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Abstract We propose a variational approach to obtain super-resolution images
from multiple low-resolution frames extracted from video clips. First the displace-
ment between the low-resolution frames and the reference frame is computed by an
optical flow algorithm. Then a low-rank model is used to construct the reference
frame in high resolution by incorporating the information of the low-resolution
frames. The model has two terms: a 2-norm data fidelity term and a nuclear-norm
regularization term. Alternating direction method of multipliers is used to solve the
model. Comparison of our methods with other models on synthetic and real video
clips shows that our resulting images are more accurate with less artifacts. It also
provides much finer and discernable details.

Keywords Image processing · Super-resolution · Low-rank approximation

1 Introduction

Super-resolution (SR) image reconstruction from multiple low-resolution (LR)
frames has many applications, such as in remote sensing, surveillance, and medical
imaging. After the pioneering work of Tsai and Huang [28], SR image reconstruc-
tion has become more and more popular in image processing community, see,
for example, [3, 8, 10, 12, 19, 25–27]. SR image reconstruction problems can be
classified into two categories: single-frame super-resolution (SFSR) problems and
multi-frame super-resolution (MFSR) problems. In this paper, we mainly focus on
the multi-frame case, especially the MFSR problems from low-resolution video
sequences. Below, we first review some existing work related to MFSR problems.
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Bose and Boo [3] considered the case where the multiple LR image frames
were shifted with affine transformations. They modeled the original high-resolution
(HR) image as a stationary Markov–Gaussian random field. Then they made use
of the maximum a posteriori scheme to solve their model. However, the affine
transformation assumption may not be satisfied in practice, for example, when there
are complex motions or illumination changes. Another approach for SR image
reconstruction is the one known as patch-based or learning-based. Bishop et al.
[2] used a set of learned image patches which capture the information between
the middle and high spatial frequency bands. They assumed a priori distribution
over such patches and made use of the previous enhanced frame to provide part of
the training set. The disadvantage of this patch-based method is that it is usually
time consuming and sensitive to the off-line training set. Liu and Sun [18] applied
Bayesian approach to estimate simultaneously the underlying motion, the blurring
kernel, the noise level, and the HR image. Within each iteration, they estimated the
motion, the blurring kernel, and the HR image alternatively by maximizing a pos-
teriori, respectively. Based on this work, Ma et al. [20] tackled motion blur in their
paper. An expectation-maximization (EM) framework is applied to the Bayesian
approach to guide the estimation of motion blur. These methods used optical flow
to model the motion between different frames. However, they are sensitive to the
accuracy of flow estimation. The results may fail when the noise is heavy.

In [6], Chan et al. applied wavelet analysis to HR image reconstruction. They
decomposed the image from previous iteration into wavelet frequency domain and
applied wavelet thresholding to denoise the resulting images. Based on this model,
Chan et al. [7] later developed an iterative MFSR approach by using tight-frame
wavelet filters. However, because of the number of framelets involved in analyzing
the LR images, the algorithm can be extremely time consuming.

Optimization models are one of the most important image processing models.
Following the classical ROF model [24], Farsiu et al. [11] proposed a total
variation-l1 model where they used the l1 norm for the super-resolution data fidelity
term. However, it is known that TV regularization enforces a piecewise solution.
Therefore, their method will produce some artifacts. Li et al. [16] used l1 norm of the
geometric tight-framelet coefficients as the regularizer and adaptively mimicking l1
and l2 norms as the data fidelity term. They also assumed affine motions between
different frames. The results are therefore not good when complex motions or
illumination changes are involved.

Chen and Qi [9] recently proposed a single-frame HR image reconstruction
method via low rank regularization. Jin et al. [14] designed a patch-based low rank
matrix completion algorithm from the sparse representation of LR images. The
main idea of these two papers is based on the assumption that each LR image is
downsampled from a blurred and shifted HR image. However, these works assumed
that the original HR image, when considered as a matrix, has a low rank property,
which is not convincing in general.

In this paper, we show that the low rank property can in fact be constructed
under MFSR framework. The idea is to consider each LR image as a downsampled
instance of a different blurred and shifted HR image. Then when all these different
HR images are properly aligned, they should give a low rank matrix; therefore, we
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can use a low-rank prior to obtain a better solution. Many existing works assume
that the shift between two consecutive LR frames is small, see, e.g., [1, 11, 22, 30,
31]. In this paper, we allow illumination changes and more complex motions other
than affine transformation. They are handled by an optical flow model proposed in
[13]. Once the motions are determined, we reconstruct the high-resolution image by
minimizing a functional which consists of two terms: the 2-norm data fidelity term
to suppress Gaussian noise and a nuclear-norm regularizer to enforce the low-rank
prior. Tests on seven synthetic and real video clips show that our resulting images
are more accurate with less artifacts. It can also provide much finer and discernable
details.

The rest of the paper is organized as follows: Section 2 gives a brief review
of a classical model on modeling LR images from HR images. Our model will be
based on this model. Section 3 provides the details of our low-rank model, including
image registration by optical flow and the solution of our optimization problem by
alternating direction method. Section 4 gives experimental results on the test videos.
Conclusions are given in Sect. 5.

To simplify our discussion, we now give the notation that we will be using in the
rest of the paper. For any integer m ∈ Z, Im is the m × m identity matrix. For any
integer l ∈ Z and positive integer n ∈ Z+, there exists a unique 0 ≤ l̃ < n such that
l̃ ≡ l mod n. Let Nn(l) denote the n× n matrix

Nn(l) =
[

0 In−̃l

Ĩl 0

]
. (1)

For a vector f ∈ R
n, Nn(l)f is the vector with entries of f cyclic-shifted by l.

Define the downsampling matrix Di and the upsampling matrix DT
i as

Di(n) = In ⊗ eTi and DT
i (n) = In ⊗ ei , i = 0, 1, (2)

where e0 = [1, 0]T , e1 = [0, 1]T , and ⊗ is the Kronecker product. For 0 ≤ ε ≤ 1,
define Tn(ε) to be the n× n circulant matrix

Tn(ε) =

⎡
⎢⎢⎢⎢⎣

1− ε ε · · · 0

0 1− ε
. . .

...
...

. . .
. . . ε

ε · · · 0 1− ε

⎤
⎥⎥⎥⎥⎦
. (3)

This matrix performs the effect of linear interpolation shifted by ε.
For a matrix Xm×n, the nuclear norm ‖ · ‖∗ of Xm×n is given by

‖Xm×n‖∗ =
r∑

i=1

|σi |,

where σi, i = 1, 2, · · · , r are singular values of Xm×n.
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2 Low-Resolution Model with Shifts

Consider a LR sensor array recording a video of an object. Then it gives multiple LR
images of the object. Unless the object or the sensor array is completely motionless
during the recording, the LR images will contain multiple information of the object
at different shifted locations (either because of the motion of the object or of the
sensor array itself). Our problem is to improve the resolution of one of the LR
images (called the reference image) by incorporating information from the other
LR images.

Let the sensor array consist of m× n sensing elements, where the width and the
height of each sensing element are Lx and Ly , respectively. Then, the sensor array
will produce an m×n discrete image with mn pixels, where each of these LR pixels
is of size Lx×Ly . Let r be the upsampling factor, i.e., we would like to construct an
image of resolution rm× rn of the same scene. Then the size of the HR pixels will
be Lx/r × Ly/r . Figure 1a shows an example. The big rectangles with solid edges
are the LR pixels and the small rectangles with dashed edges are the HR pixels.

Let {gi ∈ R
m×n, 1 ≤ i ≤ p} be the sequence of LR images produced by the

sensor array at different time points, where p is the number of frames. For simplicity
we let g0 be the reference LR image which can be chosen to be any one of the
LR images gi . The displacement of gi from the reference image g0 is denoted by
(εxi Lx, ε

y

i Ly), see the solid rectangle in Fig. 1a labeled as gi . For ease of notation,
we will represent the 2D images gi , 0 ≤ i ≤ p, by vectors gi ∈ R

mn obtained by
stacking the columns of gi . We use f ∈ R

r2mn to denote the HR reconstruction of g0
that we are seeking.

We model the relationship between f and g0 by averaging, see [3, 8]. Figure 1b
illustrates that the intensity value of the LR pixel is the weighted average of the

(a) (b)

Fig. 1 LR images with displacements. (a) Displacements between LR images. (b) The averaging
process
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intensity values of the HR pixels overlapping with it. The weight is precisely the
area of overlapping. Thus, the process from f to each of the LR images gi can be
modeled by [8]

gi = DKAi f+ ni , i = 1, 2, · · · , p, (4)

where D = D0(n)⊗D0(m) ∈ Rmn×r2mn is the downsampling matrix defined by (2);
K ∈ Rr2mn×r2mn is the average operator mentioned above; Ai ∈ Rr2mn×r2mn is
the warping matrix which measures the displacement between gi and g0; and ni is
the additive unknown noise. In this paper, we assume for simplicity that the noise
is Gaussian. Other noise models can be handled by choosing suitable data fidelity
terms.

The warping matrix Ai , 1 ≤ i ≤ p, is to align the LR pixels in gi at exactly
the middle of the corresponding HR pixels in f, exactly like the g0 is w.r.t f0 in
Fig. 1b. Once this alignment is done, the average operator K , which is just a blurring
operator, can be written out easily. In fact, the 2D kernel (i.e., the point spread
function) of K is given by vvT , where v = [1/2, 1, . . . , 1, 1/2]T with (r − 1) ones
in the middle, see [3]. The Ai are more difficult to obtain. In the most ideal case
where the motions are only translation of less than one HR pixel length and width,
Ai can be modeled by Ai = Tn(ε

x
i ) ⊗ Tm(ε

y

i ), where Tn(ε
x
i )andTm(ε

y

i ) are the
circulant matrices given by (3) with (εxi Lx, ε

y

i Ly) being the horizontal and vertical
displacements of gi , see Fig. 1a and [8]. In reality, the changes between different LR
frames are much more complicated. It can involve illumination changes and other
complex non-planar motions. We will discuss the formation of Ai in more detail in
Sects. 3.1 and 3.3.

3 Nuclear-Norm Model

Given (4), a way to obtain f is to apply least-squares. However, because D is
singular, the problem is ill-posed. Regularization is necessary to make use of some
priori information to choose the correct solution. A typical regularizer for solving
this problem is total variation (TV) [24]. The TV model is well known for edge
preserving and can give a reasonable solution for MFSR problems. However, it
assumes that the HR image is piecewise constant. This will produce some artifacts.

Instead we will develop a low-rank model for the problem. The main motivation
is as follows: We consider each LR image gi as a downsampled version of an HR
image fi . If all these HR images fi are properly aligned with the HR image f, then
they all should be the same exactly (as they are representing the same scene f). Wi

is the alignment matrix that aligns fi with f. For example, if p = 2, and

f1 =
⎛

⎝
a

b

c

⎞

⎠ , f2 =
⎛

⎝
b

c

d

⎞

⎠ ,
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then we can let

W1 =
(

0 1 0
0 0 1

)
,W2 =

(
1 0 0
0 1 0

)
,

thence

W1f1 =
(
b

c

)
= W2f2.

In general, [W1f1,W2f2, . . . ,Wpfp] should be a low-rank matrix (ideally a rank 1
matrix). Thus, the rank of the matrix can be used as a prior.

In Sect. 3.1, we introduce our low-rank model in the case where the LR images
are perturbed only by translations. Then in Sect. 3.2, we explain how to solve the
model by the alternating direction method. In Sect. 3.3, we discuss how to modify
the model when there are more complex motions or changes between the LR frames.

3.1 Decomposition of the Warping Matrices

In order to introduce our model without too cumbersome notations, we assume
first here that the displacements of the LR images from the reference frame are
translations only. Let sxi Lx and s

y
i Ly be the horizontal and vertical displacements of

gi from g0. (How to obtain sxi and s
y
i will be discussed in Sect. 3.3.) Since the width

and height of one HR pixel are Lx/r and Ly/r , respectively, the displacements are
equivalent to rsxi HR pixel length and rs

y
i HR pixel width. We decompose rsxi and

rs
y
i into the integral parts and fractional parts:

rsxi = lxi + εxi , rs
y
i = l

y
i + ε

y
i , (5)

where lxi andl
y

i are the integers and 0 ≤ εxi , ε
x
i < 1. Then the warping matrix can

be decomposed as

Ai = CiBi, (6)

where Bi = Nn(l
x
i ) ⊗ Nm(l

y
i ) is given by (1) and Ci = Tn(ε

x
i ) ⊗ Tm(ε

y
i ) is given

by (3) [6]. Thus, by letting fi = Bif, 1 ≤ i ≤ p, (4) can be rewritten as

gi = DKCi fi + ni , i = 1, 2, · · · , p. (7)

As mentioned in the motivation above, all these fi , which are equal to Bi f, are
integral shift from f. Hence, if they are aligned correctly by an alignment matrix Wi ,
the overlapping entries should be the same. Figure 2 is the 1D illustration of this
idea. Wx

i is the matrix that aligns fi with f (in the x-direction) and the dark squares
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Fig. 2 1D signals with integer displacements

are the overlapping pixels and they should all be the same as the corresponding
pixels in f.

Mathematically, Wi is constructed as follows: Given the decomposition of rsxi
and rs

y

i in (5), let lx+ = maxi{0, lxi }, ly+ = maxi{0, lyi } and lx− = maxi{0,−lxi },
l
y
− = maxi{0,−l

y

i }. Then

Wi = Wx
i ⊗W

y
i , (8)

where

Wx
i =

⎡

⎢⎣
0lx+−lxi

Irn−lx+−lx−
0lx−+lxi

⎤

⎥⎦ ,

W
y
i =

⎡
⎢⎣

0l
y
+−l

y
i

Irm−l
y
+−l

y
−

0l
y
−+l

y
i

⎤
⎥⎦ .

Note that Wi nullifies the entries outside the overlapping part (i.e., outside the dark
squares in Fig. 2).

Ideally, the matrix [W1f1,W2f2, · · · ,Wpfp] should be a rank-one matrix as every
column should be a replicate of f in the overlapping region. In practice, it can be of
low rank due to various reasons such as errors in measurements and noise in the
given video. Since nuclear norm is the convexification of low-rank prior, see [5],
this leads to our convex model

min
f1,··· ,fp

α‖W1f1,W2f2, · · · ,Wpfp‖∗ + 1

2

p∑

i=1

‖gi −DKCi fi‖2
2, (9)

where ‖ · ‖∗ is the matrix nuclear norm and α is the regularization parameter. We
call our model (9) the nuclear-norm model. We remark that here we use the 2-norm
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data fidelity term because we assume the noise is Gaussian. It can be changed to
another norm according to the noise type.

3.2 Algorithm for Solving the Nuclear-Norm Model

We use alternating direction method of multipliers (ADMM) [4] to solve the
nuclear-norm model. We replace {Wi fi}pi=1 in the model by variables {hi}pi=1. Let
H = [h1,h2, · · · ,hp], F = [f1, f2, · · · , fp], and WF = [W1f1,W2f2, · · · ,Wpfp].
The augmented Lagrange of model (9) is

Lαρ(H,F,Λ) = α‖H‖∗ + 1

2

p∑

i=1

‖gi −DKCi fi‖2
2

+
p∑

i=1

〈Λi,hi −Wi fi〉 + 1

2ρ
‖H −WF‖2

F ,

where Λ = [Λ1,Λ2, · · · ,Λp] is the matrix of Lagrange multipliers, ‖ · ‖F is the
Frobenius norm, and ρ is an algorithm parameter.

To solve the nuclear-norm model, it is equivalent to minimize Lαρ , and we
use ADMM [4] to minimize it. The idea of the scheme is to minimize H and F

alternatively by fixing the other, i.e., given the initial value F 0,Λ0, let Hk+1 =
arg minH Lαρ(H,F k,Λk) and Fk+1 = arg minF Lαρ(H

k+1, F,Λk), where k is
the iteration number. These two problems are convex problems. The singular value
threshold (SVT) gives the solution of the H -subproblem. The F -subproblem is
reduced to solving p linear systems. For a matrix X, the SVT of X is defined to be

SVTρ(X) = UΣ+
ρ V T ,

where X = UΣV T is the singular value decomposition (SVD) of X and Σ+
ρ =

max{Σ − ρ, 0}. We summarize the algorithm in Algorithm 1. It is well-known that
the algorithm is convergent if ρ > 0 [4].

In Algorithm 1, the SVT operator involves the SVD of a matrix WFk − Λk .
Its number of column is p, the number of LR frames, which is relatively small.
Therefore, the SVT step is not time consuming. For the second subproblem, we
need to solve p linear systems. The coefficient matrices contain some structures
which help accelerating the calculation. The matrices DT D and WT

i Wi are diagonal
matrices, while K and Ci can be diagonalized by either FFT or DCT depending on
the boundary conditions we choose, see [23]. In our tests, we always use periodic
boundary conditions.

In Algorithm 1, within each iteration, we should apply once singular value
decomposition to an r2mn × p matrix. The complexity of SVD is O(r2mnp2).
Then, we should solve p linear systems with r2mn equations. By using FFT, the
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Algorithm 1 f← ({gi,Wi, Ci},K, α, ρ,Λ0, F 0)

for k = 1, 2, 3, · · · do
Hk+1 = SVTαρ(WFk − ρΛk);
for i = 1 to p do

Mi = (DKCi)
T DKCi + 1

ρ
WT

i Wi ;

f k+1
i = (Mi)

−1
(
(DKCi)

T gi +WT
i Λk

i + 1
ρ
WT

i hk+1
i

)
;

end for
Λk+1 = Λk + 1

ρ
(Hk+1 −WFk+1);

end for
Output: f as the average of the columns of Fk .

complexity for this step is O(pr2mn log(r2mn)). Usually, log(r2mn) is larger than
p. Thence, the overall complexity for Algorithm 1 is O(pr2mn log(r2mn), where
m× n is the size of LR images; r is the upsampling factor; and p is the number of
frames.

3.3 Image Registration and Parameter Selection

In Algorithm 1, we assume that there are only translations between different LR
frames. However, there can be other complex motions and/or illumination changes
in practice. We handle these by using the local all-pass (LAP) optical flow algorithm
proposed in [13]. Given a set of all-pass filters {φj }Nj=0 and φ := φ0 +∑N−1

j=1 cjφj ,
the optical flow Mi of gi is obtained by solving the following problem:

min{c1,··· ,cN−1}
∑

l,k∈R
|(φ ∗ gi)(k, l)− (φ− ∗ g0)(k, l)|2,

where ∗ is the convolution operator, R is a window centered at (x, y), and
φ−(k, l) = φ(−k,−l). In our experiments, we followed the settings in the paper
[13], and let N = 6, R = 16 and

φ0(k, l) = e
− k2+l2

2σ2 , φ1(k, l) = kφ0(k, l),

φ2(k, l) = lφ0(k, l), φ3(k, l) = (k2 + l2 − 2σ 2)φ0(k, l),

φ4(k, l) = klφ0(k, l), φ5(k, l) = (k2 − l2)φ0(k, l),

where σ = R+2
4 and φ is supported in [−R,R] × [−R,R]. The coefficients cn

can be obtained by solving a linear system. The optical flow Mi at (x, y) is then
given by

Mi (x, y) =
(

2
∑

k,l kφ(k, l)∑
k,l φ(k, l)

,
2
∑

k,l lφ(k, l)∑
k,l φ(k, l)

)
,
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which can be used to transform gi back to the grid of g0. In order to increase the
speed by avoiding interpolation, here we consider only the integer part of the flow.
Hence, we get the restored LR images

g̃i (x, y) = gi([Mi](x, y)), i = 1, 2, · · · , p, ∀(x, y) ∈ Ω, (10)

where [Mi] is the integer part of the flow Mi and Ω is the image domain.
The optical flow method can handle complex motions and illumination changes

and will restore the positions of pixels in gi w.r.t g0. To enhance the accuracy of
the image registration, we further estimate if there are any translations that are
unaccounted for after the optical flow. In particular, we assume that g̃i may be
displaced from g0 by a simple translation

T (x, y) =
[
x

y

]
−
[
sxi
s
y

i

]
. (11)

To estimate the displacement vector [sxi , syi ]T , we use the Levenberg–Marquardt
algorithm proposed in [15, 21], which is a well-known method for nonlinear least-
squares problems. It aims to minimize the squared error

E(g̃i , g0) =
∑

(x,y)∈Ω
[g̃i (T (x, y))− g0(x, y)]2. (12)

The detailed implementation of this algorithm can be found in [8, Algorithm 3].
After obtaining [sxi , syi ], then by (6) and (8), we can construct the matrices Ci and
Wi for our nuclear-norm model (9).

Before giving out the whole algorithm, there remains the problem about param-
eters selection. There are two parameters to be determined: α, the regularization
parameter, and ρ, the algorithm (ADMM) parameter. We need to tune these two
parameters in practice such that the two subproblems can be solved effectively and
accurately. Theoretically, ρ will not affect the minimizer of the model but only the
convergence of the algorithm [4]. However, in order to get an effective algorithm,
it should not be set very small. For α, we use the following empirical formula to
approximate it in each iteration [16],

α ≈ 1/2
∑p

i=1 ‖̃gi −DKCi fki ‖2

‖W1fk1,W2fk2, · · · ,Wpfkp‖∗
, (13)

where fki is the estimation of fi in the kth iteration. The formula may not give the
best α but can largely narrow its scope. We then use trial and error to get the best
parameter. We give out the full algorithm for our model below.
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4 Numerical Experiments

In this section, we illustrate the effectiveness of our algorithm by comparing it with
3 different variational methods on 7 synthetic videos and real videos. Chan et al.
[6] applied wavelet analysis to MFSR problem and then developed an iterative
approach by using tight-frame wavelet filters [8]. We refer their model as tight-
frame (TF) model. Li et al. [16] proposed the sparse directional regularization
(SDR) model where they used l1 norm of the geometric tight-framelet coefficients
as the regularizer and the adaptively mimicking l1 and l2 norms as the data fidelity
term. Ma et al. [20] introduced an expectation-maximization (EM) framework to
the Bayesian approach of Liu and Sun [18]. They also tackled motion blur in their
paper. We refer it as the MAP model. We will compare our Algorithm 2 (the nuclear-
norm model) with these three methods. The sizes of the videos we used are listed
in Table 1. The CPU timing of all methods is also listed. It shows that our method
is the fastest, with two exceptions (i.e., the “disk” video when r = 2 and the “text”
video when r = 2). For other instances, our model is the best. We marked the
fastest results with bold letters. These data show that, when dealing with small-size
images, the SDR model is the fastest. When the size of the images gets larger, our
nuclear-norm model is the fastest.

There is one parameter for the TF model—a thresholding parameter η which
controls the registration quality of the restored LR images g̃i (see (10)). If the PSNR
value between g̃i and the reference image g0 is smaller than η, it will discard g̃i in
the reconstruction. We apply trial and error method to choose the best η. For the
SDR method, we use the default setting in the paper [16]. Hence, the parameters
are selected automatically by the algorithm. The TF model, the SDR model, and the
nuclear-norm model are applied to g̃i , i.e., we use the same optical flow algorithm
[13] for these three models. For the MAP model, it utilized an optical flow algorithm
from Liu [17]. Following the paper, the optical flow parameter α is very small. We
also apply trial and error method to tune it.

All the videos used in the tests and the results are available at http://www.math.
cuhk.edu.hk/~rchan/paper/super-resolution/experiments.html.

Algorithm 2 f← ({gi}, i0,K,Λ0, F 0, α, ρ)

for i = 0, 1, 2, · · ·p do
Compute g̃i(x, y) from (10);
Compute sxi and s

y

i in (11) by using the Levenberg–Marquardt algorithm in [8, Algorithm 3]
Compute the warping matrices Ci and Wi , according to (6) and (8);

end for
Apply Algorithm 1 to compute the HR images f← ({̃gi,Wi, Ci},K, α, ρ,Λ0, F 0);
Output f.

rchan.sci@cityu.edu.hk
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Table 1 Size of each data set and CPU time for all models

Size of data Factor CPU time (in seconds)

Height Width Frame r TF MAP SDR Nuclear

Boat 240 240 17 2 1251 198 336 138
Boat 120 120 17 4 7642 196 282 94.4
Bridge 240 240 17 2 3256 202 348 142
Bridge 120 120 17 4 9703 189 278 92.3
Disk 57 49 19 2 568 6.4 28 7.9

Disk 57 49 19 4 5913 21.4 53 13.6
Text 57 49 21 2 497 6.2 30 8.5
Text 57 49 21 4 4517 22.1 56 14.5
Alpaca 96 128 21 2 816 26.1 78 24
Alpaca 96 128 21 4 6178 172 250 90.6
Books 288 352 21 2 3943 1511 818 689

4.1 Synthetic Videos

We start from a given HR image f∗, see, e.g., the boat image in Fig. 3f. We translate
and rotate f∗ with known parameters and also change their illuminations by different
scales. Then we downsample these frames with the given factor r = 2 or r = 4 to
get our LR frames {gi}pi=1. We take p = 17, and Gaussian noise of ratio 5% is added
to each LR frame.

After we reconstruct the HR image f by a method, we compare it with the true
solution f∗ using two popular error measurements. The first one is peak signal-to-
noise ratio (PSNR) and the second one is structural similarity (SSIM) [29]. For two
signals x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T , they are defined by

PSNR(x, y) = 10 log10

(
d2

‖x− y‖2/n

)
,

SSIM(x, y) = (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
,

where d is the dynamic range of x, y; μxandμy are the mean values of x and
y; σxandσy are the variances of x and y; σxy is the covariance of x and y;
and ci , i = 1, 2, are the constants related to d , which are typically set to be
c1 = (0.01d)2andc2 = (0.03d)2. Because of the motions, we do not have enough
information to reconstruct f near the boundary; hence, this part of f will not be
accurate. Thus, we restrict the comparison within the overlapping area of all LR
images.

Table 2 gives the PSNR values and SSIM values of the reconstructed HR images
f from the boat and the bridge videos. The results show that our model gives much
more accurate f for both upsampling factor r = 2 and 4, see the boldfaced values.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Comparison of different algorithms on “boat” image with upsampling factor r = 2. (a) The
reference LR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result
of the SDR model [16]. (e) Result of our nuclear-norm model (α = 35.2924 and ρ = 3.379×104).
(f) True HR image

Table 2 PSNR and SSIM values for the “boat” and “bridge” videos

Upsampling factor r = 2 Upsampling factor r = 4

TF MAP SDR Nuclear TF MAP SDR Nuclear

Boat PSNR 18.7 25.3 28.2 29.8 20.7 23.6 27.0 27.1
SSIM 0.69 0.70 0.80 0.82 0.69 0.67 0.72 0.76

Bridge PSNR 20.7 23.6 27.0 26.9 20.1 22.4 24.6 24.9
SSIM 0.69 0.67 0.72 0.80 0.53 0.57 0.65 0.70

The improvement is significant when comparing to the other three models, e.g., at
least 1.6 dB in PSNR for the boat video when r = 2. All the PSNR values and SSIM
values of our method for boat video are higher than that of other models. All the
PSNR values and SSIM values of our method for bridge video are higher than that
of other models except the PSNR value when r = 2, see the fifth column of the last
row. It is comparable with the SDR method. However, the SSIM value is higher. This
means the reconstructed structure is better for our method. The major cost of this
algorithm is to solve the fi subproblems in Algorithm 1. Since the resulting images

rchan.sci@cityu.edu.hk



316 R. Zhao and R.H.F. Chan

(a) (b) (c)

(d) (e) (f)

Fig. 4 Zoomed-in comparison of different algorithms on “boat” image for r = 2. (a) The zoom-in
part in the HR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result
of the SDR model [16]. (e) Result of our nuclear-norm model (α = 35.2924 and ρ = 3.379×104).
(f) Zoomed-in original HR image

are with larger sizes, the sizes of coefficients of all subproblems in Algorithm 1 are
larger. Thence, when r = 4, the cost is larger than that when r = 2.

To compare the images visually, we give the results and their zoom-ins for the
boat video in Figs. 3, 4, 5. The results for the bridge video are similar and therefore
omitted. Figure 3 shows the boat reconstructions for r = 2. We notice that the
TF model loses many fine details, e.g., the ropes of the mast. The MAP model
produces some distortion on the edges and is sensitive to the noise; and the SDR
model contains some artifacts along the edges. One can see the difference more
clearly from the zoom-in images in Fig. 4. We also give the zoom-in results for
r = 4 in Fig. 5. We can see that the nuclear-norm model produces more details and
less artifacts than the other three models.
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Zoom-in comparison of different algorithms on “boat” image for r = 4. (a) The reference
LR image. (b) Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the
SDR model [16]. (e) Result of our nuclear-norm model (α = 32.0659 and ρ = 3.5841 × 104). (f)
Zoomed-in original HR image

4.2 Real Videos

In the following, experiments on real videos are carried out. Three videos “text,”
“disk,” and “alpaca” are downloaded from the website https://users.soe.ucsc.edu/~
milanfar/software/sr-datasets.html.

The basic information of these videos are listed in Table 1. We see that they
are very low-resolution videos. Figure 6 shows the reference LR images for these
videos. It is difficult to discern most of the letters from the reference images.

The first test video is the “text video.” The results are shown in Fig. 7. We see
that the TF model produces blurry reconstructions. The images by the MAP model
have obvious distortions. We also see that for the SDR model, some of the letters are
coalesced, e.g., the word “film.” The results of the nuclear-norm model are better.
One can easily tell each word and there are no obvious artifacts for the letters.

The second video is the “disk video,” which contains 26 gray-scale images with
the last 7 ones being zoom-in images. Therefore, we only use the first 19 frames
in our experiment. The results are shown in Fig. 8. The TF model again produces
blurry reconstructions. The MAP results are better but still blurry. The SDR results
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(a) (b) (c)

Fig. 6 The reference LR images of (a) “text,” (b) “disk,” and (c) “alpaca”

(a) (b) (c) (d)

Fig. 7 Comparison of different algorithms on “text video.” Top row with upsampling factor r = 2
and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model [20].
(c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 8.368 and ρ =
3.6236 × 106 for r = 2; α = 8.6391 and ρ = 4.5618 × 105 for r = 4)

have some artifacts, especially in the word “DIFFERENCE.” Our results are the best
ones with each letter being well reconstructed, especially when r = 2.

The third video is the “alpaca video,” and the results are shown in Fig. 9. When
r = 2, the word “service” is not clear from the TF model, the MAP model, and the
SDR model. When r = 4, the resulting images from all models are improved and the
phrase “university food service” is clear. However, we can see that our nuclear-norm
model still gives the best reconstruction.
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(a) (b) (c) (d)

Fig. 8 Comparison of different algorithms on “disk video.” Top row with upsampling factor r = 2
and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model [20].
(c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 6.6802 and ρ =
1.0701 × 106 for r = 2; α = 11.6185 and ρ = 8.6404 × 105 for r = 4)

(a) (b) (c) (d)

Fig. 9 Comparison of different algorithms on “alpaca video.” Top row with upsampling factor
r = 2 and second row with r = 4. (a) Result of the TF model [8]. (b) Result of the MAP model
[20]. (c) Result of the SDR model [16]. (d) Result of our nuclear-norm model (α = 35.3704 and
ρ = 2.7892 × 104 for r = 2; α = 45.6486 and ρ = 2.9798 × 105 for r = 4)
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(a) (b) (c)

(d) (e)

Fig. 10 Zoom-in comparison of different algorithms on “books video” with r = 2. Leftmost
figure: the LR reference frame with zoom-in areas marked. (a) Zoomed-in LR image. (b) Result of
the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the SDR model [16]. (e) Result
of our nuclear-norm model (α = 15.3958 and ρ = 5.6858 × 105 for r = 2)

(a) (b) (c)

(d) (e)

Fig. 11 Another zoom-in comparison on “books video” with r = 2. (a) Zoomed-in LR image. (b)
Result of the TF model [8]. (c) Result of the MAP model [20]. (d) Result of the SDR model [16].
(e) Result of our nuclear-norm model (α = 15.3958 and ρ = 5.6858 × 105 for r = 2)

The last video is a color video which is used in the tests in [7, 8]. It contains 257
color frames. We take the 100th frame to be the reference frame, see the leftmost
figure in Fig. 10. Frames 90–110 in the video are used as LR images to enhance the
reference image. We transform the RGB images into the Ycbcr color space and then
apply the algorithms to each color channel. Then we transform the resulting HR
images back to the RGB color space. Figures 10 and 11 show the zoom-in patches
of the resulting images by different models. In Fig. 10, the patch shows a number
“98” on the spine of a book. We see that the TF model gives a reasonable result
when compared with MAP and SDR. However, our nuclear-norm model gives the
clearest “98” with very clean background. Figure 11 shows the spines of two other
books: “Fourier Transforms” and “Digital Image Processing.” Again, we see that
our nuclear-norm model gives the best reconstruction of the words with much less
noisy artifacts.
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5 Conclusion

In this paper, we proposed an effective algorithm to reconstruct a high-resolution
image using multiple low-resolution images from video clips. The LR images
are first registered to the reference frame by using an optical flow. Then a low-
rank model is used to reconstruct the high-resolution image by making use of
the overlapping information between different LR images. Our model can handle
complex motions and illumination changes. Tests on synthetic and real videos show
that our model can reconstruct an HR image with much more details and less
artifacts.
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