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A B S T R A C T

Surface parameterization plays a fundamental role in many science and engineering problems.
In particular, as genus-0 closed surfaces are topologically equivalent to a sphere, many spherical
parameterization methods have been developed over the past few decades. However, in practice,
mapping a genus-0 closed surface onto a sphere may result in a large distortion due to their
geometric difference. In this work, we propose a new framework for computing ellipsoidal
conformal and quasi-conformal parameterizations of genus-0 closed surfaces, in which the
target parameter domain is an ellipsoid instead of a sphere. By combining simple conformal
transformations with different types of quasi-conformal mappings, we can easily achieve a large
variety of ellipsoidal parameterizations with their bijectivity guaranteed by quasi-conformal
theory. Numerical experiments are presented to demonstrate the effectiveness of the proposed
framework.

1. Introduction

Surface parameterization, the process of mapping a complicated surface to a simpler domain, is one of the most fundamental tasks
in computer graphics, geometry processing, and shape analysis. To obtain a meaningful and useful parameterization, it is common to
consider minimizing certain distortion criteria in the mapping computation. Among different types of parameterizations, conformal
parameterizations are widely used as they preserve angles and hence the local geometry. Quasi-conformal parameterizations, another
class of surface parameterizations, have been increasingly popular in recent years because of their greater flexibility in handling
not only conformal distortions but also other prescribed constraints. Also, for surfaces with different topologies, different target
parameter domains are used. In particular, as genus-0 closed surfaces are topologically equivalent to the sphere, it is natural to
consider using the unit sphere as the target parameter domain. However, for surfaces with more complex geometry such as an
elongated shape, using the sphere as the parameter domain may induce a large geometric distortion and hence hinder the use of
the parameterization in practical applications.

In this paper, we tackle the problem of computing conformal and quasi-conformal parameterizations of genus-0 closed surfaces
onto an ellipsoid instead of a sphere. Specifically, we develop a framework that utilizes a composition of various conformal and
quasi-conformal mappings to efficiently compute ellipsoidal conformal parameterizations for different genus-0 closed surfaces (see
Fig. 1 for examples). Also, using quasi-conformal theory, we can ensure the bijectivity of the parameterization. With the aid of our
ellipsoidal parameterization method, the overall geometric distortion of the conformal parameterization of genus-0 closed surfaces
can be significantly reduced when compared to the conventional spherical parameterization methods. We then further develop a
method for computing ellipsoidal quasi-conformal parameterization of genus-0 closed surfaces with prescribed landmark constraints.
Altogether, our work provides a set of efficient ellipsoidal parameterization tools for different genus-0 closed surfaces, which can
then be utilized in various applications such as texture mapping, surface registration, surface remeshing, and shape analysis.
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Fig. 1. Ellipsoidal conformal parameterizations obtained by our proposed framework for different genus-0 closed surfaces.

The organization of this paper is as follows. In Section 2, we review the previous works related to our problem. In Section 3,
we introduce the concepts of conformal and quasi-conformal maps. In Section 4, we develop a fast and accurate method for
computing ellipsoidal conformal parameterizations for genus-0 closed surfaces. In Section 5, we extend the proposed method for
computing ellipsoidal quasi-conformal parameterizations with prescribed landmark constraints. In Section 6, numerical experiments
are presented to demonstrate the effectiveness of our proposed methods. We conclude our paper and discuss possible future works
in Section 7.

2. Related works

Over the past several decades, many surface parameterization methods have been developed. We refer the readers to [1–3] for
comprehensive surveys. Below, we briefly review existing methods that are most relevant to our work.

For genus-0 closed surfaces, the most commonly used target parameter domain is the unit sphere S2. Therefore, numerous
works have been devoted to the development of spherical parameterization methods. For spherical conformal parameterization,
Angenent et al. [4,5] proposed a linearization method for computing spherical conformal mappings. In [6], Gu and Yau developed
a method for global conformal parameterization based on Hodge theory. Gu et al. [7] developed a harmonic energy minimization
method for computing spherical conformal mappings. In [8], Sheffer et al. developed a spherical angle-based flattening method for
spherical conformal parameterization. Kharevych et al. [9] proposed a method for spherical conformal parameterization using circle
patterns. In [10], Springborn et al. computed spherical conformal parameterization using discrete conformal equivalence. Later,
several flow-based methods were developed for spherical conformal parameterization, including the surface Ricci flow [11,12],
mean curvature flow [13], and Willmore flow [14]. In [15], Lai et al. proposed a harmonic energy minimization approach for
folding-free spherical conformal parameterization. Choi et al. [16] proposed a fast method for computing spherical conformal
parameterization using quasi-conformal theory. A variant of the method was then developed in [17]. In [18,19], Yueh et al.
developed a conformal energy minimization approach for spherical conformal parameterization. More recently, a parallelizable
spherical conformal parameterization method was developed using partial welding [20].

Besides the above-mentioned spherical conformal parameterization methods, there are also many existing approaches for
spherical parameterizations based on other distortion criteria. For instance, Praun and Hoppe [21] developed a stretch-based method
for spherical parameterization with applications to remeshing. Gotsman et al. [22] developed a spherical parameterization method by
generalizing the barycentric coordinates, which was later improved by Saba et al. [23]. In [24], Zayer et al. developed a spherical
parameterization method using curvilinear coordinate system. Lui et al. [16,25] developed a method for landmark-constrained
spherical parameterizations. In [26], Athanasiadis et al. proposed a feature-preserving spherical parameterization method based on
2
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geometrically constrained optimization. In [27], Wang et al. developed an as-rigid-as-possible method for spherical parameterization.
Later, Nadeem et al. [28] proposed a spherical parameterization method balancing angle and area distortion. In [29], Wang et al.
proposed a method for computing bijective spherical parameterizations with low distortion. In [30,31], Choi et al. developed
methods for computing spherical quasi-conformal parameterizations. In [32], Aigerman et al. proposed an algorithm for spherical
orbifold Tutte embeddings. In [33], Wang et al. developed a local/global approach for spherical parameterization.

In recent years, there has been an increasing interest in exploring new parameter domains for surface parameterization. For
nstance, the unit hemisphere was used as the parameter domain for closed human brain and skull surfaces [34]. Spherical cap
omains have also been used for the conformal or area-preserving parameterization of stone microstructures [35] and anatomical
tructures [36]. Besides, Lin et al. [37] utilized the Jacobi projection for computing mappings of genus-0 closed surfaces onto an
llipsoid. More recently, Shaqfa and van Rees [38] developed a method for parameterizing star-shaped genus-0 objects onto a
pheroid.

. Mathematical background

In this section, we introduce some basic concepts in conformal and quasi-conformal theory. Readers are referred to [39–42] for
ore detail.

.1. Conformal maps

Let C = {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ R} be the complex plane, where 𝑖 is the imaginary number with 𝑖2 = −1, and let C = C ∪ {∞} be the
xtended complex plane. We can express a map 𝑓 ∶ C → C as 𝑓 (𝑧) = 𝑓 (𝑥, 𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑧 = 𝑥 + 𝑖𝑦, and 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)
re two real-valued functions. Suppose the derivative of the map 𝑓 is non-zero everywhere. 𝑓 is said to be a conformal map if it
atisfies the Cauchy–Riemann equations:

𝜕𝑢
𝜕𝑥

= 𝜕𝑣
𝜕𝑦

and 𝜕𝑢
𝜕𝑦

= − 𝜕𝑣
𝜕𝑥
. (1)

The above equations can be rewritten as
𝜕𝑓
𝜕𝑧

= 0, (2)

here
𝜕𝑓
𝜕𝑧

= 𝑓𝑧 =
1
2

(

𝜕𝑓
𝜕𝑥

+ 𝑖
𝜕𝑓
𝜕𝑦

)

. (3)

Note that conformal maps preserve angles and hence the local shapes. However, size is not preserved under conformal maps in
general.

Möbius transformations are a class of conformal mappings ℎ ∶ C → C on the extended complex plane in the following form:

ℎ(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

, (4)

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ C and 𝑎𝑑 − 𝑏𝑐 ≠ 0.
Conformal maps can also be defined between Riemann surfaces. For any Riemann surfaces  and  with metrics 𝐠 and 𝐠 , a

diffeomorphism 𝑓 ∶  →  is said to be conformal if the pull-back metric 𝑓 ∗𝐠 = 𝜆𝐠 for some positive function 𝜆. In particular,
the (north-pole) stereographic projection 𝑃𝑁 ∶ S2 → C is a conformal map from the unit sphere to the extended complex plane
given by:

𝑃𝑁 (𝑋, 𝑌 ,𝑍) = 𝑋
1 −𝑍

+ 𝑌
1 −𝑍

𝑖, (5)

where (𝑋, 𝑌 ,𝑍) ∈ S2 (see Fig. 2 for an illustration). The inverse stereographic projection (𝑃𝑁 )−1 ∶ C → S2 is also a conformal map.
For any 𝑧 = 𝑥 + 𝑦𝑖 ∈ C, we have

(𝑃𝑁 )−1(𝑧) = (𝑃𝑁 )−1(𝑥 + 𝑦𝑖) =
(

2𝑥
1 + 𝑥2 + 𝑦2

,
2𝑦

1 + 𝑥2 + 𝑦2
,
−1 + 𝑥2 + 𝑦2

1 + 𝑥2 + 𝑦2

)

. (6)

Similarly, the south-pole stereographic projection 𝑃 𝑆 ∶ S2 → C and its inverse (𝑃 𝑆 )−1 ∶ C → S2, given by

𝑃 𝑆 (𝑋, 𝑌 ,𝑍) = 𝑋
1 +𝑍

+ 𝑌
1 +𝑍

𝑖, (7)

(𝑃 𝑆 )−1(𝑧) = (𝑃 𝑆 )−1(𝑥 + 𝑦𝑖) =
(

2𝑥
1 + 𝑥2 + 𝑦2

,
2𝑦

1 + 𝑥2 + 𝑦2
,
1 − 𝑥2 − 𝑦2

1 + 𝑥2 + 𝑦2

)

, (8)

are also conformal maps.
3
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Fig. 2. An illustration of the stereographic projection 𝑃𝑁 ∶ S2 → C.

Fig. 3. An illustration of quasi-conformal maps. Under a quasi-conformal map 𝑓 , an infinitesimal circle is mapped to an infinitesimal ellipse with bounded
ccentricity. The maximal magnification, maximal shrinkage, and orientation change are all related to the Beltrami coefficient 𝜇𝑓 .

.2. Quasi-conformal maps

Quasi-conformal maps are a generalization of conformal maps. Mathematically, let 𝑓 ∶ C → C be an orientation-preserving
homeomorphism. 𝑓 is said to be a quasi-conformal map if it satisfies the Beltrami equation:

𝜕𝑓
𝜕𝑧

= 𝜇𝑓 (𝑧)
𝜕𝑓
𝜕𝑧

(9)

or some complex-valued function 𝜇𝑓 with ‖𝜇𝑓‖∞ < 1, where 𝑓𝑧 is given by Eq. (3) and 𝑓𝑧 is given by the following equation:

𝜕𝑓
𝜕𝑧

= 𝑓𝑧 =
1
2

(

𝜕𝑓
𝜕𝑥

− 𝑖
𝜕𝑓
𝜕𝑦

)

. (10)

The complex-valued function 𝜇𝑓 is called the Beltrami coefficient of the map 𝑓 , which encodes important information about the
quasi-conformal distortion of 𝑓 . From Eqs. (1) and (9), it is easy to see that 𝑓 is conformal at a point 𝑝 if and only if 𝜇𝑓 (𝑝) = 0.
Intuitively, conformal mappings map infinitesimal circles to infinitesimal circles, while quasi-conformal maps map infinitesimal
circles to infinitesimal ellipses with bounded eccentricity. More specifically, the maximal magnification factor and maximal shrinkage
factor at a point 𝑝 are given by |

|

𝑓𝑧(𝑝)||
(

1 + |𝜇𝑓 (𝑝)|
)

and |

|

𝑓𝑧(𝑝)||
(

1 − |

|

|

𝜇𝑓 (𝑝)
|

|

|

)

respectively, and the orientation change of the major
xis of the infinitesimal ellipse under 𝑓 is given by arg(𝜇𝑓 (𝑝))∕2 (see Fig. 3 for an illustration). The quasi-conformal dilatation of 𝑓
s given by

𝐾(𝑧) =
1 + |𝜇𝑓 (𝑧)|
1 − |𝜇𝑓 (𝑧)|

. (11)

Besides, the Jacobian 𝐽𝑓 of the mapping 𝑓 is given by

𝐽𝑓 = |𝑓𝑧|
2 (1 − |𝜇𝑓 |

)2 . (12)

Consequently, 𝐽𝑓 is positive everywhere if ‖𝜇𝑓‖∞ < 1. This suggests that the bijectivity of a map is also related to its Beltrami
coefficient.

Moreover, by the Measurable Riemann Mapping Theorem [40], any given Beltrami coefficient can uniquely determine a quasi-
conformal map under some suitable normalization. Computationally, the Linear Beltrami solver (LBS) [43] can be used for efficiently
reconstructing a quasi-conformal map from any given Beltrami coefficient. More specifically, let 𝜇(𝑧) = 𝜌(𝑧) + 𝑖𝜏(𝑧) be the given

eltrami coefficient, where 𝜌, 𝜏 are real-valued functions. The corresponding quasi-conformal map 𝑓 (𝑧) = 𝑓 (𝑥+ 𝑖𝑦) = 𝑢(𝑥, 𝑦)+ 𝑖𝑣(𝑥, 𝑦),
here 𝑢, 𝑣 are real-valued functions, can be obtained by solving the following elliptic PDEs:

{

∇ ⋅ (𝐴∇𝑢) = 0 (13)
4

∇ ⋅ (𝐴∇𝑣) = 0,
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d

where 𝐴 =
(

𝛼1 𝛼2
𝛼2 𝛼3

)

with

𝛼1 =
(𝜌 − 1)2 + 𝜏2

1 − 𝜌2 − 𝜏2
, 𝛼2 = − 2𝜏

1 − 𝜌2 − 𝜏2
, 𝛼3 =

1 + 2𝜌 + 𝜌2 + 𝜏2

1 − 𝜌2 − 𝜏2
. (14)

In the discrete case, the above elliptic PDEs can be discretized as sparse positive definite linear systems and hence can be solved
efficiently (see [43] for more details).

A useful property of the composition of quasi-conformal maps is as follows. Suppose 𝑓 ∶ 𝛺1 ⊂ C → 𝛺2 ⊂ C and 𝑔 ∶ 𝛺2 ⊂ C →
𝛺3 ⊂ C are two quasi-conformal maps. Then, the Beltrami coefficient of the composition 𝑔◦𝑓 is given by the following composition
formula:

𝜇𝑔◦𝑓 =
𝜇𝑓 + 𝑓𝑧

𝑓𝑧
(𝜇𝑔◦𝑓 )

1 + 𝑓𝑧
𝑓𝑧
𝜇𝑓 (𝜇𝑔◦𝑓 )

. (15)

One can also define quasi-conformal maps between Riemann surfaces. For any Riemann surfaces  and  , an orientation-
preserving diffeomorphism 𝑓 ∶  →  is said to be quasi-conformal associated with the Beltrami differential 𝜇(𝑧) 𝑑𝑧𝑑𝑧 if for any
hart (𝑈𝛼 , 𝜙𝛼) on  and any chart (𝑈𝛽 , 𝜓𝛽 ) on  , the composition map 𝑓𝛼𝛽 ∶= 𝜓𝛽◦𝑓◦𝜙−1

𝛼 is quasi-conformal associated with

𝛼
𝑑𝑧𝛼
𝑑𝑧𝛼

. Here, the Beltrami differential is an assignment to each chart (𝑈𝛼 , 𝜙𝛼) of an 𝐿∞ complex-valued function 𝜇𝛼(𝑧𝛼) such that

𝛼(𝑧𝛼)
𝑑𝑧𝛼
𝑑𝑧𝛼

= 𝜇𝛽 (𝑧𝛽 )
𝑑𝑧𝛽
𝑑𝑧𝛽

on the domain also covered by another chart (𝑈𝛽 , 𝜓𝛽 ), where 𝑑𝑧𝛽
𝑑𝑧𝛼

= 𝑑
𝑑𝑧𝛼

𝜙𝛼𝛽 and 𝜙𝛼𝛽 = 𝜙𝛽◦𝜙−1
𝛼 .

4. Fast ellipsoidal conformal map (FECM)

Let  be a genus-0 closed surface discretized in the form of a triangle mesh ( , ), where  is the vertex set and  is the
triangulation. Define 𝑎,𝑏,𝑐 as an ellipsoid with elliptic radii 𝑎, 𝑏, 𝑐:

𝑎,𝑏,𝑐 =
{

(𝑥, 𝑦, 𝑧) ∈ R3 ∶ 𝑥
2

𝑎2
+
𝑦2

𝑏2
+ 𝑧2

𝑐2
= 1

}

, (16)

here 𝑎, 𝑏, 𝑐 > 0 are three positive scalars. Our goal is to obtain an ellipsoidal conformal parameterization 𝑓 ∶  → 𝑎,𝑏,𝑐 .
We first recall the uniformization theorem:

heorem 4.1 (Uniformization Theorem [44]). Every simply connected Riemann surface is conformally equivalent to one of the following:

• The open unit disk;
• The complex plane;
• The Riemann sphere.
In particular, every genus-0 closed surface is conformally equivalent to the unit sphere S2. Therefore, for any given genus-0

losed surface  and any given elliptic radii 𝑎, 𝑏, 𝑐 > 0, we can always find two conformal maps 𝑓1 ∶  → S2 and 𝑓2 ∶ 𝑎,𝑏,𝑐 → S2.
ow, it is easy to see that the composition map 𝑓−1

2 ◦𝑓1 is a conformal map from  to 𝑎,𝑏,𝑐 . Consequently, we have the following
heoretical guarantee for our ellipsoidal conformal parameterization framework:

heorem 4.2 (Existence of Ellipsoidal Conformal Parameterization). For any given genus-0 closed surface  and any given elliptic radii
, 𝑏, 𝑐 > 0, there exists an ellipsoidal conformal parameterization 𝑓 ∶  → 𝑎,𝑏,𝑐 .

With the above theoretical guarantee, in this section we focus on the development of a fast and accurate method for computing
llipsoidal conformal parameterizations. Moreover, note that the above-mentioned composition map 𝑓−1

2 ◦𝑓1 is not the only
ossible conformal map between  and 𝑎,𝑏,𝑐 . Therefore, it is natural to search for an optimal ellipsoidal parameterization that
urther reduces certain geometric distortions in addition to being conformal. The procedure of our proposed ellipsoidal conformal
arameterization algorithm is introduced in the following sections.

.1. Initial spherical conformal parameterization

We start by applying the spherical conformal parameterization method in [16] to map the given genus-0 closed surface
onto the unit sphere S2. More specifically, the method produces a spherical conformal mapping 𝜑 ∶  → S2 with 𝜑 =

𝑃 𝑆 )−1◦𝜂◦𝑃 𝑆◦(𝑃𝑁 )−1◦𝜉, where 𝜉 ∶  → C is a harmonic flattening map of the surface onto the plane, 𝑃𝑁 is the north-pole
stereographic projection given by Eq. (5), 𝑃 𝑆 is the south-pole stereographic projection given by Eq. (7), and 𝜂 ∶ C → C is a
suitably constructed quasi-conformal map (see [16] for more details). In practice, note that numerical errors may be induced in the
computation of the composition 𝑃 𝑆◦(𝑃𝑁 )−1, as a large number of points may be mapped to a small region onto the sphere under
(𝑃𝑁 )−1 for complex geometries. To alleviate this issue, we obtain the following explicit formula for the composition 𝑃 𝑆◦(𝑃𝑁 )−1 and
irectly use it in our computation:

(

𝑃 𝑆◦(𝑃𝑁 )−1
)

(𝑧) =
(

𝑃 𝑆◦(𝑃𝑁 )−1
)

(𝑥 + 𝑖𝑦) =
2𝑥

1+𝑥2+𝑦2

1 + −1+𝑥2+𝑦2
+ 𝑖

2𝑦
1+𝑥2+𝑦2

1 + −1+𝑥2+𝑦2
= 𝑥
𝑥2 + 𝑦2

+ 𝑖
𝑦

𝑥2 + 𝑦2
= 𝑧

|𝑧|2
. (17)
5
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This allows us to avoid unnecessary computations on the sphere at the intermediate steps of the spherical parameterization.
It is noteworthy that for optimal computational performance, the method in [16] always searches for the most regular triangle

lement of  and maps it to the north pole in the spherical parameterization. Because of the symmetry of the sphere, this step will
not lead to any bias in the spherical parameterization result. However, as the target ellipsoid 𝑎,𝑏,𝑐 in our ellipsoidal parameterization
problem is not rotationally symmetric in general, we cannot assume that the most regular triangle will always correspond to the
north pole of the ellipsoid. Therefore, before moving on to the subsequent procedures, we need an extra step to correct the position
of the two poles in the spherical parameterization.

To achieve this, we first apply the stereographic projection 𝑃𝑁 ∶ S2 → C using Eq. (5) to map the spherical parameterization
result onto the plane. In practice, we have 𝑃𝑁◦𝜑 = 𝑃𝑁◦(𝑃 𝑆 )−1◦𝜂◦𝑃 𝑆◦(𝑃𝑁 )−1◦𝜉, in which 𝑃𝑁◦(𝑃 𝑆 )−1 can be explicitly expressed
s

(

𝑃𝑁◦(𝑃 𝑆 )−1
)

(𝑧) =
(

𝑃𝑁◦(𝑃 𝑆 )−1
)

(𝑥 + 𝑖𝑦) =
2𝑥

1+𝑥2+𝑦2

1 − 1−𝑥2−𝑦2
1+𝑥2+𝑦2

+ 𝑖
2𝑦

1+𝑥2+𝑦2

1 − 1−𝑥2−𝑦2
1+𝑥2+𝑦2

= 𝑥
𝑥2 + 𝑦2

+ 𝑖
𝑦

𝑥2 + 𝑦2
= 𝑧

|𝑧|2
. (18)

gain, this procedure allows us to avoid unnecessary computation on the sphere and reduce the numerical errors induced by the
rojections. Next, we consider a Möbius transformation 𝑔 ∶ C → C in the form

𝑔(𝑧) = 𝑒𝑖𝜃
𝑧 − 𝑧0
𝑧 − 𝑧1

, (19)

where 𝑧0, 𝑧1 ∈ C and 𝜃 ∈ [−𝜋, 𝜋) are constants. Note that the map 𝑔 maps two prescribed points 𝑧0 and 𝑧1 on C to 0 and ∞
respectively. For our ellipsoidal parameterization problem, here we can choose 𝑧0 and 𝑧1 to be the two points that correspond to
the two desired polar points on . Then, under the mapping 𝑔, the two points will be mapped to 0 and ∞ respectively. Consequently,
nder the inverse stereographic projection (𝑃𝑁 )−1 ∶ C → S2, the two points will be mapped to the south pole and the north pole of
he unit sphere respectively. The other parameter 𝜃 provides us with the flexibility of fixing the rotational degree of freedom of the
llipsoidal parameterization. In practice, we can set

𝜃 = −arg
(

𝑧2 − 𝑧0
𝑧2 − 𝑧1

)

(20)

for some point 𝑧2 ∈ C that corresponds to a point on  which is desired to be aligned with the positive 𝑥-axis in the resulting
arameterization. Then, under the Möbius transformation 𝑔, we will have arg(𝑔(𝑧2)) = 0 and hence 𝑔(𝑧2) lies on the positive real
xis. Consequently, it will be mapped to a point on the positive 𝑥-axis under the inverse stereographic projection (𝑃𝑁 )−1.

Overall, we obtain a spherical conformal parameterization (𝑃𝑁 )−1◦𝑔◦𝑃𝑁◦𝜑. We remark that the subsequent steps involve
rojecting the spherical parameterization back to the extended complex plane and performing some further operations on the plane.
herefore, for simplicity, here we can just keep the mapping (𝑔◦𝑃𝑁◦𝜑) ∶  → C and ignore the last inverse stereographic projection

step for now.

4.2. Optimal ellipsoidal conformal parameterization

After getting the mapping (𝑔◦𝑃𝑁◦𝜑) ∶  → C, we consider mapping it to the target ellipsoid 𝑎,𝑏,𝑐 .
We first define the (north-pole) ellipsoidal stereographic projection as a map 𝑃𝑁𝑎,𝑏,𝑐 ∶ 𝑎,𝑏,𝑐 → C from the ellipsoid 𝑎,𝑏,𝑐 to the

extended complex plane, with the explicit formula given by:

𝑃𝑁𝑎,𝑏,𝑐 (𝑋, 𝑌 ,𝑍) =
𝑋∕𝑎

1 −𝑍∕𝑐
+

𝑌 ∕𝑏
1 −𝑍∕𝑐

𝑖, (21)

where (𝑋, 𝑌 ,𝑍) is a point on 𝑎,𝑏,𝑐 . Note that 𝑃𝑁𝑎,𝑏,𝑐 maps (±𝑎, 0, 0), (0,±𝑏, 0), (0, 0, 𝑐) and (0, 0,−𝑐) to ±1, ±𝑖, ∞ and 0 respectively, and
so geometrically 𝑃𝑁𝑎,𝑏,𝑐 is not exactly a perspective projection of the ellipsoid through the north pole as in Fig. 2. Nevertheless, it is
easy to see that for (𝑎, 𝑏, 𝑐) = (1, 1, 1) we have 𝑃𝑁𝑎,𝑏,𝑐 = 𝑃 , which indicates that the ordinary stereographic projection is a special case
of the ellipsoidal stereographic projection. Moreover, one can check that 𝑃𝑁𝑎,𝑏,𝑐 is a bijective mapping for any given 𝑎, 𝑏, 𝑐 > 0. In fact,
the inverse (north-pole) ellipsoidal stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )

−1 ∶ C → 𝑎,𝑏,𝑐 can be expressed as follows. For any 𝑧 = 𝑥 + 𝑦𝑖 ∈ C,
we have

(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧) = (𝑃𝑁𝑎,𝑏,𝑐 )

−1(𝑥 + 𝑦𝑖) =
(

2𝑎𝑥
1 + 𝑥2 + 𝑦2

,
2𝑏𝑦

1 + 𝑥2 + 𝑦2
,
𝑐(−1 + 𝑥2 + 𝑦2)
1 + 𝑥2 + 𝑦2

)

. (22)

Note that by applying the inverse ellipsoidal stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )
−1 ∶ C → 𝑎,𝑏,𝑐 , we can already get an ellipsoidal

parameterization
(

(𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝑔◦𝑃𝑁◦𝜑

)

∶  → 𝑎,𝑏,𝑐 . However, analogous to the issue in spherical parameterizations [16], the above-
entioned steps may lead to an uneven distribution of points on the ellipsoid. Therefore, we follow the idea in [16] to improve the
oint distribution in the ellipsoidal parameterization via an extra step of rescaling the planar parameterization result.

To achieve this, we also need the notion of the ellipsoidal stereographic projection with respect to the south pole as well as the
nverse of this projection. More specifically, we define the south-pole ellipsoidal stereographic projection as a map 𝑃 𝑆𝑎,𝑏,𝑐 ∶ 𝑎,𝑏,𝑐 → C

from the ellipsoid 𝑎,𝑏,𝑐 to the extended complex plane:

𝑃 𝑆 (𝑋, 𝑌 ,𝑍) =
𝑋∕𝑎

+
𝑌 ∕𝑏

𝑖, (23)
6

𝑎,𝑏,𝑐 1 +𝑍∕𝑐 1 +𝑍∕𝑐
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where (𝑋, 𝑌 ,𝑍) ∈ 𝑎,𝑏,𝑐 . Similarly, we define the inverse south-pole ellipsoidal stereographic projection (𝑃 𝑆𝑎,𝑏,𝑐 )
−1 ∶ C → 𝑎,𝑏,𝑐 as follows:

or any 𝑧 = 𝑥 + 𝑦𝑖 ∈ C, we have

(𝑃 𝑆𝑎,𝑏,𝑐 )
−1(𝑧) = (𝑃 𝑆𝑎,𝑏,𝑐 )

−1(𝑥 + 𝑦𝑖) =
(

2𝑎𝑥
1 + 𝑥2 + 𝑦2

,
2𝑏𝑦

1 + 𝑥2 + 𝑦2
,
−𝑐(−1 + 𝑥2 + 𝑦2)

1 + 𝑥2 + 𝑦2

)

. (24)

Now, we establish an invariance result:

heorem 4.3. Let 𝑇1 and 𝑇2 be two triangles on C. The product of the perimeters of 𝑇1 and
(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇2) is invariant under any
rbitrary scaling of 𝑇1 and 𝑇2.

roof. Denote the vertices of 𝑇1 and 𝑇2 by {𝑝𝑖}3𝑖=1 and {𝑞𝑖}3𝑖=1 respectively. For any 𝑧 = 𝑥 + 𝑖𝑦, we have
(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑧) =
(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑥 + 𝑖𝑦)

= 𝑃 𝑆𝑎,𝑏,𝑐

(

2𝑎𝑥
1 + 𝑥2 + 𝑦2

,
2𝑏𝑦

1 + 𝑥2 + 𝑦2
,
𝑐(−1 + 𝑥2 + 𝑦2)
1 + 𝑥2 + 𝑦2

)

=
2𝑎𝑥

1+𝑥2+𝑦2 ∕𝑎

1 + 𝑐(−1+𝑥2+𝑦2)
1+𝑥2+𝑦2 ∕𝑐

+ 𝑖
2𝑏𝑦

1+𝑥2+𝑦2 ∕𝑏

1 + 𝑐(−1+𝑥2+𝑦2)
1+𝑥2+𝑦2 ∕𝑐

= 𝑥
𝑥2 + 𝑦2

+ 𝑖
𝑦

𝑥2 + 𝑦2
= 𝑧

|𝑧|2
.

(25)

Hence, we have

Perimeter(𝑇1) =
∑

1≤𝑖<𝑗≤3
|𝑝𝑖 − 𝑝𝑗 | (26)

and

Perimeter
((

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇2)
)

=
∑

1≤𝑖<𝑗≤3

|

|

|

|

|

|

𝑞𝑖
|𝑞𝑖|

2
−

𝑞𝑗
|𝑞𝑗 |

2

|

|

|

|

|

|

. (27)

Now suppose 𝑇1 and 𝑇2 are scaled by an arbitrary factor 𝑘. We have

Perimeter(𝑘𝑇1) × Perimeter
((

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑘𝑇2)
)

=

(

∑

1≤𝑖<𝑗≤3
|𝑘𝑝𝑖 − 𝑘𝑝𝑗 |

)(

∑

1≤𝑖<𝑗≤3

|

|

|

|

|

|

𝑘𝑞𝑖
|𝑘𝑞𝑖|

2
−

𝑘𝑞𝑗
|𝑘𝑞𝑗 |

2

|

|

|

|

|

|

)

=

(

𝑘
∑

1≤𝑖<𝑗≤3
|𝑝𝑖 − 𝑝𝑗 |

)(

1
𝑘

∑

1≤𝑖<𝑗≤3

|

|

|

|

|

|

𝑞𝑖
|𝑞𝑖|

2
−

𝑞𝑗
|𝑞𝑗 |

2

|

|

|

|

|

|

)

=

(

∑

1≤𝑖<𝑗≤3
|𝑝𝑖 − 𝑝𝑗 |

)(

∑

1≤𝑖<𝑗≤3

|

|

|

|

|

|

𝑞𝑖
|𝑞𝑖|

2
−

𝑞𝑗
|𝑞𝑗 |

2

|

|

|

|

|

|

)

=Perimeter(𝑇1) × Perimeter
((

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇2)
)

.

(28)

Hence, the product of the two perimeters is invariant. ■

We remark that using a similar argument, we can show that the product of Area(𝑇1) and Area
((

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇2)
)

is also
nvariant.

Motivated by Theorem 4.3, we consider improving the point distribution on the ellipsoidal parameterization by rescaling the
lanar parameterization 𝑔◦𝑃𝑁◦𝜑 using an optimal parameter. Specifically, we consider the north pole triangle 𝑇𝑁 and the south pole
riangle 𝑇𝑆 in 𝑔◦𝑃𝑁◦𝜑, which correspond to the outermost triangle and the innermost triangle containing the origin. By Theorem 4.3,
he product of the perimeters of 𝑇𝑁 and

(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇𝑆 ) is invariant under arbitrary scaling of the two triangles. Now, we
escale the entire planar parameterization 𝑔◦𝑃𝑁◦𝜑 by a factor

𝑘 =

√

Perimeter(𝑇𝑁 ) × Perimeter(
(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑇𝑆 ))

Perimeter(𝑇𝑁 )
. (29)

Then, 𝑘𝑇𝑁 and
(

𝑃 𝑆𝑎,𝑏,𝑐◦(𝑃
𝑁
𝑎,𝑏,𝑐 )

−1
)

(𝑘𝑇𝑆 ) will have the same perimeter. We then apply the inverse north-pole ellipsoidal stereo-
graphic projection to the rescaled planar parameterization to obtain an ellipsoidal parameterization (𝑃𝑁𝑎,𝑏,𝑐 )

−1◦𝑘(𝑔◦𝑃𝑁◦𝜑) ∶  →

. Because of the above rescaling step, the two polar triangles in the ellipsoidal parameterization will have similar sizes.
7

𝑎,𝑏,𝑐
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4.3. Quasi-conformal composition

Unlike the ordinary stereographic projection, the ellipsoidal stereographic projections 𝑃𝑁𝑎,𝑏,𝑐 and 𝑃 𝑆𝑎,𝑏,𝑐 are not conformal in
eneral. However, we can apply the idea of quasi-conformal composition to correct the distortion and achieve a conformal projection
f the ellipsoid.

Specifically, we search for another quasi-conformal map 𝜓 ∶ C → C with the same Beltrami coefficient as (𝑃𝑁𝑎,𝑏,𝑐 )
−1:

𝜓 = 𝐋𝐁𝐒
(

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
)

, (30)

here 𝐋𝐁𝐒(⋅) denotes the Linear Beltrami solver method in [43] and 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
denotes the Beltrami coefficient of (𝑃𝑁𝑎,𝑏,𝑐 )

−1. Here,
hile the codomain of (𝑃𝑁𝑎,𝑏,𝑐 )

−1 is in R3 instead of R2, we can still use the following metric-based formulation to compute the
eltrami coefficient 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1 :

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
= 𝐸 − 𝐺 + 2𝑖𝐹

𝐸 + 𝐺 + 2
√

𝐸𝐺 − 𝐹 2
, (31)

where
(

𝐸 𝐹
𝐹 𝐺

)

is the first fundamental form. More explicitly, from Eq. (22), we have

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1

𝜕𝑥
=
(

2𝑎(−𝑥2 + 𝑦2 + 1)
(1 + 𝑥2 + 𝑦2)2

,
−4𝑏𝑥𝑦

(1 + 𝑥2 + 𝑦2)2
, 4𝑐𝑥
(1 + 𝑥2 + 𝑦2)2

)

(32)

and
𝜕(𝑃𝑁𝑎,𝑏,𝑐 )

−1

𝜕𝑦
=
(

−4𝑎𝑥𝑦
(1 + 𝑥2 + 𝑦2)2

,
2𝑏(𝑥2 − 𝑦2 + 1)
(1 + 𝑥2 + 𝑦2)2

,
4𝑐𝑦

(1 + 𝑥2 + 𝑦2)2

)

, (33)

and hence

𝐸 =

⟨

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1

𝜕𝑥
,
𝜕(𝑃𝑁𝑎,𝑏,𝑐 )

−1

𝜕𝑥

⟩

=
4𝑎2(−𝑥2 + 𝑦2 + 1)2 + 16𝑏2𝑥2𝑦2 + 16𝑐2𝑥2

(1 + 𝑥2 + 𝑦2)4
, (34)

𝐹 =

⟨

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1

𝜕𝑥
,
𝜕(𝑃𝑁𝑎,𝑏,𝑐 )

−1

𝜕𝑦

⟩

=
−8𝑎2𝑥𝑦(−𝑥2 + 𝑦2 + 1) − 8𝑏2𝑥𝑦(𝑥2 − 𝑦2 + 1) + 16𝑐2𝑥𝑦

(1 + 𝑥2 + 𝑦2)4
, (35)

𝐺 =

⟨

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1

𝜕𝑦
,
𝜕(𝑃𝑁𝑎,𝑏,𝑐 )

−1

𝜕𝑦

⟩

=
16𝑎2𝑥2𝑦2 + 4𝑏2(𝑥2 − 𝑦2 + 1)2 + 16𝑐2𝑦2

(1 + 𝑥2 + 𝑦2)4
. (36)

Using Eq. (31) and (34)–(36), the Beltrami coefficient 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1 can be explicitly calculated at every point (𝑥, 𝑦) on the plane. In
ractice, the computation of the LBS method requires the Beltrami coefficient on the triangular faces. We can define 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1 on
very triangular face 𝑇 = [𝑝1, 𝑝2, 𝑝3] on the plane as

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
(𝑇 ) =

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
(𝑝1) + 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1

(𝑝2) + 𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
(𝑝3)

3
, (37)

here 𝑝1 = (𝑥1, 𝑦1), 𝑝2 = (𝑥2, 𝑦2), 𝑝3 = (𝑥3, 𝑦3) are the three vertices of 𝑇 . Now, since 𝜇𝜓◦𝜓−1 = −
(

𝜓−1
𝑧 ∕𝜓−1

𝑧

)

𝜇𝜓−1 , we have

𝜇𝜓−1 +
𝜓−1
𝑧

𝜓−1
𝑧

(

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
◦𝜓−1

)

= 𝜇𝜓−1 +
𝜓−1
𝑧

𝜓−1
𝑧

(𝜇𝜓◦𝜓−1) = 𝜇𝜓−1 +
𝜓−1
𝑧

𝜓−1
𝑧

(

−
(

𝜓−1
𝑧 ∕𝜓−1

𝑧

)

𝜇𝜓−1

)

= 𝜇𝜓−1 − 𝜇𝜓−1 = 0. (38)

Hence, by the composition formula in Eq. (15), we have

𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1◦𝜓−1 =
𝜇𝜓−1 + 𝜓−1

𝑧
𝜓−1
𝑧

(𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1
◦𝜓−1)

1 + 𝜓−1
𝑧
𝜓−1
𝑧
𝜇𝜓−1 (𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1

◦𝜓−1)
= 0

1 + 𝜓−1
𝑧
𝜓−1
𝑧
𝜇𝜓−1 (𝜇(𝑃𝑁𝑎,𝑏,𝑐 )−1

◦𝜓−1)
= 0. (39)

herefore, (𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝜓−1 is conformal. In other words, (𝑃𝑁𝑎,𝑏,𝑐 )

−1◦𝜓−1 gives a conformal inverse projection from the extended complex
lane C to the ellipsoid 𝑎,𝑏,𝑐 .

Combining all the above-mentioned procedures, the final ellipsoidal conformal parameterization is given by:

𝑓 = (𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝜓−1◦𝑘◦𝑔◦𝑃𝑁◦𝜑. (40)

It is noteworthy that the stenographic projection 𝑃𝑁 , the Möbius transformation 𝑔, the rescaling 𝑘, and the inverse ellipsoidal
stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )

−1 are naturally bijective. Also, the bijectivity of the initial parameterization 𝜑 and the quasi-
conformal map 𝜓−1 is guaranteed by quasi-conformal theory. Therefore, the overall mapping 𝑓 is also bijective. The proposed
8

fast ellipsoidal conformal map (FECM) algorithm is summarized in Algorithm 1.
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Algorithm 1: Fast ellipsoidal conformal map (FECM) of genus-0 closed surfaces.
Input: A genus-0 closed triangulated surface  and the target elliptic radii 𝑎, 𝑏, 𝑐.
Output: An ellipsoidal conformal parameterization 𝑓 ∶  → 𝑎,𝑏,𝑐 .

1 Compute a spherical conformal parameterizations 𝜑 ∶  → S2 using [16];
2 Apply the stereographic projection 𝑃𝑁 ∶ S2 → C using Eq. (5) to map the spherical parameterization onto the plane;
3 Apply a Möbius transformation 𝑔 ∶ C → C using Eq. (19);
4 Apply the balancing scheme using the scaling factor 𝑘 in Eq. (29);
5 Compute a quasi-conformal map 𝜓 ∶ C → C obtained using Eq. (30);
6 Compose the inverse ellipsoidal stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )

−1 in Eq. (22) with 𝜓−1 to form a conformal inverse
projection;

7 The final ellipsoidal conformal parameterization is given by 𝑓 = (𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝜓−1◦𝑘◦𝑔◦𝑃𝑁◦𝜑;

4.4. Optimizing the shape of the ellipsoidal domain

In the above FECM algorithm, the shape of the target ellipsoid (i.e. the values of the elliptic radii 𝑎, 𝑏, 𝑐) is prescribed as an input.
However, in some situations, it may be more desirable to determine the values of 𝑎, 𝑏, 𝑐 automatically. In this section, we develop
an extension of Algorithm 1 with the optimal values of 𝑎, 𝑏, 𝑐 automatically determined throughout the computation.

4.4.1. Initializing the elliptic radii defined using a bounding box
A simple way to obtain a suitable initial guess of the elliptic radii (𝑎, 𝑏, 𝑐) = (𝑎0, 𝑏0, 𝑐0) is to consider a bounding box of the given

surface . Specifically, we first zero-center  and then rotate it to align it with the coordinate axes. We can then initialize the
shape of the ellipsoid using the bounding box with side lengths 𝑥max − 𝑥min, 𝑦max − 𝑦min, and 𝑧max − 𝑧min, where 𝑥max, 𝑦max, 𝑧max are
he maximum 𝑥, 𝑦, 𝑧-coordinates of the surface and 𝑥min, 𝑦min, 𝑧min are the minimum 𝑥, 𝑦, 𝑧-coordinates. To remove the effect of size
n the subsequent optimization process, we can further normalize 𝑎0, 𝑏0, 𝑐0 as follows:

𝑎0 =
𝑥max − 𝑥min

𝐾
, 𝑏0 =

𝑦max − 𝑦min
𝐾

, 𝑐0 =
𝑧max − 𝑧min

𝐾
, (41)

where 𝐾 = 1
3

(

(𝑥max − 𝑥min) + (𝑦max − 𝑦min) + (𝑧max − 𝑧min)
)

is the average value of the bounding box side lengths.

4.4.2. Optimizing the elliptic radii based on area distortion
Note that by the properties of the mappings involved in Algorithm 1, the resulting ellipsoidal parameterization is conformal

for any input elliptic radii theoretically. However, the parameterization is not necessarily area-preserving in general. It is therefore
natural to search for an optimal set of elliptic radii such that the area distortion of the parameterization is minimized. Here, we
consider using the logged area ratio [20] to assess the area distortion of the parameterization 𝑓 :

𝑑area(𝑇 ) = log
(Area(𝑓 (𝑇 ))∕∑𝑇 ′∈ Area(𝑓 (𝑇 ′))

Area(𝑇 )∕∑𝑇 ′∈ Area(𝑇 ′)

)

, (42)

here 𝑇 ∈  is a triangular face in the given surface mesh, 𝑓 (𝑇 ) is the corresponding triangular face in the parameterization 𝑓 ,
nd the two summations ∑

𝑇 ′∈ Area(𝑓 (𝑇 ′)) and ∑

𝑇 ′∈ Area(𝑇 ′) are normalization factors. It is easy to see that 𝑑area = 0 if and only
f the area of every face is perfectly preserved under the mapping 𝑓 . We can then define the area distortion energy as

𝐸area = 1
| |

∑

𝑇∈
(𝑑area(𝑇 ))2 (43)

and minimize it with respect to 𝑎, 𝑏, 𝑐.
More specifically, we first follow the procedure in Algorithm 1 and compute a parameterization 𝑓0 = (𝑃𝑁𝑎0 ,𝑏0 ,𝑐0 )

−1◦𝜓−1◦𝑘◦𝑔◦𝑃𝑁◦𝜑
sing the initial elliptic radii (𝑎, 𝑏, 𝑐) = (𝑎0, 𝑏0, 𝑐0). We then update the elliptic radii iteratively based on −∇𝐸area. Here, note

that the initial spherical conformal parameterization 𝜑, the stereographic projection 𝑃𝑁 , the Möbius transformation 𝑔, and the
escaling 𝑘 are all independent of (𝑎, 𝑏, 𝑐), and so we do not need to repeat their computation. Once we obtain the new mappings
n the remaining quasi-conformal composition step based on the updated elliptic radii (𝑎𝑛, 𝑏𝑛, 𝑐𝑛), we have a new parameterization
𝑛 = (𝑃𝑁𝑎𝑛 ,𝑏𝑛 ,𝑐𝑛 )

−1◦𝜓−1◦𝑘◦𝑔◦𝑃𝑁◦𝜑. We can then replace 𝑛 with 𝑛 + 1 and repeat the above process until convergence.
To obtain the gradient −∇𝐸area, we first note that ∑

𝑇 ′∈ Area(𝑓 (𝑇 ′)) should be close to the total surface area of the target
llipsoid 𝑎,𝑏,𝑐 , which can be approximated using the Knud Thomsen’s formula (see also [45]):

𝐴 ≈ 4𝜋
(𝑎𝑝𝑏𝑝 + 𝑏𝑝𝑐𝑝 + 𝑐𝑝𝑎𝑝

3

)1∕𝑝
, (44)

where 𝑝 ≈ 1.6075. It is easy to see that

𝜕𝐴 = 4𝜋 𝑎𝑝−1(𝑏𝑝 + 𝑐𝑝) (𝑎𝑝𝑏𝑝 + 𝑏𝑝𝑐𝑝 + 𝑐𝑝𝑎𝑝)
1
𝑝−1 , (45)
9
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𝜕𝐴
𝜕𝑏

= 4𝜋
31∕𝑝

𝑏𝑝−1(𝑎𝑝 + 𝑐𝑝) (𝑎𝑝𝑏𝑝 + 𝑏𝑝𝑐𝑝 + 𝑐𝑝𝑎𝑝)
1
𝑝−1 , (46)

𝜕𝐴
𝜕𝑐

= 4𝜋
31∕𝑝

𝑐𝑝−1(𝑎𝑝 + 𝑏𝑝) (𝑎𝑝𝑏𝑝 + 𝑏𝑝𝑐𝑝 + 𝑐𝑝𝑎𝑝)
1
𝑝−1 . (47)

econd, note that the energy 𝐸area can be simplified as follows:

𝐸area = 1
| |

∑

𝑇∈

⎛

⎜

⎜

⎜

⎝

log

⎛

⎜

⎜

⎜

⎝

Area
(

(𝑃𝑁𝑎,𝑏,𝑐 )
−1([𝑧𝑖, 𝑧𝑗 , 𝑧𝑘])

)

∕𝐴

Area(𝑇 )∕∑𝑇 ′∈ Area(𝑇 ′)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

2

, (48)

where [𝑧𝑖, 𝑧𝑗 , 𝑧𝑘] is the triangle corresponding to 𝑇 right before the final inverse ellipsoidal stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )
−1. From

Eq. (22), we have

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧)

𝜕𝑎
=
(

2Re(𝑧)
1 + |𝑧|2

, 0, 0
)

, (49)

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧)

𝜕𝑏
=
(

0,
2Im(𝑧)
1 + |𝑧|2

, 0
)

, (50)

𝜕(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧)

𝜕𝑐
=
(

0, 0,
−1 + |𝑧|2

1 + |𝑧|2

)

. (51)

Now, note that the area of the triangle (𝑃𝑁𝑎,𝑏,𝑐 )
−1([𝑧𝑖, 𝑧𝑗 , 𝑧𝑘]) can be expressed in terms of the lengths of its edges

[

(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧𝑖), (𝑃𝑁𝑎,𝑏,𝑐 )

−1(𝑧𝑗 )
]

,
[

(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧𝑗 ), (𝑃𝑁𝑎,𝑏,𝑐 )

−1(𝑧𝑘)
]

,
[

(𝑃𝑁𝑎,𝑏,𝑐 )
−1(𝑧𝑘), (𝑃𝑁𝑎,𝑏,𝑐 )

−1(𝑧𝑖)
]

, and hence we can easily get the partial deriva-
tives of the area term with respect to 𝑎, 𝑏, 𝑐. Based on the above results, we can compute ∇𝐸area and perform gradient descent with:

(𝑎𝑛+1, 𝑏𝑛+1, 𝑐𝑛+1) = (𝑎𝑛, 𝑏𝑛, 𝑐𝑛) − 𝛾∇𝐸area(𝑎𝑛, 𝑏𝑛, 𝑐𝑛), (52)

here 𝛾 is the step size. We can then repeat the mapping procedure until the result converges, thereby getting an ellipsoidal
onformal parameterization with optimized elliptic radii.

. Fast ellipsoidal quasi-conformal map (FEQCM)

Besides conformal parameterization, some prior spherical mapping works are capable of achieving quasi-conformal parameter-
zations satisfying different prescribed constraints [16,30]. It is natural to ask whether we can obtain ellipsoidal quasi-conformal
arameterizations for genus-0 closed surfaces analogously.

Here, we develop a method for computing ellipsoidal quasi-conformal parameterizations with prescribed landmark constraints.
pecifically, let  be a genus-0 closed surface. Our goal is to find an optimal ellipsoidal quasi-conformal parameterization
∶  → 𝑎,𝑏,𝑐 with a set of prescribed landmark constraints {𝑝𝑖}𝑚𝑖=1 ⊂  ↔ {𝑞𝑖}𝑚𝑖=1 ⊂ 𝑎,𝑏,𝑐 such that the mapped positions

(𝑝𝑖) are close to the target positions 𝑞𝑖 for all 𝑖 = 1, 2,… , 𝑚.
To begin, we follow the first few steps in the above-mentioned FECM method to apply the method in [16] to get a spherical

onformal parameterizations 𝜑 ∶  → S2, followed by the stereographic projection 𝑃𝑁 ∶ S2 → C using Eq. (5), a Möbius
transformation 𝑔 ∶ C → C using Eq. (19), and the balancing scheme with the scaling factor 𝑘 in Eq. (29).

Now, to obtain a quasi-conformal parameterization satisfying the given landmark matching conditions, we introduce a new step
of computing a planar quasi-conformal map 𝛷 ∶ C → C in the ellipsoidal parameterization process. More specifically, here we apply
he FLASH method [16] to solve for a landmark-aligned optimized harmonic map 𝛷 with

𝛷 = argmin
(

∫ |∇𝜙|2 + 𝜆
𝑚
∑

𝑖=1
|𝜙(𝑝𝑖) − 𝑞𝑖|

2

)

, (53)

here 𝜆 > 0 is a weighting factor, and {𝑝𝑖}𝑚𝑖=1, {𝑞𝑖}
𝑚
𝑖=1 are the landmarks on C associated with the given landmarks on  and

𝑎,𝑏,𝑐 respectively. In particular, by changing the value of 𝜆, we can achieve a balance between the landmark mismatch and the
onformal distortion. If a smaller 𝜆 is used, the mapping will be closer to conformal while the landmark mismatch will be larger. If
larger 𝜆 is used, the mapping will become less conformal but the landmark mismatch will be reduced. The method then further

nsures the bijectivity of the mapping 𝛷 via an iterative process of modifying the Beltrami coefficient of 𝛷 and reconstructing a
ew quasi-conformal map using the LBS method.

Once we have obtained a quasi-conformal map 𝛷 from the above-mentioned process, we can perform the remaining quasi-
onformal composition step as in Algorithm 1. Finally, the resulting ellipsoidal quasi-conformal parameterization is given by:

𝑓 = (𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝜓−1◦𝛷◦𝑘◦𝑔◦𝑃𝑁◦𝜑. (54)

Analogous to the FECM method, since the bijectivity of each mapping is guaranteed by quasi-conformal theory, the overall
parameterization 𝑓 is also bijective. The proposed fast ellipsoidal quasi-conformal map (FEQCM) algorithm is summarized in
Algorithm 2.
10
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Algorithm 2: Fast ellipsoidal quasi-conformal map (FEQCM) of genus-0 closed surfaces.
Input: A genus-0 closed triangulated surface , the target elliptic radii 𝑎, 𝑏, 𝑐, a set of prescribed landmark pairs

{𝑝𝑖}𝑚𝑖=1 ↔ {𝑞𝑖}𝑚𝑖=1, and a weighting factor 𝜆 > 0.
Output: A landmark-aligned ellipsoidal quasi-conformal map 𝑓 ∶  → 𝑎,𝑏,𝑐 .

1 Compute a spherical conformal parameterizations 𝜑 ∶  → S2 using [16];
2 Apply the stereographic projection 𝑃𝑁 ∶ S2 → C using Eq. (5) to map the spherical parameterization onto the plane;
3 Apply a Möbius transformation 𝑔 ∶ C → C using Eq. (19);
4 Apply the balancing scheme using the scaling factor 𝑘 in Eq. (29);
5 Compute a landmark-aligned quasi-conformal mapping 𝛷 ∶ C → C using the FLASH method [16] based on the landmark

pairs {𝑝𝑖}𝑚𝑖=1 ↔ {𝑞𝑖}𝑚𝑖=1 on C;
6 Compute a quasi-conformal map 𝜓 ∶ C → C obtained using Eq. (30);
7 Compose the inverse ellipsoidal stereographic projection (𝑃𝑁𝑎,𝑏,𝑐 )

−1 in Eq. (22) with 𝜓−1 to form a conformal inverse
projection;

8 The final ellipsoidal quasi-conformal parameterization is given by 𝑓 = (𝑃𝑁𝑎,𝑏,𝑐 )
−1◦𝜓−1◦𝛷◦𝑘◦𝑔◦𝑃𝑁◦𝜑;

6. Experiments

The proposed algorithms are implemented in MATLAB. Genus-0 mesh models are adapted from online mesh repositories [46]
or assessing the performance of our proposed methods. All experiments are performed on a desktop computer with an Intel(R)
ore(TM) i9-12900 2.40 GHz processor and 32 GB RAM.

.1. Ellipsoidal conformal parameterization

We start by considering several genus-0 closed surfaces and computing the ellipsoidal conformal parameterizations using our
roposed FECM method. As shown in Fig. 4, the local geometric features of the input surfaces are well-preserved under our ellipsoidal
onformal parameterizations. To examine the conformality of the parameterizations, we compute the norm of the Beltrami coefficient
𝜇| for every triangular face in the ellipsoidal parameterizations. For all examples, the histogram of |𝜇| shows that |𝜇| is highly

concentrated at 0, which indicates that the conformal distortion of the parameterization is very low.
In Fig. 5, we compare our FECM method with the fast spherical conformal parameterization method in [16] and the method

in [16] together with the Möbius area correction scheme in a more recent work [20], which searches for an optimal Möbius
transformation to further reduce the area distortion of the spherical conformal parameterization. Specifically, while all of the
above-mentioned methods are conformal, the area distortion of them can be different. Here, we quantify the area distortion of
the parameterization by considering the logged area ratio in Eq. (42). It can be observed from the area distortion histograms in
Fig. 5 that the spherical conformal parameterization by [16] leads to very large area distortion, and the Möbius area correction
scheme [20] can only improve the area distortion of the spherical parameterization to some extent. By contrast, using our proposed
FECM method, the area distortion can be significantly reduced.

For a more quantitative analysis, in Table 1 we compare our proposed FECM method with the above-mentioned spherical
conformal parameterization methods in terms of efficiency, conformality, area distortion, and bijectivity by evaluating the
computational time, the norm of the Beltrami coefficient |𝜇|, the norm of the logged area ratio |𝑑area|, and the number of mesh
old-overs, respectively (see also Fig. 1 and Fig. 4 for the surface models and the ellipsoidal parameterizations). It can be observed
hat while the method in [16] requires the lowest computational cost, it results in a very high area distortion, which can be explained
y the fact that the sphere may not be the best parameter domain for the given surfaces. By including an additional step of finding an
ptimal Möbius transformation, the combination of [16,20] may improve the spherical conformal parameterization and give a lower
rea distortion. However, the computation is significantly slower because of the additional optimization step. As our FECM method
ses [16] in the initial spherical parameterization step, it is natural that our method takes a longer computational time than the
ethod [16]. Nevertheless, we can see that our method is much faster than the Möbius approach and is capable of further reducing

he area distortion when compared with both of the above-mentioned approaches. Besides, the conformality and bijectivity of our
ethod are comparable to the two spherical parameterization approaches. This can be explained by the fact that we have extra

lexibility in controlling the geometry of the ellipsoidal parameterization domain, which allows us to further reduce the geometric
istortion of the parameterizations.

In Table 2, we further compare the ellipsoidal parameterization results obtained by different approaches with the same
llipsoidal domain used. Specifically, here we consider a direct extension of [16,20] by replacing all stereographic projections and
nverse stereographic projections in them with the ellipsoidal stereographic projections and their inverses to produce ellipsoidal
arameterizations. We then assess the conformal and area distortions of the ellipsoidal parameterization results obtained by these
pproaches as well as our proposed FCEM method. It can be observed that even with the same ellipsoidal parameterization domain
sed, directly extending the two prior approaches will lead to large geometric distortions. This can be explained by the fact that
he ellipsoidal stereographic projections are not conformal in general, and so conformal distortions will be induced throughout the
11
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Fig. 4. Examples of ellipsoidal conformal parameterization results obtained by our FECM method. Each row shows one example. (Left) The input genus-0 closed
surface. (Middle) The resulting ellipsoidal conformal parameterization. (Right) The histogram of the norm of the Beltrami coefficient |𝜇|.

algorithm in [16]. Also, the Möbius area correction scheme in [20] relies on the fact that the composition of the stereographic
projection and the Möbius transformations is conformal, which does not necessarily hold if the ellipsoidal stereographic projection
is used instead. Therefore, while the extended Möbius area correction scheme can reduce the area distortion, it may lead to an
increase in the conformal distortion. This shows that both using an ellipsoidal domain and developing a suitable parameterization
method for it are important for achieving desirable parameterization results. Altogether, the results suggest that our method is more
advantageous than the prior conformal parameterization approaches for practical applications.

As discussed in Section 4.4, we can determine the optimal elliptic radii for the ellipsoidal conformal parameterization of a given
surface via an energy minimization approach. To illustrate this idea, in Fig. 6(a) we consider finding the optimal radii for the
ellipsoidal conformal parameterization of the Bulldog model. In this example, note that the initial 𝑎 and 𝑏 are almost identical, and
the initial value of 𝑐 is relatively large. Throughout the optimization process, the values of 𝑎, 𝑏, 𝑐 are updated iteratively such that
the area distortion energy 𝐸area decreases until convergence. In particular, it can be observed that the difference between 𝑎 and 𝑏
becomes prominent eventually and the value of 𝑐 decreases gradually. Fig. 6(b) shows another example of parameterizing the Lion
Vase model, from which we again see that energy 𝐸area decreases gradually until convergence. In this example, the initial 𝑎 and 𝑏 are
notably different, but they become close to each other throughout the iterations, yielding an approximately spheroidal shape in the
final parameterization. Fig. 6(c) shows the result for the Moai model. Note that the initial ellipsoid is highly stretched, with the ratio
of the maximum to minimum radii being around 2.5. Throughout the iterations, the ratio eventually decreases to around 1.9, and
12
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Fig. 5. A comparison between spherical conformal parameterizations and the ellipsoidal conformal parameterization obtained by our FECM method. The Buddha
model in Fig. 4 is used as input, and each column shows one set of parameterization results. (Left) The spherical conformal parameterization obtained by [16]
and the histogram of the logged area ratio 𝑑area. (Middle) The spherical conformal parameterization obtained by [16] together with the Möbius area correction
scheme [20] and the histogram of 𝑑area. (Right) The ellipsoidal conformal parameterization obtained by our proposed method and the histogram of 𝑑area.

Table 1
Comparison between the spherical conformal parameterization method in [16], the method in [16] together with the Möbius area
correction scheme in [20], and our proposed ellipsoidal conformal parameterization method. For each method, we record the
computational time (in seconds), the mean and standard deviation of the norm of the Beltrami coefficient |𝜇|, the mean and standard
deviation of the norm of the logged area ratio |𝑑area|, and the number of mesh fold-overs. The elliptic radii (𝑎, 𝑏, 𝑐) used in our method
are also provided.
Surface # Faces Method Time (s) Mean(|𝜇|) SD(|𝜇|) Mean(|𝑑area|) SD(|𝑑area|) # fold-overs

Hippocampus 12K
[16] 0.05 0.03 0.02 2.47 2.09 0
[16]+[20] 0.34 0.03 0.02 2.43 1.77 0
Ours (1, 1, 2.3) 0.08 0.03 0.02 1.32 1.51 0

Buddha 50K
[16] 0.17 0.02 0.02 0.95 0.85 0
[16]+[20] 2.14 0.02 0.02 0.51 0.58 0
Ours (1, 0.8, 1.5) 0.38 0.02 0.02 0.32 0.41 0

Bimba 50K
[16] 0.17 0.02 0.02 2.45 2.45 0
[16]+[20] 1.88 0.02 0.02 1.56 1.17 0
Ours (1, 1.05, 1.5) 0.38 0.02 0.02 1.54 0.96 0

Lion Vase 61K
[16] 0.21 0.03 0.03 1.25 1.20 0
[16]+[20] 2.52 0.03 0.03 0.79 0.78 0
Ours (1, 1, 1.4) 0.47 0.03 0.03 0.66 0.77 0

Moai 96K
[16] 0.37 0.02 0.03 2.21 1.93 0
[16]+[20] 5.42 0.02 0.03 1.44 1.31 0
Ours (1, 1, 2) 0.85 0.02 0.03 0.96 1.09 0

Bulldog 100K
[16] 0.34 0.02 0.03 1.38 1.15 0
[16]+[20] 3.70 0.02 0.03 1.08 0.91 0
Ours (1, 1.1, 1.5) 0.78 0.02 0.03 1.00 0.88 0

Nefertiti 100K
[16] 0.36 0.02 0.02 5.87 3.37 0
[16]+[20] 5.12 0.02 0.02 2.12 2.59 0
Ours (1, 1, 2.4) 0.82 0.02 0.02 1.73 1.18 0
13
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Table 2
Comparison between the ellipsoidal parameterizations obtained by our proposed method, an extension of the method in [16], and an
extension of the method in [16] together with [20]. Specifically, all stereographic projections and their inverses in [16] and [20] are
replaced with the ellipsoidal stereographic projections and their inverses. For each example, the same ellipsoidal domain is used for
producing the three parameterization results. For each method, we record the mean and standard deviation of the norm of the Beltrami
coefficient |𝜇| and the mean and standard deviation of the norm of the logged area ratio |𝑑area|.
Surface # Faces Method Mean(|𝜇|) SD(|𝜇|) Mean(|𝑑area|) SD(|𝑑area|)

Hippocampus 12K
[16] 0.40 0.07 2.37 2.07
[16]+[20] 0.34 0.06 2.30 1.73
Ours 0.03 0.02 1.32 1.51

Buddha 50K
[16] 0.19 0.08 1.33 1.00
[16]+[20] 0.19 0.07 0.42 0.53
Ours 0.02 0.02 0.32 0.41

Bimba 50K
[16] 0.08 0.06 3.07 2.85
[16]+[20] 0.16 0.04 1.49 1.13
Ours 0.02 0.02 1.54 0.96

Lion Vase 61K
[16] 0.10 0.05 2.34 1.66
[16]+[20] 0.14 0.05 0.75 0.77
Ours 0.03 0.03 0.66 0.77

Moai 96K
[16] 0.21 0.09 2.61 2.19
[16]+[20] 0.30 0.07 1.35 1.25
Ours 0.02 0.03 0.96 1.09

Bulldog 100K
[16] 0.11 0.06 1.24 1.00
[16]+[20] 0.14 0.05 1.02 0.89
Ours 0.02 0.03 1.00 0.88

Nefertiti 100K
[16] 0.14 0.12 6.72 3.75
[16]+[20] 0.35 0.08 2.00 2.51
Ours 0.02 0.02 1.73 1.18

Fig. 6. Optimizing the elliptic radii for the ellipsoidal conformal parameterization. (a) The result for the Bulldog model. (b) The result for the Lion Vase model.
(c) The result for the Moai model. For each model, we show the change of the area distortion energy 𝐸area (top) and the elliptic radii 𝑎, 𝑏, 𝑐 (bottom) throughout
the iterations.

the energy 𝐸area is significantly reduced by over 60%. The above experimental results show that the proposed optimization approach
can effectively handle different surfaces and achieve ellipsoidal conformal parameterizations with the elliptic radii optimized based
on the input surface geometry.

6.2. Ellipsoidal quasi-conformal parameterization

After demonstrating the effectiveness of our proposed ellipsoidal conformal parameterization method, we assess the performance
of our proposed FEQCM method for ellipsoidal quasi-conformal parameterizations.
14
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Fig. 7. Landmark-aligned ellipsoidal quasi-conformal parameterizations of the Buddha model obtained by our FEQCM method. Top left: The input genus-0 closed
surface with some labeled landmarks (red dots). Top middle: The ellipsoidal conformal parameterization with the labeled landmarks (red dots) and the prescribed
target positions (blue dots). Top right and bottom left to right: The ellipsoidal quasi-conformal parameterization results with 𝜆 = 0.1, 1, 5, 10.

Fig. 7 and Fig. 8 show two sets of examples of ellipsoidal quasi-conformal parameterization results obtained by our FEQCM
method with some labeled landmarks and prescribed target positions. It can be observed that the landmarks are largely mismatched
in the ellipsoidal conformal parameterization obtained using the FECM algorithm (see the red and blue dots). By contrast, using the
FEQCM method, the landmarks become well-aligned in the ellipsoidal quasi-conformal parameterization results. Specifically, with
the weighting factor 𝜆 of the landmark mismatch term in Eq. (53) increasing from 𝜆 = 0.1 to 𝜆 = 10, we can see that the difference
between the labeled landmarks and the target positions becomes smaller and smaller.

More quantitatively, we can assess the landmark mismatch error by considering the average of the 2-norm difference ‖𝑓 (𝑝𝑖)−𝑞𝑖‖2
between every pair of landmarks (𝑝𝑖, 𝑞𝑖) under the ellipsoidal parameterization 𝑓 . From Table 3, we can see that the landmark
mismatch error decreases as the parameter 𝜆 increases, while the conformal distortion will increase as a trade-off. Nevertheless, the
bijectivity of the parameterizations remains unchanged. The results demonstrate the effectiveness of our proposed FEQCM method.

7. Discussion

In this paper, we have developed a novel method for the ellipsoidal conformal parameterization of genus-0 closed surfaces using a
combination of conformal and quasi-conformal mappings. Using our proposed method, we can achieve comparable conformality and
lower area distortion in the final parameterization results when compared to prior spherical parameterization approaches. We have
further extended the method for computing ellipsoidal quasi-conformal parameterizations with prescribed landmark constraints.
Experimental results on various surface models with different geometries have demonstrated the effectiveness of the proposed
methods.

A possible future direction is to exploit parallelism for computing ellipsoidal parameterizations. Specifically, as different
parallelizable methods for conformal parameterization [20] and quasi-conformal parameterization [47] have been recently proposed,
15
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Fig. 8. Landmark-aligned ellipsoidal quasi-conformal parameterizations of the Bulldog model obtained by our FEQCM method. Top left: The input genus-0 closed
surface with some labeled landmarks (red dots). Top middle: The ellipsoidal conformal parameterization with the labeled landmarks (red dots) and the prescribed
target positions (blue dots). Top right and bottom left to right: The ellipsoidal quasi-conformal parameterization results with 𝜆 = 0.1, 1, 5, 10.

Table 3
The performance of the proposed fast ellipsoidal quasi-conformal mapping method. For each surface, we compute
an ellipsoidal conformal parameterization using the FECM algorithm (Algorithm 1) and the ellipsoidal quasi-
conformal parameterizations using the FEQCM algorithm (Algorithm 2) with different weighting factor 𝜆. For
each mapping result, we assess the conformal distortion using the mean of the norm of the Beltrami coefficient
|𝜇|, the landmark mismatch error using the mean of the 2-norm difference ‖𝑓 (𝑝𝑖) − 𝑞𝑖‖2 between every pair of
landmarks (𝑝𝑖 , 𝑞𝑖), and the bijectivity using the number of fold-overs in the mapping result.
Surface Method Mean(|𝜇|) Mean(‖𝑓 (𝑝𝑖) − 𝑞𝑖‖2) # fold-overs

Buddha

FECM 0.02 0.76 0
FEQCM (𝜆 = 0.1) 0.02 0.17 0
FEQCM (𝜆 = 1) 0.04 0.11 0
FEQCM (𝜆 = 5) 0.08 0.02 0
FEQCM (𝜆 = 10) 0.09 0.01 0

Bulldog

FECM 0.02 1.21 0
FEQCM (𝜆 = 0.1) 0.02 0.19 0
FEQCM (𝜆 = 1) 0.03 0.15 0
FEQCM (𝜆 = 5) 0.04 0.03 0
FEQCM (𝜆 = 10) 0.05 0.01 0

it is natural to consider extending these approaches for computing ellipsoidal conformal or quasi-conformal parameterization. Also,
while the algorithms developed in this paper focus on triangle meshes, it may be possible to extend the computation for point clouds
as in recent point cloud parameterization works [17,48,49].

Besides, we plan to explore the possibility of combining the proposed ellipsoidal parameterization methods with density-
equalizing mapping methods [50,51], which produce area-based shape deformation based on prescribed density distribution.
Specifically, we may be able to achieve ellipsoidal parameterizations with controllable area changes via such a combination of
mapping methods.
16
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