�ned as follows: given a con�dence level β, we de�ne the return at

risk RaRβ (D) to be the negative of level (1− β)-quantile of the return di�erence D, i.e.

RaRβ (D) = − inf {d ∈ R : 1− β ≤ P (D ≤ d)} .

5.2 Interpretation and Signi�cance of RaR

Note that RaR reports the worst return di�erence not exceeded with a given level of con�dence,
regardless of whether the perfect return is positive or negative. For example, if the 95% RaR of a
certain trading strategy with a decision rule is 0.2, then there is a 5% chance that the return from
trading the strategy with the decision rule will be less than the perfect return by 0.2 of the absolute
value of the perfect return. Conversely, if the 95% RaR of a certain trading strategy with a decision
rule is −0.2, then there is a 95% chance that the return from trading the strategy with the decision
rule will be more than the perfect return by 0.2 of the absolute value of the perfect return. A small
positive or negative RaR means that a trading strategy with its decision rule is robust in the sense
that up to the con�dence level, a large fraction of the the return from backtesting is achievable in
real-time trading. A negative RaR means that the return from trading real-time is even better than
the return from backtesting up to the con�dence level. Therefore in the extreme case, if the return
from backtesting is negative but the RaR is also very negative (less than −1), then the strategy
could still be launched. A large positive RaR, however, means that a large fraction of the return
from backtesting is not achievable in the presence of implementation uncertainty; hence the strategy
with its decision rule should not be launched even if the return from backtesting is appealing. The
backtesting system and the use of RaR will be illustrated concretely in Section 6.4.

Traditionally, without the concept of RaR, a strategy will be deemed pro�table and hence
launched if the return from backtesting is attractive, without regarding to the fact that in practice
one cannot use the closing price in both decision and execution. Hence the attractive return from
backtesting may not be achievable in real trading. RaR thus gives additional information regarding
the achievability of the return from backtesting in real trading, in the presence of implementation
uncertainty. The additional information about trading strategies can also be used for more complete
hypothesis testings. It will be interesting to see if RaR will give us a new perspective or conclusion
when the framework is incorporated.

6 Illustration of the Framework

In this section, we present examples of applying the above framework to a representative set of
trading strategies. As discussed in Section 1, there are two components of the framework. For
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decision rules, we have already given examples in Section 3.2. Therefore, it remains to provide
examples of trading strategies to illustrate the framework.

6.1 Examples of Trading Strategies

The trading strategies chosen for illustration are from the representative set of twenty-six technical
trading rules in Brock et al. (1992), which comprise of ten Variable Length Moving Average (VMA)
rules, ten Fixed Length Moving Average (FMA) rules and six Trading Range Break (TRB) rules.
Due to its popularity, we also include the Moving Average Convergence/Divergence (MACD) as
introduced by Appel (2005) as well. An introduction to the above technical trading rules is given
in Chan et al. (2014), and we adopt notations similar to them below.

We compute the execution regions for each of the above strategies. Note that VMA and MACD
take only one type of day-end data, the closing price, as the input.

6.1.1 Execution Regions for VMA

Denote the L-period simple moving average at day i by SMAL,i, that is,

SMAL,i =
1

L

i∑
j=i−L+1

Sj1.

Using the moving average crossover rule with L1 < L2 and a p% band, the associated function
gi : Ri+1

>0 −→ Z is given by

gi
([
S0
1 , . . . , S

i−1
1 , Si1

])
=


+1, if SMAL1,i > SMAL2,i ×

(
1 + p

100

)
,

−1, if SMAL1,i < SMAL2,i ×
(
1− p

100

)
,

0, otherwise.

De�ne ĝi accordingly. We further let

Mi =
L1

(
1 + p

100

)
L2 − L1

(
1 + p

100

) i−L1−1∑
j=i−L2+1

Sj1−
i−1∑

j=i−L1+1

Sj1, (6a)

mi =
L1

(
1− p

100

)
L2 − L1

(
1− p

100

) i−L1−1∑
j=i−L2+1

Sj1−
i−1∑

j=i−L1+1

Sj1. (6b)

For Yi−1 = 0 (i.e. if no position are taken initially at day i− 1), the execution regions are found to
be

R+1 = (Mi,∞) , (7a)

R−1 = (0,mi) , (7b)

R0 = [mi,Mi] . (7c)

Details for the derivation of (7) can be found in appendix 8.2. Similar results can be obtained
for Yi−1 = 1 (where the above regions are changed to R0, R−2, R−1 accordingly) and Yi−1 = −1
(where the above regions are changed to R+2, R0, R+1 accordingly).
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6.1.2 Execution Regions for FMA

The execution regions for FMA are similar to those for VMA, except that an extra dimension is
used to capture a �xed holding period of H days once a long or short position is initiated. Let
W i

1 = max {w : Yi−1 = Yi−2 = · · · = Yi−w = 0}, the largest number of days for which no position is
taken since then. Also, let Mi and mi be the same as those from (6). Di�erent from VMA and
MACD, the function ĝi of FMA takes two inputs Si1 and W i

1. For Yi−1 = 0, the execution regions
are two-dimensional as follows:

R+1 = (Mi,∞)× (H,∞) , (8a)

R−1 = (0,mi)× (H,∞) , (8b)

R0 = R>0 × Z≥0\ (R+1 ∪R-1) . (8c)

For Yi−1 = 1, the execution regions are

R+1 = ∅, (9a)

R−1 = R>0 × (H,∞) , (9b)

R0 = R>0 × Z≥0\R-1. (9c)

Similar results can be found for Yi−1 = −1.

6.1.3 Execution Regions for TRB

As for the Trading Range Break-out (TRB), we denote the L-day local maximum and minimum by

Mi = max
{
Sj1 : j = i− L, . . . , i− 1

}
and mi = min

{
Sj1 : j = i− L, . . . , i− 1

}
respectively. Then

for Yi−1 = 0 and Yi−1 = 1, the execution regions are the same as (8) and (9), with Mi and mi

replaced by the above local maximum and minimum respectively.

6.1.4 Execution Regions for MACD

For MACD, we use L1 = 12 and L2 = 26 as the periods for the short and long term exponential
moving average respectively. We let

Mi =
(L1 + 1) (L2 + 1)

2 (L2 − L1)

∞∑
k=1

(
2

L2 + 1

(
L2 − 1

L2 + 1

)k
− 2

L1 + 1

(
L1 − 1

L1 + 1

)k)
Si−k1 .

For Yi−1 = 0, the execution regions are

R+1 = (Mi,∞) , (10a)

R−1 = (0,Mi) , (10b)

R0 = {Mi} . (10c)

Appendix 8.3 contains the details of the derivation.

6.2 Examples of Expected Closing Value and Con�dence Regions

Note that for VMA and MACD, only the closing price is taken as the input; therefore the expected
closing price and con�dence interval is found by (3) and (4) respectively in Section 3.1. As for FMA
and TRB, the associated functions take two types of data as the input, the closing price Si1 and
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Table 1 Illustration of the Trading System for VMA with the third decision rule

Inequality Satis�ed Intersecting Regions Minimizing Exposure? Trading Decision

mi < Mi < L < U R+1 No Long 1 share

mi < L < U < Mi R0 No No action

L < U < mi < Mi R−1 No Short 1 share

mi < L < Mi < U R+1, R0 Yes No action

L < mi < U < Mi R−1, R0 Yes No action

L < mi < Mi < U R+1, R−1, R0 Yes No action

the largest number of days for which no position is taken since then, i.e. W i
1. Note that unlike S

i
1

which cannot be determined until the closing time of day i, W i
1 is already known after the closing

time of day i− 1. Therefore, the expected closing value is

E
([

Si1
W i

1

])
=

[
Si1−δ exp (µiδ)

W i
1

]
.

For the con�dence region, it is only necessary to use the con�dence interval of Si1 in (4) (here denoted
by Ĩα,i ), and then take the direct product with

{
W i

1

}
to give the con�dence region Iα,i = Ĩα,i×

{
W i

1

}
,

which is in fact a line segment in a two dimensional plane.

6.3 Illustration of the Trading System

With the above execution regions, expected closing values and con�dence regions, we can make a
trading decision a short time δ before the market closes. For example, suppose we are trading the
VMA using the third decision rule (risk-averse behavior). For Yi−1 = 0, utilizing the execution
regions in (7) and con�dence interval de�ned in (4), the decision-making process can be illustrated
by table 1.

With the above decision in mind, it remains to execute the trade by placing a guaranteed maket-
on-close order to ensure execution at the closing price if such an order is available in the exchange.
In Section 7, we will mention brie�y how to incorporate other execution algorithms, especially when
large orders cause market impact. Other combinations of trading strategies and decision rules can
be performed similarly.

6.4 Illustration of the Backtesting System

6.4.1 Data and Results

In this section, we illustrate the backtesting system with the 27 technical trading rules introduced
in Section 6.1 (VMA, FMA, TRB, MACD). The data series are the daily opening and closing values
of the Dow Jones Industrial Average (DJIA) from September 2005 to August 2015. The 10-year
daily data is extracted from Bloomberg Terminal provided by Bloomberg L.P. Since the New York
Stock Exchange (NYSE) has normal trading hours from 9:30 a.m. to 4:00 p.m. Eastern Time, there
are 390 minutes in a trading day. Using the previous notation, if we make a trading decision 10
minutes before the exchange closes, we have δ = 10/390. Also, as explained in Section 3.1, when
reproducing trades executed at day i of the backtesting period, we need to use a rolling µi and
σi computed from the most recent K days available. For the illustration below, we take K = 30.
Finally, we simulate 10, 000 sample paths for each combination of trading strategy and decision rule
to construct the probability distribution of the return di�erence. Figure 5 shows an example of the

12



Figure 5 The probability distribution of the return di�erence of VMA with 1 as the short period,
50 as the long period, 0% band and the second decision rule from September 2005 to to August
2015.

probability distribution of the return di�erence of VMA with 1 as the short period, 50 as the long
period, 0% band and the second decision rule. From the probability distribution, we can obtain
the 95%, 99%, 99.5% and 99.9% return at risk. As noted in Harvey and Liu (2014), Bailey and
López de Prado (2014), and Charles-Cadogan (2015), we also conduct a rudimentary performance
evaluation of the trading strategies by including their Sharpe ratios as well. Tables 2 to 4 present
the backtesting results.

6.4.2 Discussion

From the backtesting results in table 2 to 4, several outcomes are worthwhile to note. Firstly, it can
be observed that for each combination of trading strategy and decision rule, RaR increases as the
con�dence level increases. This is a direct result of the de�nition of RaR, and matches the intuition
that the return at risk is larger when a higher level of con�dence is required.

Secondly, a signi�cant number of strategies with positive perfect returns are found to be not
achievable when implementation uncertainty is taken into account. For example, for FMA with 1
as the short period, 50 as the long period, 0% band and the third decision rule, the perfect return is
0.05082. However, the RaR at 95% con�dence is 0.066428, which is larger than the perfect return
by 0.015608. Subsequently, there is a 5% chance that this combination would su�er from a return
worse than -0.015608 when implementation uncertainty is taken into account.

On the other hand, some strategies with positive returns are achievable even when implementa-
tion uncertainty is taken into account. For example, for FMA with 1 as the short period, 150 as the
long period, 0% band and the forth decision rule, the perfect return is 0.07005 and the RaR at 95%
con�dence is 0.004398. Therefore, even when implementation uncertainty is taken into account,
there is a 95% chance that this combination would enjoy a return of more than 0.065652, which is
the di�erence between the perfect return and the 95% RaR.

Finally, some of the values of RaR above are 0, such as FMA with 5 as the short period, 150
as the long period, 0% band and the �rst decision rule. This means there is no return at risk at
95% con�dence for this combination when implementation uncertainty is taken into consideration.
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Table 2 Backtesting Results for Variable-Length Moving (VMA) Rules

The sample period is from September 2005 to to August 2015. The symbol (L1, L2, p%) is used to
represent a VMA crossover strategy, where L1 is the duration of the short moving average, L2 is the
duration of the long moving average, and a p% band is used to envelop the long moving average.
PR refers to the perfect return. Sharpe refers to the Sharpe ratio, with the Federal funds rate as
the risk-free rate. DR 1 to DR 4 represent the �rst to the forth decision rules. 100β% RaR is the
return at risk at a con�dence level of β. All returns and Shapre ratios are calculated in logarithms
and reported in annual scale.

Strategy PR Sharpe RaR DR 1 DR 2 DR 3 DR 4

(1, 50, 0%) -0.011960 -0.000270

95% RaR 0.025718 0.025427 0.031193 0.031959
99% RaR 0.033065 0.032829 0.035895 0.038572
99.5% RaR 0.035524 0.035481 0.037825 0.041166
99.9% RaR 0.042488 0.040238 0.040746 0.046724

(1, 50, 1%) -0.017030 -0.000480

95% RaR 0.011505 0.011400 -0.000549 0.031911
99% RaR 0.015557 0.016168 0.003858 0.036767
99.5% RaR 0.017097 0.017690 0.005550 0.038766
99.9% RaR 0.019989 0.020406 0.008828 0.043050

(1, 150, 0%) 0.019540 0.000160

95% RaR 0.007022 0.007114 0.000360 -0.001024
99% RaR 0.011714 0.011857 0.003704 0.003857
99.5% RaR 0.013551 0.013590 0.004641 0.005569
99.9% RaR 0.017060 0.017044 0.007015 0.008817

(1, 150, 1%) 0.024210 0.000320

95% RaR 0.005513 0.005444 0.011961 0.005054
99% RaR 0.008983 0.008802 0.015336 0.008719
99.5% RaR 0.009868 0.010094 0.016605 0.009939
99.9% RaR 0.012192 0.012954 0.018576 0.012238

(5, 150, 0%) 0.022240 0.000290

95% RaR 0.002240 0.002239 0.001666 0.001876
99% RaR 0.003568 0.003470 0.002929 0.003478
99.5% RaR 0.004041 0.004041 0.003445 0.003937
99.9% RaR 0.004957 0.005233 0.004193 0.004915

(5, 150, 1%) 0.032360 0.000770

95% RaR 0.001114 0.001083 -0.003527 0.001475
99% RaR 0.002133 0.002156 -0.001606 0.002936
99.5% RaR 0.002517 0.002535 -0.000959 0.003609
99.9% RaR 0.003162 0.003198 0.000211 0.005071

(1, 200, 0%) 0.056420 0.000970

95% RaR 0.015492 0.015226 0.023770 0.041293
99% RaR 0.020129 0.020083 0.026572 0.045610
99.5% RaR 0.022120 0.021848 0.027507 0.046677
99.9% RaR 0.026104 0.025118 0.029222 0.049180

(1, 200, 1%) 0.029890 0.000530

95% RaR 0.004468 0.004409 0.002907 0.002969
99% RaR 0.007245 0.007034 0.006234 0.006441
99.5% RaR 0.008326 0.007922 0.007439 0.007702
99.9% RaR 0.010446 0.010110 0.009571 0.009628

(2, 200, 0%) 0.050720 0.000980

95% RaR 0.014344 0.014389 0.015046 0.015287
99% RaR 0.018137 0.017994 0.017300 0.018943
99.5% RaR 0.019569 0.019239 0.017970 0.020426
99.9% RaR 0.022368 0.021576 0.019500 0.023724

(2, 200, 1%) 0.023750 0.000420

95% RaR 0.003424 0.003491 -0.006925 0.002206
99% RaR 0.005191 0.005378 -0.004703 0.003957
99.5% RaR 0.005768 0.006110 -0.003928 0.004601
99.9% RaR 0.007095 0.007405 -0.002370 0.005774
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Table 3 Backtesting Results for Fixed-Length Moving (FMA) Rules

The sample period is from September 2005 to to August 2015. The symbol (L1, L2, p%) is used to
represent a FMA crossover strategy, where L1 is the duration of the short moving average, L2 is the
duration of the long moving average, and a p% band is used to envelop the long moving average.
The �xed holding period H is set to be 10 days as suggested by Brock et al. (1992). PR refers to
the perfect return. Sharpe refers to the Sharpe ratio, with the Federal funds rate as the risk-free
rate. DR 1 to DR 4 represent the �rst to the forth decision rules. 100β% RaR is the return at risk
at a con�dence level of β. All returns and Shapre ratios are calculated in logarithms and reported
in annual scale.

Strategy PR Sharpe RaR Sharpe DR 1 DR 2 DR 3 DR 4

(1, 50, 0%) 0.050820 0.000640

95% RaR 0.014341 0.014172 0.066428 0.018488
99% RaR 0.019621 0.019621 0.075472 0.021245
99.5% RaR 0.020365 0.021335 0.078950 0.023787
99.9% RaR 0.023600 0.023912 0.085578 0.025629

(1, 50, 1%) -0.003090 -0.000210

95% RaR 0.014789 0.014592 -0.000233 0.022415
99% RaR 0.021411 0.021575 0.009172 0.031023
99.5% RaR 0.023857 0.024038 0.011947 0.034471
99.9% RaR 0.030448 0.030267 0.019208 0.042248

(1, 150, 0%) 0.070050 0.000970

95% RaR 0.006424 0.006407 0.059451 0.004398
99% RaR 0.010109 0.010607 0.072186 0.007425
99.5% RaR 0.012519 0.012093 0.076219 0.007425
99.9% RaR 0.015924 0.015859 0.084383 0.011629

(1, 150, 1%) 0.056850 0.000760

95% RaR 0.037173 0.037654 0.056559 0.022057
99% RaR 0.044622 0.045473 0.063023 0.031516
99.5% RaR 0.046962 0.047885 0.065215 0.034474
99.9% RaR 0.051664 0.052749 0.068714 0.050006

(5, 150, 0%) 0.059310 0.000790

95% RaR 0.000000 0.000000 0.003482 0.001129
99% RaR 0.001129 0.001129 0.004109 0.001129
99.5% RaR 0.001129 0.001129 0.011142 0.001129
99.9% RaR 0.001129 0.001129 0.043232 0.001129

(5, 150, 1%) 0.035860 0.000420

95% RaR 0.000000 0.000000 0.000190 0.001384
99% RaR 0.000000 0.000000 0.003114 0.008436
99.5% RaR 0.000000 0.000000 0.003707 0.020627
99.9% RaR 0.001588 0.001998 0.004704 0.023465

(1, 200, 0%) 0.031390 0.000350

95% RaR 0.009264 0.009452 0.030078 0.024751
99% RaR 0.012691 0.012691 0.035873 0.029853
99.5% RaR 0.014897 0.014899 0.036864 0.029853
99.9% RaR 0.016878 0.016878 0.045423 0.029853

(1, 200, 1%) 0.025900 0.000260

95% RaR 0.014265 0.013945 -0.013787 0.015534
99% RaR 0.021952 0.020706 0.002925 0.024182
99.5% RaR 0.024310 0.022926 0.006110 0.027110
99.9% RaR 0.027928 0.028257 0.013136 0.032174

(2, 200, 0%) 0.026120 0.000260

95% RaR 0.008549 0.008549 0.027894 0.019920
99% RaR 0.011633 0.011871 0.031347 0.019920
99.5% RaR 0.014358 0.014358 0.031347 0.019920
99.9% RaR 0.016033 0.017267 0.038558 0.023964

(2, 200, 1%) 0.018210 0.000130

95% RaR 0.005925 0.006286 0.005670 0.005130
99% RaR 0.014279 0.014919 0.014988 0.010572
99.5% RaR 0.016379 0.018985 0.017224 0.011729
99.9% RaR 0.020074 0.022149 0.021791 0.014877
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Table 4 Backtesting Results for Trading Range Break (TRB) Rules and MACD

The sample period is from September 2005 to to August 2015. The symbol (L, p%) is used to
represent a TRB strategy, where L is the number of days taken for the local maximum and minimum
and a p% band is used to envelop the local maximum and minimum. The �xed holding period H
for each TRB strategy is set to be 10 days as suggested by Brock et al. (1992). PR refers to the
perfect return. Sharpe refers to the Sharpe ratio, with the Federal funds rate as the risk-free rate.
DR 1 to DR 4 represent the �rst to the forth decision rules. 100β% RaR is the return at risk at
a con�dence level of β. All returns and Shapre ratios are calculated in logarithms and reported in
annual scale.

Strategy PR Sharpe RaR DR 1 DR 2 DR 3 DR 4

(50, 0%) -0.027200 -0.000810

95% RaR 0.003397 0.003489 0.013389 0.008073
99% RaR 0.012278 0.012745 0.022299 0.015248
99.5% RaR 0.015511 0.015877 0.026454 0.018058
99.9% RaR 0.021042 0.022229 0.032799 0.022159

(50, 1%) -0.030940 -0.001330

95% RaR 0.007986 0.007747 0.021898 -0.000607
99% RaR 0.012444 0.012488 0.029239 0.005073
99.5% RaR 0.014040 0.014584 0.031769 0.006580
99.9% RaR 0.017630 0.018721 0.036084 0.009305

(150, 0%) -0.014980 -0.000660

95% RaR -0.000453 -0.000335 0.013337 -0.010955
99% RaR 0.004739 0.005280 0.020029 -0.005395
99.5% RaR 0.006858 0.006882 0.022337 -0.002857
99.9% RaR 0.010181 0.011611 0.027297 0.000069

(150, 1%) -0.018090 -0.001300

95% RaR 0.004041 0.003778 0.016434 -0.005305
99% RaR 0.008259 0.008149 0.020423 0.001475
99.5% RaR 0.009622 0.009174 0.021571 -0.000155
99.9% RaR 0.012571 0.012160 0.023562 0.002789

(200, 0%) 0.017930 -0.000770

95% RaR -0.001135 -0.001324 0.012044 -0.013086
99% RaR 0.003721 0.003849 0.018226 -0.008325
99.5% RaR 0.005934 0.005528 0.019928 -0.006070
99.9% RaR 0.008855 0.010299 0.024433 -0.002158

(200, 1%) -0.011090 -0.001090

95% RaR 0.004761 0.004620 0.022246 -0.005414
99% RaR 0.008968 0.008931 0.025306 -0.002292
99.5% RaR 0.010119 0.010189 0.026116 -0.001142
99.9% RaR 0.014542 0.013384 0.028611 0.001894

MACD -0.025460 -0.000560

95% RaR 0.008758 0.008740 -0.000057 0.008977
99% RaR 0.012442 0.012334 0.002469 0.013314
99.5% RaR 0.013598 0.013521 0.003376 0.015257
99.9% RaR 0.016050 0.015370 0.005770 0.018480
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All of the entries with a RaR of 0 are observed from trading strategies with long periods of moving
averages (5 and 150 in the above example), and the probability distribution of the return di�erence
is typically a sharp peak centered around 0. When longer periods of moving averages are used, the
price of the latest day is less in�uential when making trading decisions, hence the �uctuation of
price during the last 10 minutes of the latest day does not create any di�erence in trading decisions
in the sample path from that of the perfect path.

7 Conclusion

In this paper, we quantify the achievability of backtesting results in the presence of implementation
uncertainty by proposing a framework for implementing and backtesting trading strategies. We
introduce the concept of RaR as a measure of the achievability of backtesting results. Moreover, we
illustrate the framework on a representative class of technical trading rules, and �nd that a signi�cant
number of technical trading strategies with positive returns are not achievable in the presence of
implementation uncertainty. Lastly, the example in Section 6.2 illustrates that our framework can
be extended to trading strategies that take more than one input. In general, besides the geometric
Brownian motion, we can choose another stochastic model to obtain the joint distribution of the
inputs and proceed with the framework as before. More work on this extension will be carried out
in the future.

In this paper, our framework assumes that market-on-close order can be used as the execution
algorithm. However, strategies with large order size cause market impact, see Lo and Wang (2000).
To tackle this, instead of using a market-on-close order, we may assume that a time-weighted average
price (TWAP) is performed until the market closes in a linear fashion. The resulting value of RaR
may then be viewed as an indicator of the robustness of the trading strategy based on its execution
algorithm as well as the decision rule, and hence capturing the factor of market impact on top of the
implementation uncertainty in the framework. More research on this extension will be conducted
in future research projects.
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8 Appendix

8.1 Derivation of the Probability Density Function of Si1−δ

Here we provide the details of deriving (5). From (1), we have

Sit =

(
Oi exp

((
µ− σ2

2

)
t+ σBt

)∣∣∣∣Si0 = Oi, S
i
1 = Ci

)
, for t ∈ [0, 1] ,

where Bt is the general Brownian bridge with B0 = 0 and B1 = 1
σ

(
log
(
Ci
Oi

)
−
(
µ− σ2

2

))
. There-

fore, Bt is a normally distributed random variable with mean and variance respectively given by

E (Bt) =
t

σ

(
log

(
Ci
Oi

)
− µ+

σ2

2

)
,

Var (Bt) = t− t2.

Hence, the probability density function of Bt is

fBt (bt) =
1√

2π (t− t2)
exp

−
(
bt − t

σ

(
log
(
Ci
Oi

)
− µ+ σ2

2

))2
2 (t− t2)

 , for bt ∈ (−∞,∞) .

for bt ∈ (−∞,∞). In order to obtain the probability density function of Sit , we implement a

change of variable Sit = Oi exp
((
µ− σ2

2

)
t+ σBt

)
. Let v : (0,∞) 7−→ R be given by v

(
sit
)

=

1
σ

(
log
(
sit
Oi

)
−
(
µ− σ2

2

)
t
)
. By di�erentiation, we have v′

(
sit
)

= 1
σsit

. Therefore,

fSit

(
sit
)

=
v′
(
sit
)√

2π (t− t2)
exp

−
(

1
σ

(
log
(
sit
Oi

)
−
(
µ− σ2

2

)
t
)
− t

σ

(
log
(
Ci
Oi

)
− µ+ σ2

2

))2
2 (t− t2)


=

1

σsit
√

2π (t− t2)
exp

−
(

log
(
sit
Oi

)
− t log

(
Ci
Oi

))2
2σ2t (1− t)

 .
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Finally, taking t = 1− δ, we have

fSi1−δ

(
si1−δ

)
=

1

σsi1−δ
√

2πδ (1− δ)
exp

−
(

log

(
si1−δ
Oi

)
+ (δ − 1) log

(
Ci
Oi

))2

2σ2δ (1− δ)

 ,

for si1−δ ∈ (0,∞) as desired.

8.2 Derivation of the Execution Regions of VMA

The execution regions of VMA in (7) can be obtained by simple computation. Equation (7a) follows
from

Si1 ∈ R+1

⇐⇒ SMAL1,i > SMAL2,i ×
(

1 +
p

100

)
⇐⇒ 1

L1

i∑
j=i−L1+1

Sj1 >
1

L2

i∑
j=i−L2+1

Sj1 ×
(

1 +
p

100

)

⇐⇒ 1

L1
Si1 +

1

L1

i−1∑
j=i−L1+1

Sj1 >
1 + p

100

L2
S1
i +

1 + p
100

L2

i−1∑
j=i−L2+1

Sj1

⇐⇒
(

1

L1
−

1 + p
100

L2

)
Si1 >

(
1 + p

100

L2
− 1

L1

) i−1∑
j=i−L1+1

Sj1 +
1 + p

100

L2

i−L1∑
j=i−L2+1

Sj1

⇐⇒ Si1 >
L1

(
1 + p

100

)
L2 − L1

(
1 + p

100

) i−L1∑
j=i−L2+1

Sj1−
i−1∑

j=i−L1+1

Sj1

⇐⇒ Si1 ∈ (Mi,∞) .

Equation (7b) follows similarly. Finally, (7c) follows from R0 = R>0\ (R+1 ∪R−1) = [mi,Mi] .

8.3 Derivation of the Execution Regions of MACD

In the same way, the execution region of MACD in (10) can be computed as follows. Equation (10a)
follows from

Si1 ∈ R+1

⇐⇒ EMAL1,i > EMAL2,i

⇐⇒ 2

L1 + 1

∞∑
k=0

(
L1 − 1

L1 + 1

)k
Si−k1 >

2

L2 + 1

∞∑
k=0

(
L2 − 1

L2 + 1

)k
Si−k1

⇐⇒
(

2

L1 + 1
− 2

L2 + 1

)
Si1 >

∞∑
k=1

[
2

L2 + 1

(
L2 − 1

L2 + 1

)k
− 2

L1 + 1

(
L1 − 1

L1 + 1

)k]
Si−k1

⇐⇒ Si1 >
(L1 + 1) (L2 + 1)

2 (L2 − L1)

∞∑
k=1

[
2

L2 + 1

(
L2 − 1

L2 + 1

)k
− 2

L1 + 1

(
L1 − 1

L1 + 1

)k]
Si−k1

⇐⇒ Si1 ∈ (Mi,∞) .
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Here EMA denotes exponential moving average. Equation (10b) follows a similar procedure. Finally,
(10c) follows from R0 = R>0\ (R+1 ∪R−1) = {Mi}.
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