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Abstract

The Sharpe ratio and the maximum drawdown (MDD) are two of the most important tools for

risk measurement. Existing literatures have presented analytical results relating them under geometric

Brownian motion. In this paper, we take a data-driven approach to derive a relationship between ex-

post Sharpe ratio and MDD. We do not assume any specific distribution of the returns except that they

be stationary and ergodic. The relationship we derive can serve as a quick sanity check for black-box

performance reports if the Sharpe ratios are estimated by the ex-post Sharpe ratio. Some numerical

results are given for illustration.

1 Introduction

The Sharpe ratio and the maximum drawdown are two of the most important tools to measure the risk

of an investment. Since Sharpe (1966) introduces the Sharpe ratio, which is the excess return per unit of

volatility, it is widely used to evaluate the performance of portfolios. On the other hand, the maximum

drawdown, defined by the maximum cumulative loss from a peak to a following trough within a given time,

tells investors how much they can possibly lose in the investment. The maximum drawdown is also one of

the most important risk measures (de Melo Mendes and Brandi, 2004; Magdon-Ismail and Atiya, 2004).

In view of the importance of these two risk measures, previous literatures have extensively studied their

analytical properties. For the Sharpe ratio, Miller and Gehr (1978) show that the ex-post Sharpe ratio is a
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biased estimator for the Sharpe ratio for normally distributed returns. Jobson and Korkie (1981) derive the

asymptotic distribution of the ex-post Sharpe ratio for multivariate normal returns when the length of the

time series approaches infinity and find that it is an asymptotically normal estimator for the Sharpe ratio.

Mertens (2002) presents the same properties for independently and identically distributed returns. Lo (2002),

Christie (2005) and Opdyke (2007) further extend the results to the case of stationary and ergodic returns.

For the maximum drawdown, Magdon-Ismail et al. (2004) derive the formula of the expected maximum

drawdown under a Brownian motion with a drift, which contains integrals of series expansions. They also

deduce a mathematical relationship between the expected maximum drawdown and the Sharpe ratio for the

case with positive drift. Vecer et al. (2006) and Pospisil and Vecer (2008) employ partial differential equation

approaches to compute the distribution and the expected value of the maximum drawdown respectively

under geometric Brownian motions. Zhang and Hadjiliadis (2012), Zhang et al. (2013) and Zhang (2015)

study drawdowns under different processes from probabilistic perspectives, they then apply the results in

valuation of drawdown insurances. Carr et al. (2011) introduce vanilla drawdown insurance contracts and

semi-static replication strategies based on options. Landriault et al. (2015) extend the study from the

magnitude of drawdowns to the frequency rate of drawdowns, they also propose insurances protecting against

the risk of frequent drawdowns. For the time of drawdowns, Taylor (1975) studies the first passage time

of drawdowns exceed a threshold and the running maximum at the first passage time under Brownian

motions. Later, Lehoczky et al. (1977) generalize it to time homogeneous diffusion processes. Zhang and

Hadjiliadis (2012) study the drawdown time and the speed of market crash under general diffusion processes.

Mijatović and Pistorius (2012) investigate the first passage time and random variables associated with it

under spectrally negative Lévy processes. Landriault et al. (2017) examine the asymptotics of the magnitude

of drawdowns when the threshold approaches zero, they also investigate the duration of drawdowns under

Lévy processes with two-sided jumps. On the other hand, there are some studies on the probabilistic behavior

of both drawdown and drawup processes. Hadjiliadis and Večeř (2006), Pospisil et al. (2009), Zhang and

Hadjiliadis (2010) and Zhang (2015) derive the probability that a rally precedes a drawdown in different

models. Salminen and Vallois (2007) compute the joint distribution of the maximum drawdown and the

maximum drawup for a Brownian motion up to an independent exponential time.

While most of the articles consider the analytical properties only under a specific distribution, here in this

paper, we consider the mathematical relationship of the ex-post Sharpe ratio and the maximum drawdown

by using the data from reported profits and losses. We do not assume any specific distribution of the returns

except that they be stationary and ergodic. We will show that the ex-post Sharpe ratio and the maximum

drawdown are mutually bounded. Our results can serve as a quick sanity check for black-box performance

reports in practice. For instance, suppose one receives an annual report indicating that the value of the
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portfolio was initially 1 billion but ends up with 1.8 billion in a year, yielding an ex-post Sharpe ratio and

a maximum drawdown of 1.2 and 10% respectively. Is this report valid? At first glance, the report does not

show any abnormality. However, at the end of this paper we will apply our results to show that it cannot

be the case.

This paper is organized as follows: In Section 2, we give the derivations of the bounds. In Section 3, we

show some numerical results to illustrate the bounds for the risk measures. Section 4 gives an example of

how to apply the bounds to check the validity of given data. Section 5 gives the conclusion.

2 Bounds for the risk measures

2.1 Definitions and notations

Given a time series data of market-to-market values at discrete time {a0, a1, a2, ..., an}, we evaluate its

performance over the period using two definitions of return: logarithmic return and holding period return.

Logarithmic return is one of the most popular definitions of return and it is defined by d1,i = ln(ai+1

ai
)

at time i, for i = 0, 1, ..., n− 1. Financial asset price series are assumed to be with lognormal distribution in

various mathematical models. Under such assumption, the logarithmic returns are normally distributed.

However, if we consider a buy-and-hold strategy for profit and loss induced by market-to-market mech-

anism, the most reasonable way to evaluate this strategy is to use holding period return an − a0

a0
(see

Christopherson et al., 2009, Chapter 3). The subperiod return of the strategy between time i and time i+ 1

is given by d2,i = (ai+1−ai)
a0

for i = 0, 1, ..., n− 1. We will call this the subperiod holding period return, SHP

return in short. This is just the actual payoff at time i normalized by the initial capital a0.

These two definitions of return are the mainstream methods for performance evaluation and they render

the arithmetic sum of the return more relevant to the average return over the whole period.

It has been shown that the ex-post Sharpe ratio S is an asymptotically normal estimator of the Sharpe

ratio R (S and R are defined mathematically below) under milder assumptions on the returns when time

advances (Miller and Gehr, 1978; Jobson and Korkie, 1981; Mertens, 2002; Lo, 2002; Christie, 2005; Opdyke,

2007). The asymptotic normality of the ex-post Sharpe ratio has been shown by Opdyke (2007) under the

assumption of stationary and ergodic returns. In this paper we are going to consider the relationship between

the ex-post Sharpe ratio and other measures; we therefore assume the returns are stationary and ergodic

throughout this paper.

For the return d1,i (logarithmic return) and d2,i (SHP return) defined above, the Shape ratios Rj are
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defined by:

Rj = E(dj,i)− r√
Var(dj,i)

, j = 1, 2,

where r denotes the risk-free rate per unit of time, E(dj,i) and Var(dj,i) denote the expected value and

variance of returns dj,i. Also the ex-post Sharpe ratios Sj are defined by:1

Sj = d̄j − r
σj

, j = 1, 2, (1)

where d̄j = 1
n

∑n−1
i=0 dj,i and σj = [ 1

n

∑n−1
i=0 (dj,i − d̄j)2]1/2. For details about ex-ante and ex-post Sharpe

ratio, see Sharpe (1966) and Sharpe (1994).

The maximum drawdown M is defined as the maximum cumulative loss normalized by the peak value

before the loss (Chekhlov et al., 2005):

M = max
0≤t≤τ≤n

(at − aτ )
at

. (2)

2.2 Main Results

Using the definitions of logarithmic return, the induced ex-post Sharpe ratio and the maximum drawdown,

we derive the following three inequalities bounding the ex-post Sharpe ratio S1, the maximum drawdown M

and the average return d̄1 respectively:

(a) an upper bound for the maximum drawdown if M 6= 1 and S1 6= 0:

M ≤ 1− e
− n

2 (
√

( d̄1−r
S1

)2+d̄2
1−d̄1)

, (3)

(b) an upper bound for the ex-post Sharpe ratio if M 6= 1 and S1 6= 0:

S1 ≤
n(d̄1 − r)

2

√
1

ln(1−M)[ln(1−M)− nd̄1]
, (4)

(c) a lower bound for the average return if M 6= 1, S1 6= 0, d̄1 > 0 and (ln(1−M)S1)2 ≥ n(n−1)r2

4 :

d̄1 ≥
nr − 2 ln(1−M)S1

2 + 2|S1|
√

[ln(1−M)]2(S1
2 + 1)− nr ln(1−M)

n
. (5)

For the case of SHP return, one can derive similarly three inequalities bounding the induced ex-post

Sharpe ratio S2, the maximum drawdown M , and the average return d̄2 respectively:
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(a) an upper bound for the maximum drawdown if S2 6= 0:

M ≤ n

2 (

√
( d̄2 − r

S2
)2 + d̄2

2)− d̄2), (6)

(b) an upper bound for the ex-post Sharpe ratio if S2 6= 0:

S2 ≤
n(d̄2 − r)

2

√
1

M(M + nd̄2)
, (7)

(c) a lower bound for the average return if S2 6= 0, d̄2 > 0 and (MS2)2 ≥ n2r2

4 :

d̄2 ≥
nr + 2MS2

2 + 2|S2|
√
M2(S2

2 + 1) + nrM

n
. (8)

Hence, once the length of the time series n, the risk-free rate r and the average return d̄j are known, we are

able to find an upper bound of the ex-post Sharpe ratio when the maximum drawdown is given and vice versa.

Moreover, when the ex-post Sharpe ratio and the maximum drawdown are given, we are able to find a lower

bound of the average return. The upper bounds for the ex-post Sharpe ratios (4) and (7) are the key results

in this paper. Most of the existing studies have been focused on the probabilistic behaviors of risk measures

under specific distributions (see, e.g., Magdon-Ismail and Atiya (2004) and Pospisil and Vecer (2008)). Our

bounds on the risk measures, however, are derived based on empirical data and do not assume any specific

distribution of the returns except that they be stationary and ergodic. Moreover, the assumptions of the

performance measures are mild and can usually be satisfied in practice (see Remark below). Performance

reports stating Sharpe ratios and maximum drawdowns may be subject to miscalculation or even fraud to

lure potential investors. Our bounds can serve as a sanity check on the consistency among the performance

measures shown in a report. If fact, our bounds can be applied as long as the definition of the ex-post Sharpe

ratio (1) is adopted to estimate the Sharpe ratio.

Remark: In practice, M 6= 1 can usually be satisfied because it is rare for a portfolio value to drop to zero.

Moreover the average return of a portfolio is seldom exactly equal to the risk free rate, hence S1 6= 0 and

S2 6= 0 in most situations. This is also the case for (ln(1 −M)S1)2 ≥ n2r2

4 and (MS2)2 ≥ n2r2

4 because

usually the risk-free rate r is small. Moreover, if one adopts the risk-free rate r = 0 in the definition

of the ex-post Sharpe ratio (see, e.g., Keating and Shadwick (2002), Magdon-Ismail et al. (2004)), then

(ln(1−M)S1)2 ≥ n2r2

4 and (MS2)2 ≥ n2r2

4 hold automatically.
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2.3 Derivations

In this section we only illustrate the derivations of the bounds for the case of logarithmic return, however

the derivations of the bounds for the case of SHP return are similar.

Let the maximum drawdown starts at time k and it lasts for p time steps, i.e. it ends at time k + p.

Moreover assume that the maximum drawdown M 6= 1, i.e. the value of the time series data never drops to

0. Let M̂ = ln(ak/ak+p), it can be written as:

M̂ = −
k+p−1∑
i=k

d1,i.

Applying the Cauchy-Schwarz inequality (Hardy et al., 1952, Chapter 2), we obtain:

k+p−1∑
i=k

d2
1,i ≥

(
k+p−1∑
i=k

d1,i)2

p
= M̂2

p
.

Applying the Cauchy-Schwarz inequality again on (
∑k−1
i=0 d1,i +

∑n−1
i=k+p d1,i), we obtain:

k−1∑
i=0

d2
1,i +

n−1∑
i=k+p

d2
1,i ≥

(
k−1∑
i=0

d1,i +
n−1∑
i=k+p

d1,i)2

n− p
= (nd̄1 + M̂)2

n− p
.

Summing up the above two inequalities, we have:

n−1∑
i=0

d2
1,i ≥

M̂2

p
+ (nd̄1 + M̂)2

n− p
. (9)

For p ∈ [0, n], the R.H.S. of (9) attains its minimum if − (M̂)2

p2 + (nd̄1+M̂)2

(n−p)2 = 0, i.e. p = nM̂
nd̄1+2M̂ . Hence

by substituting p = nM̂
nd̄1+2M̂ in the R.H.S. of (9), we have:

n−1∑
i=0

d2
1,i ≥

(nd̄1 + 2M̂)2

n
.

Assuming the ex-post Sharpe ratio S1 6= 0 and after some simplifications and rearrangements, we have:

M̂ ≤ n

2 (

√
( d̄1 − r

S1
)2 + d̄2

1 − d̄1).
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By the fact that M = 1− e−M̂ , we obtain the upper bound for the maximum drawdown:

M ≤ 1− e
− n

2 (
√

( d̄1−r
S1

)2+d̄2
1−d̄1)

. (10)

Assume that the maximum drawdown M 6= 1 and the ex-post Sharpe ratio S1 6= 0. Then by (10), we obtain

the upper bound for the ex-post Sharpe ratio:

S1 ≤
n(d̄1 − r)

2

√
1

ln(1−M)[ln(1−M)− nd̄1]
. (11)

On the other hand, assuming M 6= 1, S1 6= 0, d̄1 > 0 and (ln(1 − M)S1)2 ≥ n2r2

4 , and after some

rearrangement of (10), we get:

n2d̄2
1 − [2n2r − 4n ln(1−M)S1

2]d̄1 + n2r2 − 4[ln(1−M)]2S1
2 ≥ 0. (12)

The L.H.S. of (12) is a quadratic expression of d̄1. Its two roots are

d̄1,± =
nr − 2 ln(1−M)S1

2 ± 2|S1|
√

[ln(1−M)]2(S1
2 + 1)− nr ln(1−M)

n
.

Thus the solution of (12) is given by d̄1 ≤ d̄1,− or d̄1 ≥ d̄1,+. Since (ln(1 −M)S1)2 ≥ n2r2

4 , we can easily

show that d̄1,− ≤ 0. Hence under the assumption that d̄1 > 0, we obtain the lower bound for the average

return:

d̄1 ≥
nr − 2 ln(1−M)S1

2 + 2|S1|
√

[ln(1−M)]2(S1
2 + 1)− nr ln(1−M)

n
. (13)

As discussed in Section 2.2, the assumptions we make through out the derivations of the bounds are mild

which can usually be satisfied in real situation. Thus our results have practical value and can serve as a

sanity check for performance reports.

3 Numerical results

In this section, we give some numerical results to illustrate the bounds derived in Section 2. In Section 3.1,

we illustrate with a set of given parameters. In Section 3.2, we illustrate with a set of historical data of the

Standard & Poor’s 500 constituent stocks.
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3.1 Illustration with given parameters

We use a set of given parameters to illustrate the behaviors of the bounds. In particular, we choose risk-free

rate r = 2× 10−5; average return d̄1 or d̄2 = 0.006, 0.012, 0.024 and length of period n = 250, 500, 1000 and

show how the bounds behave when the parameters are changing.

First, we focus on the case of logarithmic return. Figures 1 and 2 illustrate the upper bound of the

maximum drawdown M for various magnitudes of S1 and n and for various magnitudes of S1 and d̄1

respectively, see (3). Figures 3 and 4 illustrate the upper bound of the ex-post Sharpe ratio S1 for various

magnitudes of M and n and for various magnitudes of M and d̄1 respectively, see (4).

Figure 1: Upper bound of M for d̄1 = 0.006 and
different n

Figure 2: Upper bound of M for n = 250 and
different d̄1

Figure 3: Upper bound of S1 for d̄1 = 0.006 and
different n

Figure 4: Upper bound of S1 for n = 250 and
different d̄1

In the figures, the region below the curve is the feasible region for the risk measures and it is impossible

for the risk measures to lie above the curve. One can observe that we have a tighter upper bound when

the magnitude of the given risk measure is greater, and we have a looser upper bound when the length of

the period is longer as more freedom is given to the time series data. Moreover, doubling the length of the

8



period n and doubling the average return d̄1 give almost the same effect on the upper bounds.

Table 1 illustrates the lower bound of the average return d̄1 for different magnitudes of S1 and M when

the length of the period n = 250, see (5).

S1\M 0.1 0.3 0.5 0.7 0.9
0.4 0.0005 0.0017 0.0033 0.0057 0.0109
0.8 0.0014 0.0048 0.0093 0.0161 0.0307
1.2 0.0028 0.0095 0.0184 0.0320 0.0611
1.6 0.0047 0.0160 0.0310 0.0538 0.1028
2.0 0.0072 0.0242 0.0470 0.0816 0.1561

Table 1: Lower bound of the average return d̄1 for different S1 and M

Under the assumption that M 6= 1, S1 6= 0, d̄1 > 0 and (ln(1 −M)S1)2 ≥ n2r2

4 , if n, r, S1 and M

are known, we can always find the lower bound of the average return d̄1. If one fixes the ex-post Sharpe

ratio S1 and increase the maximum drawdown M , the lower bound of the average return d̄1 will be greater.

The reason is that the volatility will be higher with a higher maximum drawdown, which forces the average

return to be higher in order to keep the ex-post Sharpe ratio S1 unchanged. On the other hand, if one fixes

the maximum drawdown M and raise the ex-post Sharpe ratio S1, the lower bound of the average return d̄1

will also be higher. Since the average return d̄1 needs to be greater so as to yield a higher ex-post Sharpe

ratio S1.

Next, we show the behaviors of the bounds for the case of SHP return. Figures 5 and 6 illustrate the

upper bound of the maximum drawdown M for various magnitudes of S2 and n and for various magnitudes

of S2 and d̄2 respectively, see (6). Figures 7 and 8 illustrate the upper bound of the ex-post Sharpe ratio S2

for various magnitudes of M and n and for various magnitudes of M and d̄2 respectively, see (7). Table 2

illustrates the lower bound of the average return d̄2 for different magnitudes of S2 and M when the length

of the period n = 250, see (8). We see from the figures and table that the behaviors of the bounds for the

case of SHP return are similar to the case of logarithmic return.

S2\M 0.1 0.3 0.5 0.7 0.9
0.4 0.0005 0.0014 0.0024 0.0033 0.0043
0.8 0.0014 0.0040 0.0067 0.0094 0.0120
1.2 0.0027 0.0080 0.0133 0.0186 0.0239
1.6 0.0045 0.0134 0.0224 0.0313 0.0402
2.0 0.0068 0.0204 0.0339 0.0475 0.0610

Table 2: Lower bound of the average return d̄2 for different S2 and M
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Figure 5: Upper bound of M for d̄2 = 0.006 and
different n

Figure 6: Upper bound of M for n = 250 and
different d̄2

Figure 7: Upper bound of S2 for d̄2 = 0.006 and
different n

Figure 8: Upper bound of S2 for n = 250 and
different d̄2

3.2 Illustration with historical data

We first collect all of the Standard & Poor’s 500 constituent stocks’ daily closing data over the period of

January 1, 2015 through December 31, 2015. Then we choose two groups of stocks with average return

0.0005 ≤ d̄1 ≤ 0.001 and 0.001 ≤ d̄1 ≤ 0.002 respectively. There are 86 stocks in the former group and 42 in

the latter.

In Figures 9 and 10, the red dots represent the magnitude of the ex-post Sharpe ratio and the maximum

drawdown of the stocks with return 0.0005 ≤ d̄1 ≤ 0.001, while the curves represent the upper bound for

the ex-post Sharpe ratio and the maximum drawdown respectively using a rounded down average return

d̄1 = 0.0005. Figures 11 and 12 are similar but for the stocks with average return 0.001 ≤ d̄1 ≤ 0.002 and

we plot the curves using a rounded down average return d̄1 = 0.001.

In Figures 9 to 12, all of the risk measures of the constituent stocks lie below the curve. This shows the

validity of the upper bounds we derived for the ex-post Sharpe ratio and the maximum drawdown.
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Figure 9: Upper bound of M for the S&P 500
constituents with 0.0005 ≤ d̄1 ≤ 0.001

Figure 10: Upper bound of S1 for the S&P 500
constituents with 0.0005 ≤ d̄1 ≤ 0.001

Figure 11: Upper bound of M for the S&P 500
constituents with 0.001 ≤ d̄1 ≤ 0.002

Figure 12: Upper bound of S1 for the S&P 500
constituents with 0.001 ≤ d̄1 ≤ 0.002

4 Discussion

In the last section, we see that data from the market satisfy our theoretical bounds. Conversely, using our

bounds, we can determine whether data reported in any financial statement are valid or not. As an example,

consider the data of the portfolio we mentioned in Section 1, i.e. a portfolio value grows from 1 billion

to 1.8 billion in a year and generates an ex-post Sharpe ratio and a maximum drawdown of 1.2 and 10%

respectively. With 250 trading days a year, we have n = 249, M = 0.1 and d̄1 = ln(1.8)
249 = 0.0024. Thus, by

(4), the portfolio cannot have a ex-post Sharpe ratio greater than 1.09 even with zero risk-free rate. Hence,

the claim with ex-post Sharpe ratio of 1.2 must be false.

5 Conclusion

In this paper, we adopt a data-driven approach to derive the relationship between ex-post Sharpe ratio and

maximum drawdown. For both definitions of return (logarithmic return and holding period return) our
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bounds do not assume any specific distribution of the returns but assume it to be stationary and ergodic.

The results can serve as a quick sanity check for black-box performance reports if the definition of ex-post

Sharpe ratio (1) is used to estimate the Sharpe ratios. Our numerical results illustrate how ex-post Sharpe

ratio and maximum drawdown are mutually bounded.

Notes
1Sharpe (1994) states that the population standard deviation can be used in the definition of the ex-post Sharpe ratio when

the lengths of periods n are the same for the portfolios being compared. This is because the relative magnitudes of the ex-post

Sharpe ratios would be the same.
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Hardy, G. H., Littlewood, J. E., and Pólya, G. (1952). Inequalities. Cambridge University Press.

Jobson, J. D. and Korkie, B. M. (1981). Performance hypothesis testing with the sharpe and treynor

measures. The Journal of Finance, 36(4):pp. 889–908.

12



Keating, C. and Shadwick, W. F. (2002). A universal performance measure. Journal of Performance

Measurement, 6(3):pp. 59–84.

Landriault, D., Li, B., and Zhang, H. (2015). On the frequency of drawdowns for brownian motion processes.

Journal of Applied Probability, 52(1):pp. 191–208.

Landriault, D., Li, B., Zhang, H., et al. (2017). On magnitude, asymptotics and duration of drawdowns for
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