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Mean-Variance, Mean-VaR, and Mean-CVaR Models

for Portfolio Selection with Background Risk

Abstract: This paper extends Jiang, et al. (2010), Guo, et al. (2018), and others by

investigating the impact of background risk on an investor’s portfolio choice in the mean-

VaR, mean-CVaR, and mean-variance framework, and analyzes the characterization of

the mean-variance, mean-VaR, and mean-CVaR boundaries and efficient frontiers in the

presence of background risk. We derive the conditions that the portfolios lie on the mean-

variance, mean-VaR, and mean-CVaR boundaries with and without background risk. We

show that the MV, VaR, and CVaR boundary depends on the covariance vector between

the returns of the risky assets and that of the background asset and also the variance

of the return of the background asset. We develop properties on MV, mean-VaR, and

mean-CVaR efficient frontiers. In addition, we establish some new properties for the case

with a risk-free security, extend our work to the non-normality situation, and examine

the economic implication of the mean-VaR/CVaR model.

Keywords: Background risk; Portfolio selection; VaR; CVaR; mean-variance model

JEL Classification : C0, D81, G11

1 Introduction

Markowitz (1952) and others develop the mean-variance (MV) framework and MV bound-

ary. Alexander and Baptista (2002) extend the theory to mean- value-at-risk (mean-VaR)

model for portfolio selection while Alexander and Baptista (2004) further extend theory

to include mean-conditional VaR (mean-CVaR) model for portfolio selection.

On the other hand, Bodie, et al. (1992) and many others have found that background

risk is necessary in many empirical analysis. Jiang, et al. (2010) and others extend the
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theory by investigating the impact of background risk on an investor’s portfolio choice in

a mean-variance framework, and analyzes the properties of efficient portfolios as well as

the investor’s hedging behaviour in the presence of background risk. In addition, Guo, et

al. (2018) survey existing results on the mean-variance approach and the expected-utility

approach of risk preferences with multiple additive risks.

This paper extends the theory further by investigating the impact of background risk

on an investor’s portfolio choice in the mean-VaR, mean-CVaR, and mean-variance frame-

work, and analyzes the characterization of the mean-variance, mean-VaR, and mean-CVaR

boundaries and efficient frontiers in the presence of background risk. We devise some new

results in this framework. For example, we derive the conditions that the portfolios lie

on the mean-variance, mean-VaR, and mean-CVaR boundaries with and without back-

ground risk. We show that the mean-variance (VaR, CVaR) boundary depends on the

covariance vector between the returns of the risky assets and that of the background asset

and also the variance of the return of the background asset. We develop properties on

MV, mean-VaR, and mean-CVaR efficient. In addition, we establish some new properties

for the case with a risk-free security, extend our work to the non-normality situation, and

examine the economic implication of the mean-VaR/CVaR model. We note that all the

above is the contribution of our paper to the literature.

The remainder of the paper is organized as follows. Section 2 reviews related litera-

ture. Section 3 describes the model, and characterizes the mean-variance boundary with

background risk, minimum VaR/CVaR portfolio, and the mean-VaR efficient frontiers.

Section 4 addresses the case of risk-free security. Section 5 examines the case when dis-

tributions of the returns are non-normal. Section 6 concludes. All proofs are given in the

appendix.
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2 Literature Review

2.1 Portfolio Selection

Markowitz (1952) develops the mean-variance (MV) portfolio optimization theory which is

the milestone of modern finance theory to obtain optimal portfolio. Bai, et al. (2009) prove

that when the dimension of the data is large, the MV optimization procedure will result

in a serious departure of the optimal return estimate for the theoretical Markowitz model.

Thereafter, they propose a bootstrap-corrected estimator to correct the overestimation.

Leung, et al. (2012) further extend the model to obtain closed form of the estimator.

2.2 Mean-Variance, Mean-VaR, Mean-CVaR Models

There are many studies on the mean-variance (MV) framework. For example, Markowitz

(1952) establishes a MV rule (of risk averters) for the returns Y and Z of any two assets or

portfolios with means µY and µZ and standard deviations σy and σZ such that µY ≥ µZ

and σy ≤ σZ , then Y is preferred to Z for risk averters. Meyer (1987) compares the

distributions that differ only by location and scale parameters while analyzing the class

of expected utility functions with convexity or concavity restrictions. Wong (2007) and

Guo and Wong (2016) show that if Y dominates Z by the MV rule, then risk averters

with u(1) > 0 and u(2) < 0 will attain higher expected utility by holding Y instead of

holding Z when Y and Z follow a location-scale (LS) family or a linear combination of

location-scale families where u(i) is the ith derivative of utility function u. Wong and Ma

(2008) extend the work on location-scale (LS) family with general n random seed sources

and some general non-expected utility functions defined over the LS family. Bai, et al.

(2012) show that the mean-variance-ratio (MVR) statistic for comparing the performance

of prospects after eliminating the effect of the background risk produces a uniformly most

powerful unbiased (UMPU) test. Broll, et al. (2010) develop properties of indifference

curves and hedging decisions within the prospect theory.
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Lajeri-Chaherli (2002) shows that proper risk aversion is equivalent to both quasi-

concavity of a mean-variance utility function and DARA, while Lajeri-Chaherli (2004)

shows that the mean-variance framework and expected utility specifications are fully

compatible for the concept of standard risk aversion but not for the concepts of proper

risk aversion and proper prudence. Eichner and Wagener (2003) derive the necessary

and sufficient conditions for variance vulnerability, and provide connections between the

mean-variance properties for risk vulnerability within the EU framework. In addition,

Eichner (2008) shows that risk vulnerability is equivalent to the slope of the mean-variance

indifference curve being decreasing in mean and increasing in variance.

Alexander and Baptista (2002) relate value at risk (VaR) to mean-variance analysis

and examine the economic implications of using a mean-VaR model for portfolio selection.

In addition, Alexander and Baptista (2004) analyze the portfolio selection implications

arising from imposing a value-at-risk (VaR) constraint on the mean-variance model, and

compare them with those arising from the imposition of a conditional value-at-risk (CVaR)

constraint.

There are many applications of the mean-variance, mean-VaR, mean-CVaR models.

For example, Broll, et al. (2006) analyze export production in the presence of exchange

rate uncertainty under mean-variance preferences while Broll, et al. (2015) analyze a

bank’s risk taking in a two-moment decision framework. On the other hand, Alghalith,

et al. (2017) analyze the impacts of joint energy and output prices uncertainties on the

input demands in a MV framework.

2.3 Background Risk

There are many studies on background risk. For example, Lusk and Coble (2008) find

that individuals are more risk-averse when facing an unfair or mean-preserving background

risk. Bodie, et al. (1992), Heaton and Lucas (2000), and Viceira (2001) investigate the
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relation between labour income variations and investors’ portfolio decisions and confirm

the relevance of labour income risk to asset allocations. In addition, Cocco (2005) and

Pelizzon and Weber (2009) analyze the impact of the housing investment on the com-

position of an investor’s portfolio, and conclude that the investment in housing plays an

important role in asset accumulation and in portfolio choice among financial assets.

Eichner and Wagener (2009) document the comparative statics with both an endoge-

nous risk and a background risk for an agent with mean-variance preferences in a generic

decision model, and confirm that the agent becomes less risk-averse in response to an

increase in the expected value of the background risk or a decrease in its variability if the

preferences exhibit DARA or variance vulnerability.

Alghalith, et al. (2016) present two dynamic models of background risk. They present

a stochastic factor model with an additive background risk and a dynamic model of

simultaneous (correlated) multiplicative background risk and additive background risk.

Alghalith, et al. (2017) analyze the impacts of joint energy and output prices uncertainties

on the inputs demands in a mean-variance framework.

2.4 Portfolio Selection with Background Risk

Classical portfolio theory (Markowitz, 1952; Merton, 1969, 1971; Samuelson, 1969) do not

include background risk because the market is assumed to be complete. This assumption

infers that background assets can be spanned and priced by tradable financial assets.

Nonetheless, Campbell (2006) shows that standard portfolio theory fails to explain

household investment decisions in practice. To circumvent the limitation of the classical

portfolio theory, academics introduce background risk in the study of portfolio composi-

tions. For example, it is found that there are strong cross-sectional correlations between

health and both financial and non-financial assets, and that adverse health shocks dis-
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courage risky asset holdings, see, for example, Rosen and Wu (2004), Berkowitz and Qiu

(2006), Edwards (2008), and Fan and Zhao (2009) for more discussion.

There are some studies examine the properties in mean-variance framework in the

presence of the background risk. For example, Jiang, et al. (2010) investigate the impact

of background risk on an investor’s portfolio choice in a mean-variance framework, and

analyzes the properties of efficient portfolios as well as the investor’s hedging behaviour

in the presence of background risk.

With multiple additive risks, the mean-variance approach and the expected-utility

approach of risk preferences are compatible if all attainable distributions belong to the

same location-scale family. Under this proviso, Guo, et al. (2018) survey existing results

on the parallels of the two approaches with respect to risk attitudes, the changes thereof,

and the comparative statics for simple, linear choice problems under risks. In mean-

variance approach all effects can be couched in terms of the marginal rate of substitution

between mean and variance. In addition, they apply the theory to study the behavior of

banking firm and study risk taking behavior with background risk in the mean-variance

model.

3 Mean-VaR/CVaR/variance Boundaries and Efficien-

t Frontiers with Background Risk but without Risk-

Free Security

The theory developed in this paper is to extend the mean-variance portfolio frontier

model without background asset which has been well established and studied. The theory

without background asset can be obtained by setting the background asset to be zero

in the theory with background asset developed in this paper or other papers. Some

results of the theory without background asset will be given in this section and the next
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section when we compare the results with and without background asset. Thus, readers

can understand the theory without background asset by reading our paper. However,

Readers may read Huang and Litzenberger (1988) and others for the discussion of the

mean-variance portfolio frontier model without background asset.

3.1 Models and Notations

Following Das, et al. (2010), Baptista (2012), and others, we first assume that there

is no risk-free asset and there are n different risky assets in the market with returns

r = (r1, r2, · · · , rn)τ where ri is the return of asset i and the superscript τ represents

the transpose operation. We let ω = (ω1, ω2, · · · , ωn)
τ be a portfolio in which ωi is the

proportion (weight) of the portfolio invested in asset i with a positive (negative) weight

represents a long (short) position and
∑n

i=1 ωi = 1. Thus, the return of the portfolio is

rp = ωτr. We denote rb to be the return of the background asset. Then, the mean and

variance of total return rω putting weight ω on financial assets with background risk

rω = ωτr + rb (3.1)

are given by

E(rω) = ωτE(r) + E(rb) ,

σ2(rω) = ωτV ω + 2ωτCov(r, rb) + Var(rb) , (3.2)

where V is a non-singular matrix representing the covariance matrix of financial asset

returns, cov(r, rb) is an n-column covariance vector in which its ith item represents the

covariance between the ith financial asset return and the background asset return, and

Var(rb) is the variance of the return of the background asset.

Hull and White (1998) suggest that normality is a common assumption when com-

puting a portfolio’s VaR. In addition, Duffie and Pan (1997) demonstrate that normality
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assumption is is a good approximation to daily VaR of the S&P 500. We follow their

suggestion to assume that security rates of return and the return of the background asset

have a multivariate normal distribution. We will discuss the extension of our results to

non-normality in Section 5.

We note that Baptista (2012) assumes that there areM mental accounting withM ≥ 2

and there is background risk in each mental accounting. In addition, he assumes that

investor faces possibly different background risks in different accounts. Different from

Baptista (2012), in this paper we assume that all background risks are combined in one

unobserved background asset with return rb. The background asset could be real estate

and/or other assets exposed in background risk so that the return of background asset rb

could be from the return of real estate and/or other assets exposed in background risk.

Nonetheless, we follow Baptista (2012) to let the weight of the background asset to be

one.1 We also note that some researchers assume that background risk is an independent,

zero-mean risk, and then analyze its impacts on an agent’s risk activity. Nonetheless,

Lusk and Coble (2008) point out that the independent background risk has no impact

on the investor’s portfolio choice. Thus, it is more reasonable to assume background

asset and financial assets are dependent, see, for example, Baptista (2008) and Jiang et

al. (2010). In this paper, we adopt this assumption. Baptista (2008) assumes the non-

tradeable income (background asset) with a zero expected value. In this paper, we relax

this assumption by allowing the background risk to have non-zero expected value.

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two of the most pop-

ular risk management tools to be employed in the financial industry in rencent years.

Baumol (1963) first introduces the concept of VaR when examining a model referred as

1One could assume that an individual who could invest ωf of her wealth in financial assets and

invest ωb = 1 − ωf in background asset. However, one could make some simple adjustment such that

ωf = 1 =
∑n

i=1 ωi and ωb = 1 as shown in Equation (3.2).
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the expected gain-confidence limit criterion. Jorion (2000), Linsmeier and Pearson (2000),

and others document that VaR is a widely used measure by corporate treasurers, dealers,

fund managers, financial institutions, and regulators. We state the definition of VaR as

follows:

Definition 3.1 The VaR at the 100t% confidence level of a risky portfolio for a specific

time period is the rate of return V [t, rω] such that the probability of that portfolio having

a rate of return of −V [t, rω] or less is 1− t. In other words, the VaR of the portfolio ω’s

return at the 100t% confidence level is

V [t, rω] = −F−1
ω (1− t) , (3.3)

where Fω(·) is the cumulative distribution function of rω.

We let Φ(·) be the standard normal cumulative distribution function and ϕ(·) the

standard normal density function. In addition, for any confidence level t ∈ (1/2, 1), we

let Φ(−zt) = (1− t). Thus, we have∫ −zt

−∞
ϕ(x)dx = 1− t .

Using the definition of VaR in (3.3), we can have

V [t, rω] = ztσ(rω)− E(rω).

Nonetheless, some researchers (Artzner, et al., 1999; Basak and Shapiro, 2001) have

pointed out the shortcomings of VaR as a measure of risk. In this connection, some

researchers have recommended to use CVaR instead. We follow their suggestion to define

CVaR as follows:

Definition 3.2 A portfolio’s CVaR is the loss one expects to suffer at that confidence

level by holding it over the investment period, given that the loss is equal to or larger than

its VaR. Formally, the CVaR of the portfolio ω’s return at the 100t% confidence level is

L[t, rω] = −E{rω|rω ≤ −V [t, rω]} . (3.4)
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In this paper, we first follow Hull and White (1998), Alexander and Baptista (2004) to

assume that (r, rb) have a multivariate normal distribution. From the definition of CVaR

in (3.4), we get

L[t, rω] = ktσ(rω)− E(rω) ,

where

kt =
−
∫ −zt
−∞ xϕ(x)dx

1− t
. (3.5)

Clearly, we have kt > zt, consequently, we also have L[t, rω] > V [t, rω].

3.2 Mean-Variance, Mean-VaR, Mean-CVaR Boundaries with

Background Risk

Now we are ready to discuss the theory of mean-variance, mean-VaR, and mean-CVaR

boundaries with background risk. We first provide definitions of return-risk boundaries

with background risk when variance, VaR, and CVaR are used as measures of risk. For

any Ē ∈ R, we let W (Ē) = {ω ∈ W : E[rω] = Ē} be the set of portfolios with expected

return equal to Ē in which W is the set of portfolios. The definitions of mean-variance,

mean-VaR, and mean-CVaR boundaries with background risk can then be defined as

follows:

Definition 3.3 A portfolio ω̄ ∈ W (Ē) is on the mean-variance boundary with back-

ground risk if and only if for Ē ∈ R, ω̄ is the solution of solving minω∈W (Ē) σ
2
ω where σ2

ω

is defined in (3.2).

Definition 3.4 A portfolio ω̄ ∈ W (Ē) is on to the mean-VaR boundary with back-

ground risk if and only if for Ē ∈ R, ω̄ is the solution of solving minω∈W (Ē) V [t, rω] where

V [t, rω] is defined in (3.3).

Definition 3.5 A portfolio ω̄ ∈ W (Ē) is on the mean-CVaR boundary with background

risk if and only if for Ē ∈ R, ω̄ is the solution of solving minω∈W (Ē) L[t, rω] where L[t, rω]

is defined in (3.4).
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From the above definitions, one could infer that a portfolio is on the mean-VaR or

mean-CVaR boundary with background risk if and only if it is on the mean-variance

boundary with background risk since zt and kt > 0 where zt and kt are defined in (3.5).

For the mean-variance boundary with background risk, we develop the following propo-

sition:

Proposition 3.1 Portfolio ω is on the mean-variance boundary with background risk

if and only if

σ2
ω

a
− (E(rω)− E(rb)− (A− EC + FA/C)2

Da/C
= 1 , (3.6)

where A = IτV −1E(r), B = E(r)τV −1E(r), C = IτV −1I, D = BC − A2, E =

Cov(r, rb)
τV −1E(r), F = Cov(r, rb)

τV −1I, a = (1 + F )2/C − Cov(r, rb)
τV −1Cov(r, rb) +

Var(rb).

When the return of the background risk rb is independent with the return of the

financial assets, we can have Cov(r, rb) = 0 and, as a result, we have E = F = 0. So, we

obtain the following corollary as a special case:

Corollary 3.1 When rb is independent of r, portfolio ω is on the mean-variance boundary

with background risk if and only if

σ2
ω

a
− (E(rω)− E(rb)− A/C)2

Da/C
= 1 , (3.7)

where A = IτV −1E(r), B = E(r)τV −1E(r), C = IτV −1I, D = BC − A2, a = 1/C +

Var(rb).

From Proposition 3.1, we observe that any portfolio ω that satisfies Equation (3.6)

will belong to both mean-VaR and mean-CVaR boundaries with background risk. Merton

(1972) proves that portfolio ω is on the mean-variance boundary without background risk

if and only if

σ2
ω

1/C
− (E(rω)− A/C)2

D/C2
= 1.
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Consequently, the variance of the minimum variance portfolio without background

risk is 1/C, while that with background risk is a. In addition, whether the variance of

the minimum variance portfolio with background risk is larger than that of the minimum

variance portfolio without background risk depends on the covariance vector Cov(r, rb)

and the covariance matrix V .

3.3 Mean-Variance, Mean-VaR, andMean-CVaR Efficient Fron-

tiers with Background Risk

We turn to develop properties for the mean-variance, mean-VaR, and mean-CVaR effi-

cient frontiers with background risk. To do so, we first provide the notions of efficiency

associated with the mean-variance, mean-VaR, and mean-CVaR boundaries as shown in

the following definitions:

Definition 3.6 A portfolio ω ∈ W is on the mean-variance efficient frontier with

background risk if and only if there is no portfolio ν ∈ W such that E(rν) ≥ E(rω) and

σ(rν) ≤ σ(rω) with at least one of the inequalities holds strictly where ru and σ(ru) are

defined in (3.3) with u = ν or ω.

Definition 3.7 A portfolio ω ∈ W is on the mean-VaR efficient frontier with back-

ground risk if and only if there is no portfolio ν ∈ W such that E(rν) ≥ E(rω) and

V [t, rν ] ≤ V [t, rω], with at least one of the inequalities holds strictly where ru is defined in

(3.2) and V [t, ru] is defined in (3.3) with u = ν or ω.

Definition 3.8 A portfolio ω ∈ W is on the mean-CVaR efficient frontier with back-

ground risk if and only if there is no portfolio ν ∈ W such that E(rν) ≥ E(rω) and

L[t, rν ] ≤ L[t, rω] with at least one of the inequalities holds strictly where ru is defined in

(3.2) and V [t, ru] is defined in (3.4) with u = ν or ω.
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3.3.1 Characterizations of the Minimum-VaR and Minimum-CVaR Portfo-

lios

We begin by developing the minimum-VaR portfolio with background risk as stated in

the following proposition:

Proposition 3.2

1. If the minimum-VaR-portfolio exists, then it is both mean-variance and mean-CVaR

efficient, and

2. if the minimum-CVaR portfolio exists, then it is mean-variance efficient.

The proof of Proposition 3.2 is given in the appendix.

Assuming that both global minimum-VaR and global minimum-variance portfolios

exist, we let ωV (t) ∈ W denote the global minimum-VaR portfolio and ωσ ∈ W denote

the global minimum-variance portfolio at the 100t% confidence level. We first establish

the following proposition to describe the condition for the existence of the minimum-VaR

portfolio:

Proposition 3.3

1. The minimum-VaR portfolio exists if and only if zt >
√

D/C.

2. Furthermore, if zt >
√
D/C, then

E(rωV (t)
) = E(rb) +

A− EC + FA

C
+

√
D

C

( aCz2t
Cz2t −D

− a
)
.

From Proposition 3.3, we know that if zt ≤
√

D/C, then there is no solution for the

globally minimizing-VaR problem. Thus, academics and practitioners need to be careful

when they select the confidence level for the globally minimizing-VaR problem.

Assuming that the minimum-CVaR portfolio exists, we let ωL(t) ∈ W be the 100t%

confidence level minimum-CVaR portfolio. Then, one could easily obtain the result for
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the minimum-CVaR portfolio similar to Proposition 3.3 replacing zt and ωv(t) by kt and

ωL(t), respectively. Since kt > zt, the minimum-CVaR portfolio exists if the minimum-VaR

portfolio exists.

Applying Proposition 3.3, we establish the following corollary:

Corollary 3.2

1. If the minimum-VaR portfolio exists, then E[rωV (t)
] > E[rωL(t)

], and

2. if the minimum-CVaR portfolio exists, then E[rωL(t)
] > E[rωσ ].

The above result infers that for the solutions to the problems of the VaR minimization,

the CVaR minimization and the variance minimization are all distinct from each other.

It also shows that the minimum-VaR portfolio lies above the minimum-CVaR portfolio

which, in turn, lies above the minimum-variance portfolio on the mean-variance efficient

frontier. From Corollary 3.2, we obtain the follow corollary:

Corollary 3.3 At any confidence level t < 1,

1. the minimum-variance portfolio is mean-VaR inefficient,

2. the minimum-variance portfolio is mean-CVaR inefficient, and

3. the minimum-CVaR portfolio is mean-VaR inefficient.

From Corollary 3.2, one could obtain Corollary 3.3. For example, consider the minimum-

CVaR portfolio ωL(t), we know from Corollary 3.2 that E[rωV (t)
] > E[rωL(t)

]. Moreover,

we can have V [rωV (t)
] ≤ V [rωL(t)

]. Thus, ωL(t) is mean-VaR inefficient.

3.3.2 Characterization of Mean-VaR and Mean-CVaR Efficiency

We turn to discuss the characterization of mean-VaR and mean-CVaR efficiency. We first

develop the characterization of mean-VaR efficiency with background risk in the following

proposition:
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Proposition 3.4

1. If zt >
√

D/C, then a portfolio ω is mean-VaR efficient if and only if it is on the

mean-VaR boundary and E[rω] ≥ E[rωv(t)
], and

2. if zt ≤
√
D/C, then there is no mean-VaR efficient portfolio.

We note that one could obtain the result for the mean-CVaR efficient frontier from

Proposition 3.4 when zt and ωv(t) are replaced by kt and ωL(t), respectively. We state this

result in the following corollary:

Corollary 3.4

1. If kt >
√

D/C, then a portfolio ω is mean-CVaR efficient if and only if it is on the

mean-CVaR boundary and E[rω] ≥ E[rωL(t)
], and

2. if kt ≤
√
D/C, then there is no mean-CVaR efficient portfolio.

From Propositions 3.3 and 3.4, one could easily obtain the following corollary to com-

pare the mean-variance, mean-VaR, and mean-CVaR efficient frontiers with background

risk:

Corollary 3.5

1. If kt ≤
√

D/C, then both mean-VaR and mean-CVaR efficient frontiers are empty;

2. if zt ≤
√
D/C < kt, then the mean-VaR efficient frontier is empty but the mean-

CVaR efficient frontier is a nonempty proper subset of the mean-variance efficient

frontier; and

3. if zt >
√
D/C, then a portfolio is on the mean-VaR efficient frontier if and only if it

is on the mean-CVaR efficient frontier and E[rω] ≥ E[rωv(t)
]; that is, the mean-VaR

efficient frontier is a nonempty proper subset of the mean-CVaR efficient frontier.
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4 Adding a Risk-free Security

Our previous analysis in Section 3 for the mean-variance/VaR/CVaR boundary assumes

that there is no risk-free security in the economy. Now, we turn to develop the theory by

assuming that there is a risk-free security with rate of return rf ≥ 0 under the situations

that agents can lend but cannot borrow and can lend and borrow. We first discuss the

theory in which the agents can lend but cannot borrow in next subsection and discuss

theory that agents can lend and borrow in the subsection thereafter.

4.1 Adding a Risk-free Lending but No Borrowing

We now develop the theory by assuming that there is a risk-free security with rate of

return rf ≥ 0 under the situations that agents can lend but cannot borrow. Supposing

there are n risky securities, we let Wf = {(ω, ωf ) ∈ Rn × R :
∑n

j=1 ωj + ωf = 1}. In this

situation, different from those expressed in (3.2), the expectation and variance of total

return

rω = ωfrf + ωτr + rb (4.1)

become

E(rω) = ωfrf + ωτE(r) + E(rb) ,

σ2(rω) = ωτV ω + 2ωτCov(r, rb) + Var(rb) , (4.2)

respectively. We denote w1 be the tangency portfolio associated with the risk-free lending

rate, and assume that it lies above the minimum-variance portfolio in the absence of

the risk-free security. By doing this, we develop the following proposition to give the

characterization of the mean-variance boundary with both background risk and risk-free

lending but no borrowing security:

Proposition 4.1 Portfolio ω is on the mean-variance boundary with both background
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risk and risk-free security if and only if

σ2
ω

a
− (E(rω)− E(rb)− (A− EC + FA/C)2

Da/C
= 1 when E(rω) > E(rω1) , and

σ2
ω

a∗
− (E(rω)− E(rb)− (rf + rfF − E))2

Ha∗
= 1 when E(rω) < E(rω1) , (4.3)

where H = B − 2rfA+ r2fC and a∗ = −Cov(r, rb)
τV −1Cov(r, rb) + Var(rb) > 0.

Merton (1972) shows that when a risk-free security exists in the economy, a portfolio

ω ∈ Wf is on the mean-variance boundary without background risk if and only if

σ2
ω =

(E(rω)− rf )
2

H
.

Form Proposition 4.1, one could conclude that the presence of background risk changes

the shape of the mean-variance boundary when there is a risk-free asset. Furthermore,

since a > a∗, from Proposition 4.1, we obtain the following corollary:

Corollary 4.1 When there is an additive background risk, the variance of the minimum-

variance portfolio without risk-free security is larger than that with risk-free security.

In other words, when background risk exists, adding a risk-free security result in reducing

the risk of the minimum-variance portfolio.

From Proposition 4.1, we also note that even when we put all asset into the risk-free

lending, that is, ωf = 1, because of the existence of the background risk, we still have a

nonzero variance. This can be seen clearly from Figure 4.1.

Below we give a characterization of the tangency portfolio ω1. At this point, the shape

of the curve

σ2
ω

a
− (E(rω)− E(rb)− (A− EC + FA/C)2

Da/C
= 1 ,

and that of the curve

σ2
ω

a∗
− (E(rω)− E(rb)− (rf + rfF − E))2

Ha∗
= 1
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is the same. In other words, we have

√
H

σ√
σ2 − a∗

=

√
D

C

σ√
σ2 − a

.

This follows that at the tangency portfolio ω1, the variance should be HCa−Da∗

HC−D
.

Thereafter, we develop the following proposition to state the conditions for the exis-

tence of the minimum-VaR portfolio when there is a risk-free security:

Proposition 4.2

1. The minimum-VaR portfolio exists if and only if zt >
√
H.

2. Furthermore, if zt >
√
H, then

E(rωV (t)
) = E(rb) + (rf + rfF − E) +

√
H
( a∗z2t
z2t −H

− a∗
)
.

This result can be obtained by using a similar argument as used in Proposition 4.2. In

addition, from applying Proposition 4.2, we establish have the following two corollaries:

Corollary 4.2

1. If the minimum-VaR portfolio exists, then E[rωV (t)
] > E[rωL(t)

], and

2. if the minimum-CVaR portfolio exists, then E[rωL(t)
] > E[rωσ ].

Corollary 4.3 At any confidence level t < 1,

1. the minimum-variance portfolio is mean-VaR inefficient,

2. the minimum-variance portfolio is mean-CVaR inefficient, and

3. the minimum-CVaR portfolio is mean-VaR inefficient.

In addition, we develop the following to characterize the mean-VaR efficiency when

there is a risk-free security:

Proposition 4.3
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1. If zt >
√
H, then a portfolio ω is mean-VaR efficient if and only if it is on the

mean-VaR boundary and E[rω] ≥ E[rωv(t)
], and

2. if zt ≤
√
H, then the mean-VaR efficient portfolio does not exist.

We note that a result similar to Proposition 4.3 holds for the mean-CVaR efficient frontier

when zt and ωv(t) are replaced by kt and ωL(t), respectively. We state it in the following

corollary:

Corollary 4.4

1. If kt >
√
H, then a portfolio ω is mean-CVaR efficient if and only if it is on the

mean-CVaR boundary and E[rω] ≥ E[rωL(t)
], and

2. if kt ≤
√
H, then the mean-CVaR efficient portfolio does not exist.

In addition, similar to Corollary 3.5, we establish the following corollary to compare

the mean-variance, mean-VaR, mean-CVaR efficient frontier with both background risk

and risk-free security:

Corollary 4.5

1. If kt ≤
√
H, then both mean-VaR and mean-CVaR efficient frontiers are empty.

2. If zt ≤
√
H < kt, then the mean-VaR efficient frontier is empty but the mean-CVaR

efficient frontier is a nonempty proper subset of the mean-variance efficient frontier;

3. if zt >
√
H, then a portfolio is on the mean-VaR efficient frontier if and only if it

is on the mean-CVaR efficient frontier and E[rω] ≥ E[rωv(t)
]; that is, the mean-VaR

efficient frontier is a nonempty proper subset of the mean-CVaR efficient frontier.

4.2 Allowing for Both Risk-Free Lending and Borrowing

In this section, we suppose that both risk-free lending and borrowing are allowed and that

the borrowing rate rfb is higher than the risk-free lending rate rfl. The set of portfolios

with well-defined expected rates of return is then given by letting Wf = {(ω, ωfl, ωfb) ∈
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Rn × R+ × R− :
∑n

j=1 ωj + ωfl + ωfb = 1}, where ωfl and ωfb are the proportions of

wealth lend and borrowed at rfl and rfb, respectively, and R+ and R− denote the sets of

non-negative and non-positive real numbers, respectively.

We let ω2 be the tangency portfolio associated with the risk-free borrowing rate and

assume that it lies above the minimum-variance portfolio in the absence of the risk-free

security. By doing this, we develop the following proposition to give the characterization

of the mean-variance boundaries with both background risk and risk-free lending and

borrowing security:

Proposition 4.4 Portfolio ω is on the mean-variance boundaries with both background

risk and risk-free security if and only if

σ2
ω

a∗
− (E(rω)− E(rb)− (rfb + rfbF − E))2

H2a∗
= 1 when E(rω) > E(rω2) ,

σ2
ω

a
− (E(rω)− E(rb)− (A− EC + FA/C)2

Da/C
= 1 when E(rω2) > E(rω) > E(rω1) , and

σ2
ω

a∗
− (E(rω)− E(rb)− (rfl + rflF − E))2

H1a∗
= 1 when E(rω) < E(rω1) ,

where H1 = B − 2rflA+ r2flC and H2 = B − 2rfbA+ r2fbC.

Similar to the analysis on ω1, we can also conclude that at the tangency portfolio ω2,

the variance should be H2Ca−Da∗

H2C−D
. We give an illustration of the mean-variance boundary

in this case in Figure 4.2.

5 Extension to Non-normality Case

Now, we assume that the rates of returns for the risky securities and the background asset

in the economy are not multivariate normal distributed. Suppose that for any portfolio

in the mean-VaR boundary, (i) we include a position with many stocks, and (ii) it is

sufficiently diversified so that we can use the central limit theorem in our analysis (Duffie

and Pan, 1997). Applying the central limit theorem, the rate of return of any portfolio
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Figure 4.1: The mean-variance boundary when risk-free lending is allowed but no bor-

rowing.
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Figure 4.2: The mean-variance boundary when both risk-free lending and borrowing are

allowed.
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is approximately normal distributed in the mean-VaR boundary. As a result, the theory

developed in Section 4 under the normality assumption is still valid. At least the theory

is a good approximation when the distributions of stocks are skewness or fat tailed or

both.

In addition, we now study a generalization of the theory developed in Section 4 to

include the situation in which the distribution is not normal. We remark that the theory

developed in Section 4 can be extended to include the situation in which the rates of

returns are multivariate elliptical distributed rates. Suppose that the rates of return of n

risky securities and that of the background asset (r, rb) are jointly multivariate elliptical

distributed, denoted by En+1(µ
∗,Σ∗, g), where g is the density generator (Landsman and

Valdez, 2003). Hence, rω = ωτr + rb ∼ E1(E(rω), σ
2(rω), g). Here, E(rω) and σ2(rω) are

the same as those used in Section 4.

Let FZ(·) be the standard elliptical CDF and fZ(·) the standard elliptical PDF. As-

suming that F (−z∗t ) = (1− t) and applying VaR , we have

V [t, rω] = z∗t σ(rω)− E(rω)

for any confidence level t ∈ (1/2, 1).

L[t, rω] = −E(rω|rω < −V [t, rω])

= −
∫ −V [t,rω ]

−∞ rωfr(rω)drω

1− t

= −
∫ −z∗t
−∞ (σ(rω)z + E(rω)fZ(z)dz

1− t

= k∗
t σ(rω)− E(rω).

where

k∗
t =

−
∫ −z∗t
−∞ zfZ(z)dz

1− t

Therefore, the theory developed in Section 4 is still valid when the rates of return have a

multivariate elliptical distribution, and z∗t and k∗
t are used instead of zt and kt, respectively.
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6 Conclusion

This paper investigates the impact of background risk on an investor’s portfolio choice

in the mean-VaR, mean-CVaR, and mean-variance framework, and analyzes the char-

acterization of the mean-variance, mean-VaR, and mean-CVaR boundaries and efficient

frontiers in the presence of background risk. We first derive the conditions that the port-

folios lie on the mean-variance, mean-VaR, and mean-CVaR boundaries with and without

background risk so that one could know what is the difference between the conditions

in which the portfolios lie on the mean-variance, mean-VaR, and mean-CVaR boundaries

with and without background risk. We show that the mean-variance (VaR, CVaR) bound-

ary depends on the covariance vector between the returns of the risky assets and that of

the background asset and also the variance of the return of the background asset. Thus,

even when the return of the background risk is independent with that of the financial

assets, the mean-variance (VaR, CVaR) boundary with background risk is still different

from that without background risk. We also show that if the minimum-VaR-portfolio

exists, then it is both mean-variance and mean-CVaR efficient, and if the minimum-

CVaR portfolio exists, then it is mean-variance efficient. The existence condition of the

minimum-VaR (CVaR) is also derived. It is found that this condition is the same for

portfolio choice problem with or without background asset. In addition, we find that

the minimum-variance portfolio is both mean-VaR and mean-CVaR inefficient, while the

minimum-CVaR portfolio is mean-VaR inefficient.

Thereafter, we consider the case with a risk-free security. We show that adding a risk-

free security results will reduce the risk of the minimum variance portfolio. The characteri-

zations of the mean-variance, mean-VaR, and mean-CVaR boundaries and mean-variance,

mean-VaR, and mean-CVaR efficient frontiers in this situation are also investigated and

derived. Finally, we extend our work to the non-normality situation and examine the

economic implication of the mean-VaR/CVaR model. In addition, we find that the main
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results developed in this paper are still valid when the rates of returns are multivariate

elliptical distributed.

Extension of our paper includes adding background risk to other risk measures, for

example, Niu, et al. (2017). In this paper, the background asset is additive. One could

consider to extend the approach to include multiplicative background asset. In addition,

many mean-variance portfolio selection models without background risk have been devel-

oped. For example, Zhou and Li (2000) develop a continuous-time mean-variance portfolio

selection model while Zhou and Yin (2003) further develop a continuous-time version of

the Markowitz mean-variance portfolio selection model with regime switching. Li and Ng

(2000) extend the single-period mean-variance portfolio selection model to multi-period

and Li, et al. (2010) develop the mean-variance-skewness model for portfolio selection

with fuzzy returns. The above models could be extended to include background risk.

Appendix.

Proof of Proposition 3.1: We assume that investors are mean-variance optimizers who

will solve the following optimization problem for their investment decision making:

min
1

2
V ar(rω) s.t. ωτE(r) = µ and ωτI = 1 (A.1)

where I is a vector of ones.

Using Lagrange multipliers to solve the two constraints in Problem (A.1), the first

order optimality condition is

V ω + Cov(r, rb)− λ1E(r)− λ2I = 0

Consequently, we can have

ω = V −1(λ1E(r) + λ2I − Cov(r, rb)) (A.2)
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Plugging Equation (A.2) into the constraints in Equation (A.1) obtains the following

Lagrange multipliers

λ1 =
Cµ− A+ (EC − FA)

D
and λ2 =

B − µA+ (FB − AE)

D
,

where A = IτV −1E(r), B = E(r)τV −1E(r), C = IτV −1I, D = BC − A2, E =

Cov(r, rb)
τV −1E(r), and F = Cov(r, rb)

τV −1I.

Further, for the portfolio q on the mean-variance boundary, we can have:

σ2
ω = ωτV ω + 2ωτCov(r, rb) + Var(rb)

= ωτ (λ1E(r) + λ2I − Cov(r, rb)) + 2ωτCov(r, rb) + Var(rb)

= λ1µ+ λ2 + ωτCov(r, rb) + Var(rb)

= λ1(µ+ E) + λ2(1 + F )− Cov(r, rb)
τV −1Cov(r, rb) + Var(rb)

=
Cµ− A+ (EC − FA)

D
(µ+ E) +

B − µA+ (FB − AE)

D
(1 + F )

−Cov(r, rb)
τV −1Cov(r, rb) + Var(rb)

=
Cµ2 − 2(A− EC + FA)µ− 2AE + CE2 − 2AEF +B(1 + F )2

D

−Cov(r, rb)
τV −1Cov(r, rb) + Var(rb)

=
C

D
(µ− A− EC + FA

C
)2 − C2E2 − 2CEA(1 + F ) + A2(1 + F )2

CD

+
−2AE + CE2 − 2AEF +B(1 + F )2

D
− Cov(r, rb)

τV −1Cov(r, rb) + Var(rb)

=
C

D
(µ− A− EC + FA

C
)2 + a ,

where a = (1+F )2

C
− Cov(r, rb)

τV −1Cov(r, rb) + Var(rb) > 0.

Consequently, we can have that portfolio ω is on the mean-variance boundary with

background risk if and only if

σ2
ω

a
− (E(rω)− E(rb)− (A− EC + FA)/C)2

Da/C
= 1 ,

and thus, Proposition 3.1 follows. �

Proof of Proposition 3.2:
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Over here, we only prove that the minimum-VaR portfolio is mean-CVaR efficient.

The other two assertions of Proposition 3.2 can be obtained similarly. Assuming ω is the

minimum-VaR portfolio but is not mean-CVaR efficient. From Definition 3.8, we notice

that there is a portfolio ν such that E[rν ] ≥ E[rω] and L[t, rν ] ≤ L[t, rω] with at least one

of the inequalities holds strictly. As a result, we have

V (t, rν) = ztσ(rν)− E(rν) =
zt
kt

[
ktσ(rν)− E(rν)

]
− (1− zt

kt
)E(rν)

=
zt
kt
L(t, rν)− (1− zt

kt
)E(rν)

< V (t, rω).

This contradicts the assumption. Hence, the minimum-VaR portfolio is mean-CVaR effi-

cient if it exists. Thus, the assertion of Proposition 3.2 holds. �

Proof of Proposition 3.3 : We first prove that the condition zt >
√
D/C is a necessary

and sufficient condition that the minimum-VaR portfolio exists at the 100t% confidence

level. For any mean-variance efficient portfolio ω, applying Equation (3.6), we get

E(rω) = E(rb) +
A− EC + FA

C
+

√
D

C
(σ2

ω − a). (A.3)

Now, we have to solve

min
ω∈W

V [t; rω] .

Applying Equation (3.6), we also know that σ(rωσ) =
√
a. Hence, in order to obtain the

VaR of the minimum-VaR portfolio, we use Proposition 3.2 and both equations (3.6) and

(A.3) to solve

min
σ∈[

√
a,∞]

ztσ −
(
E(rb) +

A− EC + FA

C
+

√
D

C
(σ2 − a)

)
. (A.4)

We note that

∂
[
ztσ −

(
E(rb) +

A−EC+FA
C

+
√

D
C
(σ2 − a)

)]
∂σ

= zt −
σ
√
D/C√

σ2 − a
. (A.5)
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Clearly, σ̄ =
√
a cannot be used to solve the minimization problem (A.4) because

lim
σ→

√
a
zt −

σ
√

D/C√
σ2 − a

= −∞.

Employing Equation (A.5), we obtain the following necessary condition for σωV
:

zt =
σωV

√
D/C√

σ2
ωV

− a

to solve the minimization problem (A.4).

From the above equation, we can have

σ2
ωV

=
az2t

z2t −D/C
.

Thus, zt >
√
D/C is found to be the necessary condition that the minimum-VaR portfolio

exists at the 100t% confidence level.

We turn to show that zt >
√

D/C is the sufficient condition that The minimum-VaR

portfolio exists at the 100t% confidence level by proving that we are minimizing a convex

function. Employing Equation (A.5), we get

∂2
[
ztσ −

(
E(rb) +

A−EC+FA
C

+
√

D
C
(σ2 − a)

)]
∂σ2

=
∂[zt − σ

√
D/C/

√
σ2 − a]

∂σ

= a

√
D

C

1

(σ2 − a)3/2
> 0. (A.6)

This completes the first part of our proof.

Further, from Equation (A.3), we can have, when zt >
√

D/C,

E(rωV (t)
) = E(rb) +

A− EC + FA

C
+

√
D

C
(

aCz2t
Cz2t −D

− a).

�

Proof of Corollary 3.2: For mL(t), we can have

E(rωL(t)
) = E(rb) +

A− EC + FA

C
+

√
D

C
(

aCk2
t

Ck2
t −D

− a).
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Note the following equation follows:

∂E(rωV (t)
)

∂zt
= −

√
Da

D + Cz2t
Cz2t −D

< 0.

Since kt > zt, Corollary 3.2 follows. �

Proof of Proposition 3.4: We first prove (i). To do so, we need to show prove that for

every mean-VaR boundary portfolio ω, we have ∂2V (t, rω)/∂E(rω)
2 > 0. Suppose that

ω is a mean-VaR boundary portfolio being chosen arbitrarily. Then, employing Equation

(4.3), we get

σω =

√
a+

(Erω − E(rb)− (A− EC + FA)/C)2

D/C

As a result, we can have

∂V (t, rω)

∂E(rω)
=

∂[zt

√
a+ (Erω−E(rb)−(A−EC+FA)/C)2

D/C
− E(rω)]

∂E(rω)

=
ztC(Erω − E(rb)− (A− EC + FA)/C)

D
√

a+ (Erω−E(rb)−(A−EC+FA)/C)2

D/C

− 1. (A.7)

Consequently, we can further have

∂2V (t, rω)

∂E(rω)2
=

∂[zt

√
a+ (Erω−E(rb)−(A−EC+FA)/C)2

D/C
− E(rω)]

∂E(rω)

=
ztCa

D
(
a+ (Erω−E(rb)−(A−EC+FA)/C)2

D/C

)3/2
> 0.

Thus, the assertion of the first part of Proposition 3.4 holds.

Now, we turn to prove (ii). When zt ≤
√
D/C, employing Equation (A.7), we find

that for any mean-VaR boundary portfolio, we have ∂V (t,rω)
∂E(rω)

< 0 ω. Thus, there exists a

portfolio ν ∈ W that has both higher expected return and smaller VaR for any portfolio

ω ∈ W . Hence, the assertion of the second part of Proposition 3.4 holds. �

Proof of Proposition 4.1: We assume that the investor is a mean-variance optimizer who

solves the following optimization problem for the decision in his/her investment:

min
1

2
V ar(rω)
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s.t.ωτE(r) = µ− ωfrf (A.8)

ωτI = 1− ωf .

where rω = ωfrf + ωτr + rb, I is a vector of ones. .

From constraint Equation (A.8), we can have:

µ = ωfrf + ωτE(r) = (1− ωτI)rf + ωτE(r) = ωτ (E(r)− rfI) + rf (A.9)

The problem (A.8) can be handled by using Lagrange multipliers method

L =
1

2
(ωτV ω + 2ωτCov(r, rb)) + λ1(1− ωf − ωτI) + λ2(µ− ωτ (E(r)− rfI)− rf ).

Then, we obtain the following first-order optimality condition:

V ω + Cov(r, rb)− λ2(E(r)− rfI) = 0

ωf = 1− ωτI.

Consequently, we can have

ω = V −1(λ2(E(r)− rfI)− Cov(r, rb)) (A.10)

Plugging Equation (A.10) into the constraints in Equation (A.9) obtains the following

Lagrange multipliers

µ− rf = ωτ (E(r)− rfI) = λ2(B − 2rfA+ r2fC)− E + rfF

hereA = IτV −1E(r), B = E(r)τV −1E(r), C = IτV −1I,D = BC−A2, E = Cov(r, rb)
τV −1E(r), F =

Cov(r, rb)
τV −1I. It follows that

λ2 =
µ− rf + E − rfF

B − 2rfA+ r2fC
.

32



Further, for the portfolio ω on the mean-variance boundary, we can have:

σ2
ω = ωτV ω + 2ωτCov(r, rb) + Var(rb)

= ωτ (λ2(E(r)− rfI)− Cov(r, rb)) + 2ωτCov(r, rb) + Var(rb)

= λ2(µ− rf ) + ωτCov(r, rb) + Var(rb)

= λ2(µ− rf ) + λ2E − λ2rfF − Cov(r, rb)
τV −1Cov(r, rb) + Var(rb)

=
(µ− rf + E − rfF )2

H
+ a∗.

here H = B − 2rfA+ r2fC, a
∗ = −Cov(r, rb)

τV −1Cov(r, rb) + Var(rb) > 0.

Consequently, we can have that portfolio ω is on the mean-variance boundary with

background risk if and only if

σ2
ω

a∗
− (E(rω)− E(rb)− (rf + rfF − E))2

Ha∗
= 1 ,

and thus, Proposition 4.1 follows. �
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