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Abstract 

Robust visual tracking remains a technical challenge in real-world applications, as an object 

may involve many appearance variations. In existing tracking frameworks, objects in an 

image are often represented as vector observations, which discounts the 2-D intrinsic 

structure of the image. By considering an image in its actual form as a matrix, we construct 

the 3rd order tensor based object representation to preserve the spatial correlation within the 

2-D image and fully exploit the useful temporal information. We perform incremental update 

of the object template using the N-mode SVD to model the appearance variations, which 

reduces the influence of template drifting and object occlusions. The proposed scheme 

efficiently learns a low-dimensional tensor representation through adaptively updating the 

eigenbasis of the tensor. Tensor based Bayesian inference in the particle filter framework is 

then utilized to realize tracking. We present the validation of the proposed tracking system by 

conducting the real-time facial expression recognition with video data and a live camera. 

Experiment evaluation on challenging benchmark image sequences undergoing appearance 

variations demonstrates the significance and effectiveness of the proposed algorithm. 

Keywords: Object tracking; appearance model; incremental N-mode SVD; facial expression 

recognition. 
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1. Introduction 1 

Visual tracking in image sequences is amongst the dominant bottom-up units in computer 2 

vision applications such as surveillance, robotics, intelligent transportation, and human 3 

computer interaction (HCI). A critical requirement of these applications is to track the desired 4 

target region of interest for a long period in unconstrained environments. For instance, in face 5 

based-HCI (facial expression or identity recognition), the need for accurate face tracking 6 

along with head orientations has been widely acknowledged (Jo, Lee, Park, Kim & Jaihie, 7 

2014). Despite much progress in visual tracking and endeavours to improve face based-HCI, 8 

modelling the appearance variability of target remains imperative due to the intrinsic (e.g. 9 

pose variation deformations in shape, scale, and out-of-plane rotations) and extrinsic (e.g. 10 

occlusions, illumination changes, and different camera viewpoint) variations. 11 

Many researchers have attempted to address these issues in visual tracking and proposed 12 

various complex models to deal with target appearance variations (Wu, Yi, Lim, & Yang, 13 

2015). These studies revealed the performances of existing methods, each of which has its 14 

own advantages and drawbacks (Smeulders, Arnold, Dung, Rita, Simone, Afshin & Mubarak 15 

2014). In visual tracking for face based-HCI such as facial expression recognition (FER), 16 

template drift (Matthews, Ishikawa & Baker, 2004) is one of the common issues because of the 17 

accumulation of small errors in the template updating process. For effective appearance 18 

representation of a target face, frequent template update is usually necessary to cope with 19 

varying pose and head orientations. An inadequate updating strategy will ruin the purpose of 20 

appearance representation. In order to obtain a good trade-off between the processing time 21 

and accuracy of tracker, the template-updating process must be developed carefully. 22 

Secondly, the template-updating strategies based on the image-as-vector form (Ross, 23 

David, Jongwoo, Lin, & Yang, 2008; Ning, Yang, Jiang, Zhang & Yang, 2016) ignore the 24 
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fact that image is intrinsically a matrix, or a 2nd order tensor. A significant amount of spatial 25 

correlation within the original structure of a 2-D image remained unexploited in the image-as-26 

vector form, which makes the appearance model less discriminative in tracking against 27 

occlusions. Alternately, the multiway or tensor based image representation can provide a 28 

better appearance structure for tracking by preserving the actual 2-D structure of an image to 29 

facilitate visual tracking. 30 

This paper focuses on building a tracking system based on the tensor framework and 31 

presents a real-time application for facial expression recognition. An important aspect of 32 

object motion in videos is their local similarity among several regions of the same frame. 33 

More importantly, an object in video also possesses the strong temporal correlation among 34 

succeeding frames. Based on these spatial and temporal correlation priors of a video, we 35 

construct the spatio-temporal tensor appearance model for object tracking. The proposed 36 

method effectively combines the dynamic model with a robust online tensor based eigen-basis 37 

updating strategy to better cope with scaling and geometric normalization issues of human 38 

faces, which is a key step in face-based HCI systems.  39 

Performing the proposed learning procedure using the tensor representation will not only 40 

preserve the 2D structure of an image but also significantly circumvent the large 41 

dimensionality problem. For example, it can convert a 3rd order tensor of size 30×30×30 to a 42 

smaller dimension of 10×10×10. The image-as-vector form would require a 27000×1000 43 

basis matrix, but the tensor formulation requires only three sets of 30×10 basis matrices. 44 

Intuitively, the tensor based learning along with effective appearance updating yields fast and 45 

more reliable target localization, which is useful for building a robust real-time FER system. 46 

1.1 Related works and context 47 

A variety of tracking approaches have been proposed to achieve improved robustness, 48 
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accuracy and computational efficiency. However, the performance of most trackers is 49 

constrained with certain conditions which makes them inapt for real applications (Wu, Yi, 50 

Lim, & Yang, 2015). Discriminative and generative appearance models are widely accepted 51 

tracking approaches that effectively model the target appearance based on spatial information. 52 

Discriminative trackers treat a tracking task as a classification problem and discriminates the 53 

target from surroundings. Following the discriminative framework, an online supervised 54 

boosting method was proposed (Grabner & Bischof, 2006), whereas the semi-supervised 55 

tracker was introduced in (Grabner, Leistner & Bischof, 2008), in which only the initial frame 56 

label was provided. Later (Babenko, Yang, & Belongie, 2009) introduced the Multiple 57 

Instance Learning (MIL) tracker to deal with unreliable positive and negative labels in an 58 

online manner and uncovered the drift issues in tracking. Recently the work presented in 59 

(Yang, Jiang, Zhang & Yang, 2016) proposed the online structured support vector machine 60 

based discriminative tracking framework with fast learning and addressed the drift issues. The 61 

author in (Bae, Kang, Liu, & Chung, 2016) presented real-time object tracking framework 62 

based on discrete swarm optimization. However, the proposed strategies cannot deliver the 63 

orientation information of the target, or the degree of rotation of the tracking window. 64 

On the other hand, several methods made use of the appearance modelling of an 65 

object based on the generative framework (Black & Jepson, 1998; Ross, David, Jongwoo, Lin, 66 

& Yang, 2008; Hu, Li, Zhang, Shi, Maybank & Zhang, 2011). Among them, sub-space learning-67 

based models have gained much attention in visual tracking against model drifting due to the 68 

constant subspace assumption instead of the constant brightness assumption. Moreover, the 69 

task of subspace learning is memory efficient, thus yielding comparatively faster processing. 70 

For instance, authors in (Black & Jepson, 1998) proposed view-based appearance models for 71 

tracking with sub-space learning. A view-based eigenbasis model of the target is trained off-72 

line and tracking is performed on matching sequential views of a target. However, the lack of 73 
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training samples along with maximum possible viewing conditions is still a challenging task. 74 

The work presented by (Lim, Ross, Lin, &Yang, 2004) accomplished tracking by incremental 75 

subspace learning, in which target subspace is updated during the tracking process to deal 76 

with appearance changes. Their work developed an updating strategy by extending the SKL 77 

(sequential Karhunen–Loeve) algorithm (Levy & Lindenbaum, 2000) but focused only on the 78 

similarity between candidate and target subspace.  79 

Later, (Ross, David, Jongwoo, Lin, & Yang, 2008) introduced an adaptive image-as-80 

vector subspace learning model Incremental Visual Tracker (IVT), which gained much 81 

popularity. The IVT introduced the eigenbasis and mean updating strategy in tracking for 82 

updating the appearance variations sequentially. The template-updating strategy followed in 83 

IVT flattens the target regions to retain the vectorised shape, which yields the extrinsic 84 

information about the target subregions. Several other improved versions (Hu, Li, Zhang, Shi, 85 

Maybank & Zhang, 2011) of this model were further proposed. However, their performances 86 

degraded in unrestricted conditions. Extended version of IVT was proposed by (Wang, Lu, & 87 

Yang, 2013) under the Gaussian-Laplacian noise assumption to enhance the robustness in the 88 

presence of outliers. The representation of a target by the flattened intensity vector can result 89 

in a large dimensionality. 90 

In visual tracking, the multilinear extension of object tracking based on online leaning 91 

is also introduced to capture spatio-temporal appearance and has gained much success. For 92 

instance, an online tensor decomposition based tracking framework was reported by (Hu, Li, 93 

Zhang, Shi, Maybank & Zhang, 2011), in which target image-as-matrix is proposed for a better 94 

representation of spatial layout. For incremental updating, the R-SVD (Van Loan, 1996) 95 

approach is utilized to update the subspace along with sample mean against each tensor mode. 96 

However, the process of updating only considered the top eigenvalues and eigenvectors and 97 

small weights were discarded in order to meet the real-time requirements, which may cause 98 
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error accumulation and model drift. Recently, the author in (Ma, Huang, Shen & Shao, 2016) 99 

proposed the incremental tensor learning based pooling strategy and considered the target and 100 

template as sparse coding tensors. Although good results are achieved on tracking image 101 

sequences by using tensor pooling, however, a major concern of TPT is its extensive 102 

computing procedure consisting of: (1) the 4
th

 order online tensor learning along with the 3
rd

 103 

order direct tensor decomposition on every upcoming frame. (2) K-means based dictionary 104 

learning in tensor pooling. These factors result in slower tracking frame rate and therefore 105 

make it feasible mainly for offline tracking. 106 

An incremental N-mode SVD was proposed in (Lee & Choi, 2014) and tested on 3D 107 

face reconstruction to update the result of N-mode SVD with the arrival of new training data. 108 

The incremental N-mode SVD presented full factorization and more accurate calculation of 109 

the eigenstructure of the training tensor. In this work, we focus on N-mode SVD for 110 

incremental learning for online visual tracking. Unlike TPT, which uses the standard R-SVD 111 

to calculate the entire N-mode immediately, we conduct separate spatial and temporal 112 

factorization of the appearance tensor and adopt the incremental N-mode SVD for calculating 113 

the eigenstructure of the unfolded matrices. Our method captures variants of every mode 114 

independently for calculating the residue error prediction of Bayesian posterior probability. 115 

Compared with other incremental tensor subspace learning and vector-based methods, N-116 

mode SVD delivers more accurate approximation of the unfolded tensors in each mode and 117 

updates the target appearance variations more effectively. Thus, it makes the tracking more 118 

robust against variations in pose, geometry and illumination. 119 

For the task of expression recognition, the face detectors are usually employed to extract 120 

the facial region first. A well-known detection algorithm by (Viola P & Jones MJ, 2004) is 121 

extensively used over the years, which works on learning the classifiers based on Haar 122 

features. Despite the high detection rate of this technique, the performance degrades 123 



                                                                             7                                                                manuscript 

noticeably for occluded and profile faces. A real-time facial expression approach was presented 124 

(Geetha, Ramalingam, Palanivel, & Palaniappan, 2009), in which head contours were extracted to 125 

locate the face region in images. Color space information is further utilized to extract the location of 126 

face parts and then expression recognition is performed. This method heavily depends on 127 

morphological image operations such as thresholding of image pixel values and is therefore not 128 

suitable for low intensity and occluded images. (Wan, Shaohua & Aggarwal, 2014) proposed a robust 129 

metric learning approach for spontaneous facial expression recognition, and (Owusu, Zhan, & Mao, 130 

2014) developed a facial expression analysis system based on neural-AdaBoost. Recently the authors 131 

in (Ali, Hasimah, et al, 2015) used empirical mode decomposition to conduct facial expression 132 

recognition. In these reported studies, face detection was performed individually on every frame. To 133 

deal with the face orientation changes, generally several pre-processing techniques are combined 134 

carefully with this face detection framework to register the faces based on the locations of 135 

eyes and nose before the expression recognition. However, this stage demands accurate 136 

detection of facial parts, which is generally not possible in real-time applications.  137 

Contributions: Based on the above-mentioned discussion, the correlation between the 138 

motion of object and its context is still hard to capture. We propose to address the visual 139 

tracking problem with an effective online spatio-temporal tensor learning framework, which 140 

not only takes into account the spatio-temporal information but also effectively combines the 141 

updating procedure with appearance modelling to achieve real-time tracking. The proposed 142 

tracking algorithm produces a low dimensional tensor representation of the target online by 143 

following an incremental update procedure of the mean and eigen-basis using the N-mode 144 

SVD of unfolded matrices. When estimating the target, the likelihood of a candidate is 145 

evaluated on the learned tensor subspace repeatedly based on the reconstruction error to avoid 146 

missing the target position. The spatio-temporal appearance feature and fast incremental 147 

update provide an improved tracking performance along with better computational efficiency 148 
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when compared to vector based subspace methods. Then we specifically designed a real-time 149 

FER system based on the proposed tracking strategy. The tracking window obtained from the 150 

proposed tracker is further processed to align the face geometry and then the task of 151 

expression recognition is performed. Experiments revealed that the integrated system 152 

performs effectively in both recorded videos as well as on live camera enabled videos. 153 

The remaining of this work is organized as follows. In Section 2, we describe the material 154 

and methods utilized in our proposed framework with a complete outline of our tracking 155 

approach. Section 3 provides experiment results of the proposed tracking algorithm. Section 4 156 

discusses the applications of FER using our method. Finally, we present the conclusion in 157 

Section 5. 158 

2. Proposed Framework for Tracking 159 

2.1 Outline of our tracking method 160 

The proposed tracking framework is built on three main stages as shown in Figure 1: (a) 161 

spatio-temporal tensor based target appearance model, (b) Bayesian inference coupled with 162 

particle filter, and (c) N-mode SVD for incremental updating tensor. In Figure 1(a), we 163 

propose a tensor based approach to construct the target template appearance as a reservoir of 164 

3rd order tensors. A tensor is initially decomposed using Higher-Order Singular Value 165 

Decomposition (HOSVD) (Kolda, Tamara G., & Brett, 2009), where the appearance model 166 

only takes into consideration of the initial region of interest to be tracked in subsequent 167 

frames. In Figure 1(b), we consider the tracking problem in a generative framework as an 168 

online tensor learning task. An accurate subspace representation is learned online, and the 169 

updating procedure is carried out in the temporal direction. The processes (b) and (c) are 170 

combined such that the subspace of the target is computed by incremental N-mode SVD over 171 

the target’s intensity-value template and is stored in a leaking memory to gradually forget old 172 



                                                                             9                                                                manuscript 

observations. The procedure is summarized in Table 1. Sampling of the candidate window, 173 

which is assumed to follow a Gaussian distribution around the preceding position, is carried 174 

out by using particle filtering. When predicting the target, the confidence of each sample in 175 

terms of distance from candidate to learned tensor subspace is computed. The sample with 176 

lowest error is then selected. Furthermore, the error reconstruction stage allows us to repeat 177 

the sampling when the confidence level is not sufficient enough to identify the candidate as 178 

the target. The whole process is repeated, where the new frame is added to the reservoir and 179 

the last frame is removed to provide sufficient spatiotemporal information and to avoid 180 

unnecessary storage. 181 

2.2 Tensor decomposition 182 

A higher order tensor can be viewed as a generalization of a vector (first-order tensor) and 183 

a matrix (second-order tensor). An  -th order tensor can be denoted as                , 184 

each element of which can be represented as           for        . The  -mode (N-th 185 

dimension) matrix unfolding of a tensor  , denoted as         
            , is obtained by 186 

fixing the index term    while unfolding all other modes and combining all other indices into 187 

one index. For better visualization, let us consider the process of unfolding the tensor   into 188 

its 1st, 2nd and 3rd modes. The mode-  folding process of a tensor is the reverse process of 189 

mode-  unfolding, which restores the actual tensor. The entries of the mode-  product of   190 

and a matrix          
 

 are: 191 

                                                     (1) 192 

In a tensor and matrix multiplication, the resulting tensor   can also be computed by 193 

matrix multiplication             followed by mode-  folding.  Note that for tensors and 194 

matrices of the appropriate sizes,                     195 
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and                    . 196 

HOSVD is a multilinear extension of the conventional matrix singular value 197 

decomposition (SVD). For an  -th order tensor, HOSVD produces   orthonormal 198 

matrices,               , spanning   spaces. An  -th order tensor                  can be 199 

decomposed as follows: 200 

                                                  201 

   (2) 202 

where                 is called the core tensor, and               contain singular vectors. 203 

The solution of the above equation can be given by Tucker Decomposition (L.R.Tucker, 204 

1966), which is the preliminary step in obtaining the start-up tracking procedure and 205 

incremental tensor learning in our tracking algorithm. 206 

2.3 Online tensor learning for tracking  207 

Online tensor learning model for tracking is built from the streaming data. The first   208 

target frames warped from sliding data are stored in terms of image gray levels in the initial 209 

window as              , where    and    are the width and height of target and    is the 210 

number of frames stacked in the tensor. Subsequently, the tensor   is decomposed using 211 

HOSVD into three orthogonal spaces by three orthonormal matrices                  . When 212 

a new frame comes from the video stream, the last frame from the sliding block is removed. 213 

For each new frame, we may only need a portion of the mode matrices to further compute the 214 

SVD, rather than re-computing the whole tensor. Incremental SVD, in this case, serves the 215 

purpose to update the previous mode matrices with the arrival of new data. 216 

The classic R-SVD algorithm operates on newly accessorial columns and rows in the 217 

matrix, but is based on the zero mean assumption. In multi-linear generalization (Lee & Choi, 218 
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2014) introduced the N-mode SVD to compute the eigen-basis of a tensor with the mean 219 

update (Hall, Marshall, Martin, 2003) and therefore can keep tracking the subspace variations in 220 

each mode. For incremental updating of basis matrices, the incremental N-Mode SVD (Lee & 221 

Choi, 2014) is utilized. An extensive procedure for the incremental N-Mode SVD is followed 222 

to compute the eigen-basis with mean updating simultaneously. The process is summarized in 223 

Table 1. This algorithm can approximate the N-mode SVD efficiently with less memory and 224 

operate on a smaller portion of data each time from a relatively larger dataset. In this section, 225 

we provide an overview of N-Mode incremental update adapted for tensor based appearance 226 

model in context of visual tracking. The complete derivation of mode matrices can be found 227 

in (Lee & Choi, 2014). 228 

After preparing the reservoir tensor, let                
 

 be the current tensor, and 229 

               
 
 be the data tensor with new video frame added, then the incremental 230 

procedure includes updating the mean and the total number of samples.   and   can be 231 

concatenated to form:          where                
    

   . We only need to 232 

compute the  -mode projection matrix     of   and the unfolding matrix    for    233 

       . The process is illustrated in Figure 2, where three identical tensors are shown 234 

along with their respective unfolded matrices in three modes. The white region corresponds to 235 

the original tensor whereas the shaded portion represents the newly added tensor. 236 

In order to update the appearance tensor based on previous projection matrices, when a 237 

new sample arrives, the incremental update procedure mainly consists of two parts: (1) spatial 238 

update, and (2) temporal update. In spatial update, we consider only mode-1 and mode-2 239 

unfolding of the tensor for updating. In temporal update, we consider the third mode for 240 

updating and the process is slightly different. The steps below formulate the factorization of 241 

both parts. 242 

(1) Spatial update (when    ) 243 
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  In the incremental procedure for unfolded tensor in mode-1 and mode-2, we compute 244 

the new projection mode matrix   
              

 
 

, where               245 

      
       and        is obtained by the standard QR decomposition (Hall, Marshall, 246 

Martin, 2003). The concatenation of previous tensor and newly arrived frame can be formed 247 

as:        , replacing the tensor with projection matrices and core in the first two modes 248 

as: 249 

                     
                        (3) 250 

            
       

     

    
       

                    
                                               (4) 251 

   
 
 
       

          
     

    
      

                                           (5) 252 

  
                    

        

        
              

 
 
                                       (6) 253 

where    is the forgetting factor (Ross, David, Jongwoo, Lin, & Yang, 2008 ) for 254 

concentrating more effect on newly arrived sample.  255 

(2) Temporal Update (where    ) 256 

For incremental update of 3rd mode, the updating structure for   
 is different from the 257 

spatial structure in terms of concatenation and can be given as: 258 

   
 
 

 
   

            (7) 259 

   
     
  

  
            

 

    
            (8) 260 

                   
 
         (9) 261 
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       (10) 262 

Instead of using the standard R-SVD (Hall, Marshall, Martin, 2003) that calculates the 263 

entire N-mode       immediately, we propose to utilize spatial as well as temporal 264 

factorization of appearance tensor model that is updated dynamically using N-mode SVD. 265 

Tracking is achieved by the actual factorization of each unfolded matrix. The method 266 

provides an accurate approximation by keeping the dominant singular subspaces of current 267 

updating model. It incrementally builds Gaussian mixture models on each mode to describe 268 

the data falling into several classes in spatial domain and temporal domain incorporating the 269 

tensor multi-linear representations. 270 

In the tracking framework, the newly arrived sample is categorized by evaluating its 271 

likelihood with the estimated subspace. The likelihood can be determined by the sum of the 272 

reconstruction residual error norms of the predictive Gaussian distribution. By the means of 273 

the notation of orthogonality in the tensor decomposition, we associate the dynamic Bayesian 274 

inference to approximate the distribution over the location of target. Let    be the mean of 275 

observations, where   represents the center of the distribution for each class. Assume 276 

      
       , which represents the shift of observations to the mean   . The residual 277 

error vector   , orthogonal to every vector in   , is given by: 278 

                 
                (11) 279 

The sum of residual error norms of a predictive state can be represented as: 280 

                                           
   

  
     281 

                                   
   

 
             (12) 282 
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2.4 Tensor likelihood Bayesian inference  283 

We use online tensor learning to model the tracking process under the assumption that the 284 

object state in the tracking framework exhibits the Markov chain state transition process, 285 

where the present state can be effectively estimated from its past states. In this model, the 286 

motion of target among consecutive frames is usually considered as an affine motion. Assume 287 

that a given state of target is                        at time t, where the parameters are the 288 

x and y translations, rotation angle, scale, aspect ratio, and skewness, respectively. Now we 289 

consider the tracking formulation in Bayesian filtering framework, in which the hidden state 290 

of    of the target object at each time   is estimated with one of the k image observations 291 

             ,               . Under this framework, the filtering Bayesian estimate 292 

of posterior          can be given as: 293 

                                              
                                                                    294 

(13) 295 

where          refers to the observation likelihood at time t, and             corresponds to 296 

the motion model. In order to approximate the distribution over the target position and to 297 

draw the set of samples X    
   

    
   , particle filter (Isard & Blake, 1996) is utilized. The 298 

optimal object state of the target   
   in the present frame can be inferred by the maximum a 299 

posteriori (MAP) criterion: 300 

  
                                     301 

 (14) 302 

In our implementation, the residual error determines the measure of similarity among 303 

candidate and the learned subspace. Thus,      
     in our case is given by: 304 

     
                            (15) 305 
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3. Experiments 306 

For performance evaluation, the proposed online spatio-temporal tensor learning based 307 

tracker is validated on seven challenging videos. The chosen sequences comprise of various 308 

variations, including partial occlusion, pose and scale variations, illumination changes, 309 

background cluttering, rotations and impulse motions. For comparison, we conducted 310 

experiments on several related tracking methods. (1) Fragments-based tracking (FRAG 311 

Tracker) (Adam, Rivlin, & Shimshoni, 2006) (2) Vector subspace learning-based tracking 312 

algorithm (IVT tracker) (Ross, David, Jongwoo, Lin, & Yang, 2008). (3) Adaptive structural 313 

local sparse appearance model (ASLA Tracker)(Jia, Lu &Yang, 2012), (4) Discriminant tracker 314 

based on circulant structure with kernels (CSK Tracker) Henriques, J. F., Caseiro, R., 315 

Martins, P., & Batista, J. 2012), and (4) Sparsity based collaborative model for tracking 316 

(SCM Tracker) (Zhong, W., Lu, H., & Yang, M. H. 2012 ). For a fair comparison, the 317 

proposed tracker is evaluated against these methods using the results provided by authors in 318 

the benchmark (Wu, Lim & Yang, 2015). In our experiments, the target region obtained from 319 

the video frames is normalized to the size of 32×32 pixels, and an initial tensor of length 15 in 320 

the 3rd mode is built for the representation of object appearance. The forgetting factor in the 321 

incremental N-mode SVD is set to 0.9, where the number of particles in the particle filter is 322 

set to 500. The assigned affine parameter values are [9,5,0.05,0.005,0,0]. 323 

3.1 Evaluation 324 

As discussed above, the proposed methodology based on the image as a 2nd order tensor 325 

and appearance model as a 3rd order tensor can preserve more compact and useful 326 

information as compared to an image represented as a vector. In addition, the incremental N-327 

mode SVD delivers a more robust tensor updating procedure. To evaluate the effectiveness of 328 

our proposed schemes, we present both quantitative and qualitative comparison with related 329 
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methods against dominant challenges, such as occlusion, illumination changes, target scaling 330 

(deformation) and rotations. 331 

3.1.1 Quantitative analysis 332 

We used the conventional metric position error, precision plots of one pass evaluation 333 

(OPE) and success plot of OPE (Wu Y, Lim J, Yang, 2015) to evaluate the tracking 334 

performance. The tracking windows obtained from IVT, FRAG, CSK, ASLA, SCM and our 335 

proposed algorithm are compared with the available ground truth to generate the mean square 336 

error. The average location error of each method on each video is listed in Table 2. Figure 3 337 

shows the screen shots of the proposed tracker under several challenging conditions. The 338 

relative position error per frame (in pixels) between the tracking result and ground truth is 339 

reported in Figure 4, whereas the visual comparison on key frames is presented in Figure 5. 340 

It is evident from Table 2 that the proposed tracking method is more effective than other 341 

vector based methods. The advantage of our method is much notable with face based videos, 342 

for which our tracker achieved better performance. For other videos, our method provides the 343 

second best results with insignificant margins from the best results. The reason behind is that, 344 

other videos have fewer challenging conditions and do not contain abrupt motions. However, 345 

when the impulse motion and orientation changes occur, tensor based image representation 346 

can provide a better performance. SCM achieved the second best result following the tensor 347 

based tracker due to its frequent model updating strategy. 348 

Overall Performance: The overall performance of the related trackers is evaluated using the 349 

precision plots and success plots. The precision plot evaluates the robustness in terms of 350 

percentage of video frames whose recorded location is within the provided threshold distance 351 

to the ground-truth. Whereas the success plot is the measure of area under the curve (AUC) of 352 

each tracker. Success plot indicates the ratio among correctly tracked frames whose overlap 353 
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threshold is larger than the given threshold. In terms of accuracy and overlap precision, the 354 

overall performance of the tracker was also found to be better. Figure 6 shows precision plot 355 

ranking with the threshold of 20 pixels. The proposed tracker achieves 6% better precision as 356 

compared to SCM, whereas in success plot the proposed tracker achieves 5% better ranking 357 

over CSK in terms of AUC. 358 

3.1.2 Qualitative analysis 359 

The visual analysis of the proposed tracking method is also carried out under several 360 

challenging conditions. 361 

Occlusion: Figure 3(a) shows the results of tracking key frames with occlusion. The subject 362 

face in this sequence is being severely occluded by a book. The target in frame 50 covered 363 

major part of her face by the book, but accurate tracking is still achieved using our method as 364 

the tensorial information of the target is retained to compute the similarity, which makes it 365 

less susceptible to noise. 366 

In terms of locating tracked objects, our method also provides good accuracy. Figure 4 367 

shows the result on the faceOCC1 sequence, in which the proposed method performed better 368 

than ASLA and FRAG due to effective updating.  The error rates of CSK and IVT are 369 

comparable to ours. FRAG performs poorly in the occlusion scenario, due to the lack of 370 

mechanism to deal with the appearance changes. 371 

Illumination variation and scale changes: The tracking results for videos with severe 372 

illumination changes is depicted in the video sequence named Mhyang as shown in Figure 373 

3(d). In frame 540, the target moves backward from its position and resulting in scale 374 

changes, whereas in frames 760 and 1200, the illumination effect is more significant, which 375 

makes the tracking process more challenging. Frame 1410 is chosen to indicate the target 376 
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rotation. The proposed method performs effectively under these conditions. 377 

The video sequence provided in Figure 3(b) shows a person walking out of the dark 378 

place into an area with spot lights, where the motion of target and camera is also found. In 379 

this sequence, our tracker and IVT successfully retained the tracking region throughout the 380 

sequence, whereas FRAG lost the tracking process and drifted away from its position. As 381 

evident form Figures 5(c) and 5(d), our tracker best places the tracking window on the target 382 

and accurately captures the face rotation along with the side pose, while the ASLA and IVT 383 

windows are scaled slightly larger than the target. 384 

The sample results shown in Figure 3(c) are taken from video sequence Dudek, which 385 

involves illumination, scale and pose variations. Frame 209 shows the tracking result under 386 

quick face occlusion, whereas frames 500 and 997 show the expression variation. The target 387 

is also under the motion with changing background and scale. The proposed tracker quickly 388 

adapts the changes in scale and poses as evidenced in the results. 389 

The effect of head pose changing on tracking result in the comparison to others is 390 

more evident in Figure 5(b). In frame 250, all other trackers captured the face location but the 391 

head rotation is more accurately located by TTracker. Moreover, the scale changes in 392 

subsequent frames of Figure 5(b) is modelled effectively with TTracker, where ASLA and 393 

CSK localized a larger region and FRAG tracker completely lost the target. This is due to the 394 

proposed incremental template updating mechanism, which empowers the tracker to cope 395 

with gradual appearance changes in our method, whereas the classical approaches were not 396 

able to do this. 397 

The good performance of the proposed tracking framework can be credited by the fact 398 

that the tensor framework delivers more structural motion information of the target as 399 

compared to vector based strategies. In terms of adaptability, the incremental tensor based 400 
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learning through the N-mode SVD could learn more specific appearance changes of the target 401 

by capturing the variations with the passage of time. Meanwhile, the tensor reservoir in our 402 

proposed model serves the purpose of retaining the information in each mode. In case the 403 

information content related to one mode of the tensor is affected, the remaining modes are 404 

still enough to restore the subspaces contents. Hence, the minor imprecisions in the template 405 

location do not accumulate further, and thus the procedure assists the tracker to tolerate the 406 

template drift. We presented the visual results related to face based images, so as to 407 

emphasize the tracking performance under the natural head movements and orientation 408 

changes. Our method is particularly useful for face based HCI, such as expression 409 

recognition. 410 

4. Application to human facial expression recognition 411 

Conducting real-time face tracking to examine the facial expressions is precluded by 412 

problems such as head pose orientation, scale variation and at the same time the paucity of 413 

fast processing framework.  On the other hand, face tracking provides a promising tool to 414 

track the initial face position of subject for subsequent frames with less computational 415 

complexity. Meanwhile, the scale and rotation information can also be effectively determined 416 

along with face tracking, which can sufficiently avoid the need of face registration. 417 

In this section, we present the real-time facial expression recognition system based on the 418 

proposed tracker. We have considered a seven-class recognition problem including the neutral 419 

expression, and six prototype expressions, Happy, Sad, Fear, Disgust, Anger and Surprise. 420 

We also present the performance evaluation on publically available facial expression datasets 421 

and also on self-collected videos. 422 

4.1 Facial expression recognition 423 

Generally, a facial expression recognition system involves two key phases: effective facial 424 
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representation and accurate classifier design. 425 

4.1.1 Feature extraction 426 

In our work, we used Gabor filters to extract the facial information from the tracked 427 

face region. Gabor filters are widely accepted in many face based HCI systems, owing to their 428 

robustness against photometric disturbances and invariance to image registration issues 429 

(M.Amin & H. Yan, 2009; Haghighat, Zonouz, & Abdel-Mottaleb, 2015). The Gabor function 430 

in the spatial domain characterizes a Gaussian-shaped envelop modulated by a complex 431 

sinusoidal signal: 432 

        
 

      
     

 

 
      

  
 

  
 

  
  

 

                (16) 433 

A set of Gabor functions with multi-scales and orientations are employed for extracting more 434 

compact and effective image representation. We used 3 scales and 5 orientations of Gabor 435 

function in our experiment to extract the frequency contents of the image. Furthermore, 8-bit 436 

down-sampling is carried out to reduce the neighbourhood pixel redundancy. 437 

4.1.2 Classification 438 

The final stage of the FER system is based on classifier design. We used support 439 

vector machines (SVMs) for generalized performance. SVM is a binary discriminant 440 

classifier which is based on structural risk minimization principle that produces the maximum 441 

margin hyperplane between two classes. As we considered 7-class recognition problem, a 442 

multiclass SVM classifier can be constructed by using the one-against-all strategy (J. Weston 443 

and C. Watkins 1998). Here we briefly present the multiclass SVMs used in our experiments. 444 

Given the training data of size   as;                   where,         feature vector and 445 

           represent the corresponding expression labels. Multiclass SVMs defines only 446 

one optimization problem but constructs seven class rules. So to follow the kth function 447 

  
          to partition training vectors of class   from remaining feature vectors, we 448 
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minimize the following objective function: 449 
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Subject to the constraints: 451 

   
          

    
              

                    (18)                                                        452 

  
                                   

where,   is the mapping function,   penalizes the training errors,             
  is the bias 453 

vector and   is a slack variable, and      
      

      
   , whereas the decision function 454 

can be given by: 455 

                      
                       (19) 456 

After training the multiclass SVMs, a new feature vector from test image is classified 457 

using the equation above to recognize the facial expression.  458 

4.2 Experiments on facial expression recognition 459 

In this work, we used the proposed tracker to track the face location over several benchmark 460 

facial expression video datasets and performed the online facial expression recognition. We 461 

considered three widely used FER datasets, extended Cohn–Kanade dataset (CK+) 462 

(Lucey,Cohn, Kanade, Saragih, Ambadar, & Matthews, 2010), MMI dataset (Pantic, Valstar, 463 

Rademaker & Maat, 2005) and MUG dataset (Aifanti, Niki, Christos, & Anastasios 464 

Delopoulos, 2010). In order to guarantee the generalization performance of the system, one of 465 

the dataset was used to prepare the training images, and the other two datasets were used for 466 

testing. As CK+ contains more subjects and videos, we used it for training. Challenging 467 

subject videos that contain sufficient head rotations from other datasets were used for testing. 468 

Figure 7 shows the tracking result obtained from the proposed tracker on images taken from 469 

the MMI and MUG datasets with apex frames. The second row of Figure 7 demonstrates the 470 

cropping result from the tracker window. It is evident that despite the presence of scale 471 
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variation and head rotations, the cropped images are well aligned in terms of face geometry. 472 

Table 3 presents the result of SVMs in terms of recognition rate against different kernels 473 

used. Apart from Gabor features, we also recorded the recognition rate for histogram based 474 

features based on local binary patterns (LBP) (Zavaschi, Britto, Oliveira & Koerich, 2013). 475 

LBP features can be computed more efficiently than Gabor features, but are more sensitive to 476 

illumination variations and rotations. Gabor features with linear SVMs have the highest 477 

recognition rate compared with other kernels and LBP. 478 

Tracking results from the proposed tracker were used to compare the performance of FER 479 

with the results obtained by other methods. We evaluated the results from several approaches, 480 

including face detector based method (Rahulamathavan, Y., Phan, R. C. W., Chambers, J. A., 481 

& Parish, D. J. 2013), active appearance model based feature detector, (Aifanti, N., & 482 

Delopoulos, A. 2014) and feature point based face model (Kumar, S., Bhuyan, M. K., & 483 

Chakraborty, B. K. 2016). Figure 8 compares the results of 6 expressions on the MUG 484 

database using the leave-one-out validation strategy. The reason for using only 6 expressions 485 

here is that several methods above do not consider the neutral expression. It can be seen that 486 

the results from the proposed method were consistently higher for each expression. For the 487 

surprise expression, our recognition rate is comparable with the feature detection method, 488 

whereas for the fear expression, the margin between our method and the feature detection 489 

method is higher. The overall average recognition rate of our method is also better than all 490 

other algorithms. This fact can be credited by the accurate face registration using our 491 

proposed method, which yields comparatively better feature representation for FER. 492 

4.3 Online experiments 493 

A graphic user interface (GUI) is designed and utilized for conducting online experiments 494 

with videos taken by a camera. Figure 9 shows a snapshot of the GUI. A subject is asked to 495 
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perform expressions in front of the camera and real-time expression recognition is performed. 496 

The figure shows the input frame with the tracking window and corresponding the aligned 497 

and cropped face region. The bottom graph indicates the confidence level of each expression 498 

for a test frame. A higher score indicates the presence of particular expression. The tracking 499 

window is obtained on every frame and is then processed further to obtain the affine 500 

transformed tracked image. Classification is done later and the expression label is generated. 501 

Figure 10 shows the result of proposed tracker on 250 frames of a recorded video. The subject 502 

starts from neutral expression and plays 7 expressions. The top image shows the key frames 503 

of video with expression variation and the tracking window.  It can be seen that the tracker 504 

follows the face region accurately over all 250 frames, despite head rotations. The bottom 505 

curves show the normalized score of each expression. It is interesting to note that, the neutral 506 

class, which is a transition expression between two universal expressions and is played for a 507 

very short time, is also being effectively recognized by the system. The main reason behind 508 

these refined results is the perfect face tracking that reduces the problems of miss alignment 509 

and registration of the face. 510 

Apart from benchmark videos from MMI and MUG datasets, we also tested the proposed 511 

tracker on self-collected videos in order to quantify the recognition performance. Table 4 512 

shows the confusion matrix for 7 expressions associated with these test data of 13 persons in 513 

total 30 videos. As can be seen from the table, the average recognition rate of 94.16 % is 514 

achieved, where diagonal entries indicate the recognition rate of each expression. The surprise 515 

and happy expressions can be recognized with the highest accuracy, while we noticed that sad 516 

and neutral expressions are sometimes difficult to recognize, due to the fact that the sad 517 

expression is highly subject dependent, which sometimes resembles the neutral state. 518 

5. Conclusion 519 

In this paper, we propose a tensor based method to construct the target template appearance 520 
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as a reservoir of 3rd order tensors and consider the object tracking problem in a generative 521 

framework as an online tensor learning task. An effective N-mode SVD based tensor 522 

eigenspace representation is learned online, and the updating procedure is carried out over the 523 

time span. The proposed multi-mode model is demonstrated for object tracking to better deal 524 

with large appearance variations caused by shape deformations, occlusions and drifts. 525 

Experiment comparisons with existing tracking strategies revealed the effectiveness of the 526 

proposed method, especially when the target motion is under rotational changes. Finally, the 527 

task of facial expression recognition is investigated by integrating the proposed tracking 528 

strategy with an expression recognition module. A GUI is developed and used for evaluation 529 

of our method on public and self-prepared videos. Our system can effectively recognize 530 

human facial expressions from videos and streaming camera with encouraging recognition 531 

rate of 94.16% for 7 classes of basic expressions. We believe that the proposed method will 532 

facilitate future development of face based-HCI applications and find useful applications to 533 

other object tracking and recognition systems. 534 
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Highlights 

 

 Visual tracking in videos is an essential component in human computer 

interaction. 

 An online tensor based learning strategy is proposed for visual tracking. 

 The tracking method show superior tracking performance in challenging 

conditions. 

 The proposed tracker delivers the scale and orientation information of the target. 

 Real time facial expression recognition system is presented using proposed 

tracker. 

*Highlights (for review)



                                                                                      1                                                                  tables 

 

Table 1: The incremental N-mode SVD algorithm for updating the tensor based appearance model. 

 

Table 2: Comparison of tracking results obtained using existing trackers and the proposed tensor 

based tracker (TTracker) in terms of position error on seven videos. The best and second best results 

are shown in bold and italic fonts respectively 

Sequences 
  Tracking Methods 

IVT CSK ASLA SCM Frag TTracker 

David 11.44 38.52 5.59 22.13 91.57 5.17 

Fish 18.22 7.32 3.40 6.32 25.21 5.08 

Mhyang 7.44 9.12 2.03 8.85 15.51 1.91 

Twinnings 10.75 10.23 16.73 8.04 22.47 9.24 

Clifbar 59.46 47.54 57.51 31.67 40.83 44.87 

Dudek 10.03 19.76 14.95 27.61 87.70 9.49 

Faceocc1 18.74 17.45 78.16 22.06 51.88 15.98 

Average 19.44 21.42 25.48 18.09 47.88 13.09 

 

 

Table 3: Comparison between Gabor wavelet based features and LBP features in terms of average 

recognition rate for different types of kernels used in the SVM classifier. 

Feature 

Extraction 

Recognition Rate (%) 

SVM 
(linear) 

SVM 
(polynomial) 

SVM 
(RBF) 

Gabor 94.16 92.31 91.04 

LBP 90.87  89.54 92.24 

 

 

 

Algorithm 1:  Incremental  -Mode SVD 

Function: Incremental N-Mode SVD                              

Input: Unfolded core tensor     , projection matrix     , unfolded stacked tensor     , 

unfolded newly added tensor     , forgetting factor   , updated mean   , time t. 

Repeat 

If  t = 0, then: 

    1: Apply HOSVD using eq.(2) to get             

     2:       
  

     
    
       

  

     
    
       the mean of concatenated matrices      and        

    3: t=t+1 

Else: 

    1: Apply N-mode updating strategy: 

           (a) Spatial update (when    ); Eq.(4-7) 

           (b) Temporal update (where    ); Eq.(8-11) 

    2:       
  

     
  
      

  

     
  
     

    3: t=t+1 

End if 

Iteration until the end of video. 

End 

Table(s)
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Table 4: Confusion matrix of recognition rates obtained using linear SVM for seven facial 

expressions.  

 
Average recognition rate = 94.16% 

Angry Disgust Fear Happy Sad Surprise Neutral 

Angry 91.16 5.51 0 0 0 3.33 0 

Disgust 7.84 92.16 0 0 0 0 0 

Fear 0 0 89.67 0 0 6.64 3.69 

Happy 0 0 0 97.18 0 0 2.82 

Sad 0 0 0 0 95.83 0 5.17 

Surprise 0 0 2.66 0 0 97.34 0 

Neutral 0 0 0 0 4.21 0 95.79 
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Fig 1: The architecture of the proposed online spatio-temporal tensor based learning model for visual 

tracking. 

 

 
Fig 2: Tensor unfolding in respective modes and the analogous association with an image in terms of 

slices. 

 

Figure(s)
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Fig 3: Screen shots of tracking results obtained by our method from key frames on face based videos 

in challenging sceneries. 

 

Fig 4: Position errors (pixels) with respect to ground truth and comparison of different trackers on 

face based videos. 
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Fig 5: Screen shots of tracking results obtained by existing trackers in comparison with the proposed 

tensor based tracker (TTracker). 

 

Fig 6: Comparison of different trackers in terms of the precision and success plots of the one pass 

evaluation (OPE) measure. 

 



Figures 

 

4 

 

 

Fig 7: Results obtained by the proposed tracker on key frames taken from sample videos of MMI and 

MUG facial expression database under head rotations and varying expressions (upper row). Images on 

the lower row show cropped faces with rotation corrected face geometry. 

 

Fig 8: Performance comparison of the proposed TTracker based FER with existing facial expression 

recognition methods on MUG dataset. 

 

Fig 9: Screen shot of GUI for expression recognition using the proposed tracker for offline videos as 

well as online ones taken by a camera. 
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Fig 10: Test results of a subject posing facial expressions in front of a live camera. The waveform 

indicates the expression confidence in terms of normalized score for each frame, while the test 

expressions belonging to corresponding key frames along with tracking results are displayed in the 

images above. 




