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Abstract

Surface parameterization is of fundamental importance for many tasks in com-
puter vision and imaging. In recent years, computational quasi-conformal geom-
etry has become an emerging tool for the design of efficient and accurate
parameterization methods for both surface meshes and point clouds. More
specifically, using quasi-conformal (QC) theory, it is possible to reduce the
geometric distortion and achieve conformal parameterizations for surfaces with
different topology easily. It is also possible to achieve surface parameterizations
that satisfy certain prescribed conditions, such as landmark constraints, with a
minimal quasi-conformal distortion. In this article, we give an overview of the
recent advances in surface parameterization using quasi-conformal geometry.

Keywords

Surface parameterization · Quasi-conformal geometry · Conformal map ·
Quasi-conformal map · Mesh · Point cloud

Introduction

Surface parameterization refers to the process of finding a one-to-one correspon-
dence between a complicated surface and a simple parameter domain. It has
widespread applications in computer graphics, vision, imaging, and also many other
areas in science, engineering, and medicine, such as medical shape analysis (Zhao
et al. 2019), greedy routing (Li et al. 2015), virtual broadcasting (Yueh et al. 2020),
and topology optimization (Vogiatzis et al. 2018). The parameter domain depends
on the topology of the given surface. For simply connected open surfaces in R

3,
common choices of the parameter domain include the unit disk, the unit square, a
rectangle, or a more flexible planar domain. For multiply connected open surfaces,
it is common to parameterize the surfaces onto a planar circle domain with circular
holes. For genus-0 closed surfaces, it is common to use the unit sphere as the
parameter domain. For other high-genus surfaces, more complicated fundamental
domains are often considered. Therefore, the surface topology plays an important
role in the development of surface parameterization methods. Figure 1 shows several
examples of parameterization of surfaces with different topology.

Given a surface and a target parameter domain, there are numerous ways of
finding a parameterization mapping from the surface onto the parameter domain.
In general, it is desirable to find a low-distortion parameterization such that the
geometric information of the surface is preserved as much as possible in the simple
domain. However, it is well-known that isometric (distance-preserving) mappings
are not possible for general surfaces. In other words, geometric distortions unavoid-
able exist under surface parameterization. Therefore, different distortion criteria
and measures have been considered in the development of surface parameterization
methods. One major class of surface parameterization methods is the conformal
parameterization, which preserves angles and hence the local geometry of the
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Fig. 1 Parameterization of surfaces with different topology. The top left panel shows a spherical
conformal parameterization of a genus-0 closed surface. (Image adapted from Choi et al. 2015).
The top right panel shows a free-boundary conformal parameterization of a simply connected open
surface. (Image adapted from Choi et al. 2020a). The bottom left panel shows a disk conformal
parameterization of a simply connected open surface. (Image adapted from Choi and Lui 2015).
The bottom right panel shows a poly-annulus conformal parameterization of a multiply connected
open surface. (Image adapted from Choi et al. 2021)

surfaces. Another major class of surface parameterization methods is the area-
preserving (authalic) parameterization, which focuses on the preservation of the area
elements. One may also look for parameterizations that achieve a balance between
angle and area preservation or parameterizations that minimize the distortions
subject to additional constraints such as prescribed landmark correspondences.

In the discrete case, surfaces are usually represented using either triangle meshes
or point clouds. Each triangle meshM = (V,E,F) consists of a set of verticesV,
a set of edges E connecting the vertices, and a set of triangular faces F. Each point
cloud P only consists of the vertex information but not the connectivity between
the vertices. Because of the difference in the available geometric information, the
developments of parameterization methods for meshes and point clouds are usually
handled differently. Two examples of triangle meshes and point clouds with the
parameterization results are shown in Fig. 2.

In recent years, computational quasi-conformal geometry has become a subject
of great interest for the design of parameterization methods for both meshes and
point clouds. Specifically, quasi-conformal theory has been utilized for reducing the
conformal distortion of some prior parameterization methods to achieve conformal
parameterizations. Also, for some situations where conformal parameterizations are
not possible due to other prescribed constraints, quasi-conformal parameterizations
with optimized conformal distortion can be obtained using computational tools
based on quasi-conformal theory.
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Fig. 2 Examples of mesh and point cloud parameterizations. Left: A simply connected open
triangle mesh and the disk conformal parameterization. (Image adapted from Choi and Lui 2015).
Right: A genus-0 point cloud and the spherical conformal parameterization. (Image adapted
from Choi et al. 2016)

In this survey, we give an overview of the recent developments of surface
parameterization methods using quasi-conformal geometry. Below, we first review
some previous works on mesh and point cloud parameterization in section “Previous
Works on Surface Parameterization”. In section “Mathematical Background”, we
introduce the basic concepts of conformal and quasi-conformal maps. We then
describe the recent advances in mesh parameterization and point cloud parame-
terization based on quasi-conformal geometry in sections “Mesh Parameterization
Using Quasi-conformal Geometry” and “Point Cloud Parameterization Using Con-
formal and Quasi-conformal Geometry”, respectively. In section “Applications”,
we review some applications of the conformal and quasi-conformal mapping
methods in science, engineering, and medicine. A concluding remark is given in
section “Conclusion”.

PreviousWorks on Surface Parameterization

Mesh Parameterization

Over the past several decades, numerous mesh parameterization methods have been
developed. Readers are referred to Floater and Hormann (2005), Sheffer et al.
(2006), and Hormann et al. (2007) for detailed surveys on the subject. Below, we
highlight some recent works on mesh parameterization.

In recent years, conformal parameterization methods have been extensively
studied (see Gu and Yau 2008; Gu et al. 2020 for a comprehensive discussion).
Among all conformal parameterization methods, one common approach is to make
use of harmonic energy minimization (Gu et al. 2004; Lai et al. 2014). Another
common approach is to utilize surface Ricci flow (Jin et al. 2008; Yang et al.
2009; Zhang et al. 2014) (see Zhang et al. 2015 for a survey). Other notable
methods for computing conformal parameterizations include the slit map (Yin
et al. 2008), Koebe’s iteration (Zeng et al. 2009), metric scaling (Ben-Chen et al.
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2008), boundary first flattening (Sawhney and Crane 2017), and conformal energy
minimization (Yueh et al. 2017).

Area-preserving mesh parameterization methods have also been widely studied
in recent years. Recent works include the Lie advection method (Zou et al. 2011),
the optimal mass transportation (OMT) method (Zhao et al. 2013; Su et al. 2016;
Nadeem et al. 2016; Pumarola et al. 2019; Giri et al. 2021; Lei and Gu 2021; Choi
et al. 2022), stretch energy minimization (Yueh et al. 2019), and density-equalizing
maps (Choi and Rycroft 2018; Choi et al. 2020b).

Besides, there are many other energy minimization approaches for computing
mesh parameterizations in computer graphics. Typically, these approaches define
some distortion measures and attempt to minimize them to produce the desired
effects. Recent works include the advanced MIPS method (Fu et al. 2015),
symmetric Dirichlet energy (Smith and Schaefer 2015), scalable locally injective
mappings (SLIM) (Rabinovich et al. 2017), isometry-aware preconditioning (Claici
et al. 2017), progressive parameterization (Liu et al. 2018), and efficient bijective
parameterizations (Su et al. 2020).

Point Cloud Parameterization

With the advancement of 3D data acquisition techniques, the use of point clouds
has been increasingly popular in recent decades. For this reason, there is also an
increasing interest in the development of point cloud parameterization methods for
the shape analysis and processing of point clouds.

In 2004, Zwicker and Gotsman proposed a spherical parameterization method
for genus-0 point clouds. In 2006, Tewari et al. proposed a doubly periodic global
parameterization method for genus-1 point clouds. In 2010, Zhang et al. developed
an as-rigid-as-possible meshless parameterization method for point clouds with disk
topology. In 2013, Meng et al. proposed a self-organizing radial basis function
(RBF) neural network method for point cloud parameterization.

For the conformal parameterization of point clouds, one important component is
the approximation of the Laplacian operator on point clouds. In recent years, several
point cloud Laplacian approximation methods have been proposed, including the
moving least squares (MLS) method (Belkin et al. 2009; Liang et al. 2012; Liang
and Zhao 2013), the local mesh method (Lai et al. 2013; Choi et al. 2022), and the
non-manifold Laplacian method (Sharp and Crane 2020).

Mathematical Background

In this section, we review the concepts of conformal and quasi-conformal maps.
Readers are referred to Lehto (1973), Gardiner and Lakic (2000), and Ahlfors (2006)
for more details.
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Conformal Maps

Let f : C → C be a map on the complex plane C. Write f (z) = f (x, y) =
u(x, y) + iv(x, y), where z = x + iy, i is the imaginary number with i2 = −1, and
u, v are real-valued functions. Suppose the derivative of f is nonzero everywhere.
f is said to be conformal if it satisfies the Cauchy-Riemann equations:

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (1)

If we denote the following:

∂f

∂z
= fz = 1

2

(
∂f

∂x
+ i

∂f

∂y

)
and

∂f

∂z
= fz = 1

2

(
∂f

∂x
− i

∂f

∂y

)
, (2)

then Equation (1) can be rewritten as follows:

∂f

∂z
= 0. (3)

Conformal maps preserve angles and hence the local geometry. Intuitively, under a
conformal map, infinitesimal circles are mapped to infinitesimal circles (see Fig. 3).

Quasi-conformal Maps

Quasi-conformal maps are a generalization of conformal maps. More specifically, an
orientation-preserving homeomorphism f : C → C is said to be quasi-conformal
if it satisfies the Beltrami equation:

Fig. 3 An illustration of conformal and quasi-conformal maps. (Image adapted from Lui et al.
2014). Left: A surface with a circle packing texture. Middle: A conformal map of the surface onto
the unit disk. Note that the small circles are mapped to small circles. Right: A quasi-conformal
map of the surface onto the unit disk. Note that the small circles are mapped to small ellipses
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∂f

∂z
= μf (z)

∂f

∂z
(4)

for some complex-valued function μf with ||μf ||∞ < 1. μ is called the Beltrami
coefficient of the map f . Considering the first order approximation of f around a
point p with respect to its local parameter, we have the following:

f (z) = f (p) + fz(p)(z − p) + fz(p)z − p

= f (p) + fz(p)
(
z − p + μf (p)z − p

)
. (5)

This gives the following:

∣∣f (z) − f (p)
∣∣ = ∣∣fz(p)

∣∣ ∣∣z − p + μf (p)z − p
∣∣ (6)

and hence:

∣∣fz(p)
∣∣ (1 −

∣∣∣μf (p)

∣∣∣
) ∣∣z − p

∣∣ ≤ ∣∣f (z) − f (p)
∣∣ ≤ ∣∣fz(p)

∣∣ (1 +
∣∣∣μf (p)

∣∣∣
) ∣∣z − p

∣∣ .
(7)

This shows that an infinitesimal circle is mapped to an infinitesimal ellipse with
bounded eccentricity under a quasi-conformal map (see Figs. 3 and 4), where
the maximal magnification factor is

∣∣fz(p)
∣∣ (1 + |μf (p)|), the maximal shrinkage

factor is
∣∣fz(p)

∣∣ (1 − ∣∣μf (p)
∣∣), and the maximal dilatation of f is as follows:

K(f ) = 1 + ‖μf ‖∞
1 − ‖μf ‖∞

. (8)

Also, note that the last equality in Equation (7) holds if and only if:

z − p = cμf (p)z − p (9)

1 −

1 +

arg /2

Fig. 4 An illustration of quasi-conformal maps. (Image adapted from Choi et al. 2020c)
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for some c ∈ R, which gives the following:

arg(z − p) = arg(μf (p)) − arg(z − p) ⇔ arg(z − p) = arg(μf (p))/2. (10)

This shows that the orientation change of the major axis of the ellipse is
arg(μf (p))/2. From the above, it can be observed that the Beltrami coefficient
μ encodes useful information of the quasi-conformality of the mapping f .

The bijectivity of the map f is also related to the Beltrami coefficient of it. More
specifically, if f (z) = f (x + iy) = u(x, y) + iv(x, y), where u, v are two real-
valued functions, the Jacobian of f is given by the following:

Jf = uxvy − uyvx

= 1

4

(
(ux + vy)

2 + (uy − vx)
2 − (ux − vy)

2 − (uy + vx)
2
)

=
∣∣∣∣1

2
(fx − ify)

∣∣∣∣
2

−
∣∣∣∣1

2
(fx + ify)

∣∣∣∣
2

= |fz|2 − |fz|2

= |fz|2
(
1 − |μf |)2

, (11)

which indicates that Jf is positive everywhere if ‖μf ‖∞ < 1.
The correspondence between Beltrami coefficients and quasi-conformal maps is

given by the measurable Riemann mapping theorem (Gardiner and Lakic 2000):

Theorem 1 (Measurable Riemann mapping theorem). If μ : C → C be a
Lebesgue measurable function with ‖μ‖∞ < 1. There exists a quasi-conformal
homeomorphism φ : C → C in the Sobolev space W 1,2(C) satisfying the
Beltrami equation (4) in the distribution sense. By fixing 0, 1, and ∞, φ is uniquely
determined for any given μ.

In other words, a quasi-conformal map can be uniquely determined by its associated
Beltrami coefficient under suitable normalization.

Given two quasi-conformal maps f : �1 ⊂ C → �2 ⊂ C and g : �2 ⊂ C →
�3 ⊂ C, the Beltrami coefficient of the composition map g ◦ f is given by the
following composition formula:

μg◦f =
μf + fz

fz
(μg ◦ f )

1 + fz

fz
μf (μg ◦ f )

. (12)

In particular, if μf −1 = μg , then:
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μf + fz

fz

(μg ◦ f ) = μf + fz

fz

(μf −1 ◦ f ) = μf + fz

fz

(
−fz

fz

μf

)
= 0, (13)

and hence g ◦ f is conformal. This idea of quasi-conformal composition plays an
important role in many recent parameterization methods.

To define quasi-conformal maps between two Riemann surfaces, the concept
of Beltrami differential is used. More specifically, given any Riemann surface S,

a Beltrami differential μ(z) dzdz is an assignment to each chart (Uα, φα) of an L∞
complex-valued function μα defined on local parameter zα , such that:

μα

dzα
dzα

= μβ

dzβ
dzβ

(14)

on the domain which is also covered by another chart (Uβ, φβ). Let f : M → N
be an orientation-preserving diffeomorphism between two Riemann surfacesM,N.

f is said to be quasi-conformal associated with the Beltrami differential μ(z) dzdz if
for any chart (Uα, φα) on M and any chart (Uβ, φβ) on N; the mapping fαβ :=
φβ ◦ f ◦ φ−1

α is quasi-conformal associated with μα
dzα
dzα

.

Linear Beltrami Solver (LBS)

As described above, there is a close relationship between Beltrami coefficients and
quasi-conformal maps. It is natural to ask whether one can reconstruct a quasi-
conformal map f from a given complex-valued function μ easily. To achieve this
task, Lui et al. developed an efficient method called the linear Beltrami solver (LBS)
in Lui et al. (2013). The method is outlined below.

Let f (z) = f (x + iy) = u(x, y) + iv(x, y) and μ(z) = ρ(z) + iτ (z), where
u, v, ρ, τ are real-valued functions. The Beltrami equation (4) can then be rewritten
as follows:

μf = (ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
. (15)

Now, we can express vx and vy as linear combinations of ux and uy :

−vy = α1ux + α2uy;
vx = α2ux + α3uy, (16)

where:

α1 = (ρ − 1)2 + τ 2

1 − ρ2 − τ 2 , α2 = − 2τ

1 − ρ2 − τ 2 , α3 = 1 + 2ρ + ρ2 + τ 2

1 − ρ2 − τ 2 . (17)
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We can also express ux and uy as linear combinations of vx and vy similarly:

uy = α1vx + α2vy;
−ux = α2vx + α3vy. (18)

Now, since ∇ ·
(

−vy

vx

)
= 0 and ∇ ·

(
uy

−ux

)
= 0, we have the following:

∇ ·
⎛
⎝A

(
ux

uy

)⎞
⎠ = 0 and ∇ ·

⎛
⎝A

(
vx

vy

)⎞
⎠ = 0, (19)

where A =
(

α1 α2

α2 α3

)
.

In the discrete case, one can discretize the elliptic PDEs (19) as sparse positive
definite linear systems. Therefore, for any given μ and some prescribed boundary
conditions, one can efficiently obtain a quasi-conformal map f with the associated
Beltrami coefficient being μ. See Lui et al. (2013) for more details of the
computational procedure of the LBS method.

Beltrami Holomorphic Flow (BHF)

In Lui et al. (2010, 2012), Lui et al. developed another method called the Beltrami
holomorphic flow (BHF) for reconstructing quasi-conformal maps for given Bel-
trami coefficients. The BHF method is based on the following theorem (Gardiner
and Lakic 2000):

Theorem 2 (Beltrami holomorphic flow on C). There is a 1-1 correspondence
between the set of quasi-conformal maps f : C → C that fix the points 0, 1,∞
and the set of smooth complex-valued functions μ on C with ‖μ‖∞ < 1. Here, the
solution f μ to the Beltrami equation (4) depends holomorphically on μ. Let {μ(t)}
be a family of Beltrami coefficients, where t is a real or complex parameter. Suppose
μ(t) can be written in the following form:

μ(t)(z) = μ(z) + tν(z) + tε(t)(z), (20)

with μ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that ‖ε(t)‖∞ → 0 as
t → 0. Then, for all w ∈ C, we have the following:

f μ(t)(w) = f μ(w) + tV (f μ, ν)(w) + o(|t |) (21)

locally uniformly on C as t → 0, where:
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V (f μ, ν)(w) = −f μ(w)(f μ(w) − 1)

π

∫
C

ν(z)(f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dz.

(22)

In other words, given a Beltrami coefficient and the target positions of three
points, one can obtain a unique quasi-conformal map. In practice, to reconstruct the
quasi-conformal map, one can start with the identity map and iteratively flow the
map to f μ using BHF. See Lui et al. (2012) for more details of the computational
procedure of the BHF method.

Teichmüller Maps

Teichmüller maps (T-maps) are a special class of quasi-conformal maps. A quasi-
conformal map f : C → C is said to be a Teichmüller map if its associated Beltrami
coefficient is of the following form:

μf = k
φ

φ
, (23)

where φ is a complex-valued function and k is a constant with k < 1. In other
words, the quasi-conformal distortion of a Teichmüller map is uniform over the
entire domain. More generally, a quasi-conformal map f : S1 → S2 between two
Riemann surfaces is said to be a Teichmüller map associated with the quadratic
differential q = ϕdz2 if its associated Beltrami differential is of the following form:

μf = k
ϕ

ϕ
, (24)

where ϕ : S1 → C is a holomorphic function, q �= 0 is a quadratic differential with
‖q‖1 = ∫

S1
|ϕ| < ∞, and k is a constant with k < 1.

Another closely related concept is the extremal map. A quasi-conformal map
f : S1 → S2 is said to be extremal if for any quasi-conformal map g : S1 → S2
isotopic to f relative to the boundary, we have the following:

K(f ) ≤ K(g). (25)

Teichmüller maps and extremal maps are connected by the following theo-
rem (Lui et al. 2014):

Theorem 3 (Landmark-matching Teichmüller map). Let g : ∂D → ∂D be
an orientation-preserving diffeomorphism of the boundary of the unit disk, with
g′(eiθ ) �= 0 and g′′(eiθ ) is bounded for all θ . Let {pj }nj=1 and {qj }nj=1 be two sets
of corresponding interior landmarks in D. Then there exists a landmark-matching
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Teichmüller map f : D → D that is the unique extremal extension of g to D, i.e.,
f |∂D = g and f (pj ) = qj for all j = 1, 2, . . . , n.

In other words, besides having uniform quasi-conformal distortion, Teichmüller
maps are extremal in the sense that they minimize the maximal dilatation K .

In 2014, Lui et al. proposed a method called the QC iteration method for the
computation of landmark-matching Teichmüller maps. The QC iteration method
iteratively updates the Beltrami coefficient and reconstructs the associated quasi-
conformal map using the LBS method until the resulting map becomes Teichmüller.
More specifically, suppose the initial quasi-conformal map f0 is associated with the
Beltrami coefficient μ0. The method computes the following iteratively:

νn+1 := A(L(μn)),

fn+1 := LBSLM(νn+1),

μn+1 := μ(fn+1), (26)

until ‖νn+1 − νn‖∞ is less than a given stopping parameter ε > 0. Here, L is
the Laplacian smoothing operator, A is an averaging operator, LBSLM denotes the
quasi-conformal map obtained by the LBS method with the prescribed landmark
constraints, and μ(fn+1) denotes the Beltrami coefficient of fn+1 obtained from the
Beltrami equation (4). The convergence of the QC iteration method has been proved
in Lui et al. (2015).

Mesh Parameterization Using Quasi-conformal Geometry

In recent years, quasi-conformal theory has been widely used in surface mapping,
registration, and visualization. For instance, Zeng et al. (2012) developed a method
for computing quasi-conformal mappings between Riemann surfaces using Yamabe
flow and an auxiliary metric which incorporates quasi-conformality induced from
the Beltrami differential. Specifically, quasi-conformal mappings are equivalent
to conformal mappings under the auxiliary metric and hence can be effectively
computed. Lipman et al. (2012) computed quasi-conformal plane deformations by
introducing a formula for 4-point planar warping. Weber et al. (2012) developed a
method for computing piecewise linear approximations of extremal quasi-conformal
maps. Lipman (2012) and Chien et al. (2016) developed methods for computing
bounded distortion mappings. Wong and Zhao (2014, 2015) developed methods for
computing surface mappings using discrete Beltrami flow. Zeng and Gu (2011) pro-
posed a surface registration method using quasi-conformal curvature flow. Lui and
Wen (2014) proposed a method for high-genus surface registration by computing
a quasi-conformal map between the conformal embedding of the surfaces on the
hyperbolic disk. Quasi-conformal theory has also been used in the development of
rectilinear maps (Yang and Zeng 2020) and retinotopic maps (Tu et al. 2020; Ta
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Table 1 A summary of recent mesh parameterization methods based on quasi-conformal theory

Method Surface type Target domain Criterion

FLASH (Choi et al. 2015) Topological sphere Sphere Conformal/
quasi-conformal

FSQC (Choi et al. 2016) Topological sphere Sphere Quasi-conformal

Fast disk map (Choi and Lui
2015)

Topological disk Disk Conformal

Linear disk map (Choi and
Lui 2018)

Topological disk Disk Conformal

Carotid flattening (Choi et al.
2017)

Topological disk L-shaped Conformal

LSQC (Qiu et al. 2019) Topological disk Free-boundary Quasi-conformal

PGCP (Choi et al. 2020a) Simply connected Free/disk/sphere Conformal

ACM/PACM (Choi et al.
2021)

Multiply connected Circle domain Conformal

QCMC (Ho and Lui 2016) Multiply connected Circle domain Quasi-conformal

BHF (Ng et al. 2014) Multiply connected Circle domain Teichmüller

et al. 2021). In this section, we review the latest mesh parameterization methods
developed based on quasi-conformal geometry.

By the uniformization theorem, every simply connected Riemann surface is
conformally equivalent to either the unit disk, the complex plane, or the Riemann
sphere. Also, every multiply connected open surface is conformally equivalent to a
circle domain with circular holes. Therefore, as mentioned earlier in section “Intro-
duction”, various methods have been proposed for parameterizing surface meshes
with different topology onto different parameter domains. Table 1 summarizes the
recent mesh parameterization methods based on quasi-conformal theory. Below, we
first introduce the parameterization methods for genus-0 closed triangle meshes and
then discuss the methods for simply connected and multiply connected open triangle
meshes.

Genus-0 Closed Triangle Meshes

Conformal Parameterization
In 2015, Choi et al. proposed a fast algorithm for the spherical conformal parame-
terization of genus-0 closed triangle meshes (see Fig. 5). More specifically, given a
genus-0 closed triangle meshM, the algorithm first follows the idea in Haker et al.
(2000) and punctures one triangle T = [vi, vj , vk] fromM. The punctured surface
M \ T is then a simply connected open surface and hence can be mapped onto the
plane by solving the Laplace equation:

�g = 0, (27)

where g : M \ T → C flattens the punctured mesh onto a planar triangular
domain with the three mapped boundary vertices g(vi), g(vj ), and g(vk) forming a
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Fig. 5 An illustration of the fast spherical conformal parameterization method. (Image adapted
from Choi et al. 2015)

boundary triangle with the same angle structure as T . One can then map the planar
triangular domain onto the unit sphere using the inverse stereographic projection
ϕ−1

N : C → S
2, where the stereographic projection ϕN : S2 → C is given by the

following:

ϕN(X, Y,Z) = X

1 − Z
+ i

Y

1 − Z
(28)

and the inverse stereographic projection ϕ−1
N : C → S

2 is given by the following:

ϕ−1
N (z) =

(
2Re(z)

1 + |z|2 ,
2Im(z)

1 + |z|2 ,
1 − |z|2
1 + |z|2

)
. (29)

The composition map ϕ−1
N ◦ g is then a parameterization mapping from M onto

the unit sphere S2. However, the conformal distortion near the punctured triangle T ,
which corresponds to the north pole region of the unit sphere, is severe in the discrete
case. To correct the conformal distortion there, the algorithm in Choi et al. (2015)
maps the sphere to the extended complex plane using the south pole stereographic
projection ϕS : S2 → C with the following:

ϕS(X, Y,Z) = X

1 + Z
+ i

Y

1 + Z
, (30)

such that the south pole region of the unit sphere is mapped to the outermost part
of the planar domain and the north pole region of the unit sphere is mapped to
the innermost part of the planar domain. The algorithm then computes a quasi-
conformal map h : C → C with the Beltrami coefficient μh = μ

(ϕS◦ϕ−1
N ◦g)−1 and



43 Recent Developments of Surface Parameterization Methods. . . 1497

with the outermost part of the domain fixed using the LBS method (Lam and Lui
2014). The composition map h ◦ ϕS ◦ ϕ−1

N ◦ g is then conformal by the composition
formula in Equation (12). Finally, the map ϕ−1

S ◦ h ◦ ϕS ◦ ϕ−1
N ◦ g gives a conformal

parameterization of M onto the unit sphere. Moreover, the use of the Beltrami
coefficients also helps ensure that the mapping is bijective (see Fig. 6).

Another spherical conformal parameterization method that utilizes quasi-
conformal theory is the parallelizable global conformal parameterization (PGCP)
method (Choi et al. 2020a) (see Fig. 7 for an example). The PGCP method achieves
the conformal parameterization using a divide-and-conquer manner by considering

Fig. 6 The spherical conformal parameterization method in Choi et al. (2015) is capable of
mapping a complicated dinosaur mesh (left) onto the unit sphere bijectively (bottom right), while
the traditional method (Gu et al. 2004) (top right) produces overlaps. (Image adapted from Choi
2016)

Fig. 7 The spherical conformal parameterization of a genus-0 duck surface mesh obtained using
the parallelizable global conformal parameterization (PGCP) method. (Image adapted from Choi
et al. 2020a). The colors indicate the correspondence between the subdomains in the original mesh
and in the parameterization result
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a partition of the input triangle mesh into several submeshes. Because of the use of
mesh partition, the PGCP method is capable of handling not only genus-0 closed
surfaces but also simply connected open surfaces. The method will be explained in
detail later in section “Simply Connected Open Triangle Meshes”.

Quasi-conformal Parameterization
In 2015, Choi et al. developed the fast landmark-aligned spherical harmonic
parameterization (FLASH) method for genus-0 closed triangle meshes (see Fig. 8
for an illustration). More specifically, given two genus-0 closed triangle meshes S1
and S2 with two sets of corresponding landmarks {pj }nj=1 and {qj }nj=1 on S1 and
S2, respectively, denote the spherical conformal parameterization of S2 obtained by
the abovementioned method in Choi et al. (2015) by φ2 : S2 → S

2. The FLASH
method aims to find a spherical parameterization f : S1 → S

2 such that f (pj )

matches φ2(qj ) as accurately as possible for all j = 1, 2, . . . , n, and the conformal
distortion of f is also as small as possible. To achieve this, the method first computes
the spherical conformal parameterization φ1 : S1 → S

2. It then solves for a quasi-
conformal map ψ : S2 → S

2 that minimizes the following combined energy:

Ecombined(ψ) =
∫

|∇ψ |2 + λ

n∑
j=1

|ψ(φ1(pj )) − φ2(qj )|2, (31)

where λ ≥ 0 is a weighting factor for balancing the conformality and the landmark
mismatch. In particular, a large λ yields a quasi-conformal map with a smaller
landmark mismatch but a larger conformal distortion, while a small λ yields a
smaller conformal distortion but the landmark mismatch will be larger. φ can be
obtained by solving the following equation:

�ψ + λδE(ψ − φ2(qj )) = 0, (32)

where δE(w) is the smooth approximation of the characteristic function:

χE(w) =
{

1 if w = φ2(qj ) for some j,

0 otherwise.
(33)

The desired landmark-aligned spherical parameterization is then given by f = ψ ◦
φ1. The bijectivity of the parameterization can be further enforced by modifying the
norm of the Beltrami coefficient and reconstructing the associated quasi-conformal
map iteratively. Figure 9 shows for some examples of landmark-aligned spherical
parameterization obtained using the FLASH method.

In 2016, Choi et al. developed the fast spherical quasi-conformal parameteriza-
tion (FSQC) method for the computation of spherical parameterization of genus-0



43 Recent Developments of Surface Parameterization Methods. . . 1499

Fig. 8 An illustration of the fast landmark-aligned spherical harmonic parameterization (FLASH)
method. (Image adapted from Choi et al. 2015)
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Fig. 9 Two examples of the landmark-constrained spherical quasi-conformal parameterization
obtained using the FLASH method. (Image adapted from Choi et al. 2015). Each row shows
an example. Left column: The spherical conformal parameterization of the source mesh. Middle
column: The spherical conformal parameterization of the target mesh. Right column: The
landmark-constrained quasi-conformal parameterization

closed triangle meshes with a prescribed quasi-conformal dilatation. Specifically,
given any genus-0 closed triangle meshM = (V,E,F) and a user-defined quasi-
conformal dilatation K : F → R defined on every triangular face of the mesh, the
method starts by computing the spherical conformal parameterization of M using
the method in Choi et al. (2015). Next, it searches for a triangle T on the spherical
parameterization such that both T and its neighboring faces are the most regular
and then performs a stereographic projection with respect to T to map the sphere
onto the plane. Then, to achieve the prescribed dilatation K , the method constructs
a Beltrami coefficient μ with the following:

μ(T ) = K(T ) − 1

K(T ) + 1
(34)

for every triangle T . By applying the LBS method (Lui et al. 2013) to reconstruct
a quasi-conformal map on the plane associated with the Beltrami coefficient
μ followed by the inverse stereographic projection, the desired spherical quasi-
conformal parameterization is obtained. Figure 10 shows an example of spherical
quasi-conformal parameterization obtained by the FSQC method.
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Fig. 10 An example of the fast spherical quasi-conformal parameterization (FSQC) method for
genus-0 closed triangle meshes. (Image adapted from Choi et al. 2016). Left: The input genus-0
closed surface with a circle packing texture and the spherical quasi-conformal parameterization
obtained by FSQC. Right: The prescribed quasi-conformal dilatation and the final dilatation of the
resulting parameterization. Note that the circles on the input surface are mapped to two classes of
ellipses with different eccentricity as shown in the parameterization result, which correspond to
K = 1.5 and K = 3 in the target dilatation histogram, respectively

Simply Connected Open Triangle Meshes

Conformal Parameterization
In 2015, Choi and Lui proposed a fast disk conformal parameterization method
for simply connected open triangle meshes (see Fig. 11). The method involves two
major steps, namely, the “north pole” step and the “south pole” step. Analogous
to the spherical conformal parameterization method in Choi et al. (2015), the
method handles the conformal distortion at different parts of the parameter domain
separately. More specifically, after getting an initial disk harmonic map by solving
the Laplace equation:

�f = 0 (35)

subject to a circular boundary constraint, the method considers the following “north
pole” step. It first maps the unit disk to the upper half plane using the Cayley
transform:

W(z) = i
1 + z

1 − z
, (36)

and composes the map with another quasi-conformal map to reduce the conformal
distortion using the idea of quasi-conformal composition in Equation (12) with the
boundary triangle fixed. Then, it maps the upper half plane back to the unit disk
using the inverse Cayley transform:

W−1(z) = z − i

z + i
. (37)
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Fig. 11 An illustration of the fast disk conformal parameterization method for simply connected
open triangle meshes. (Image adapted from Choi and Lui 2015). (a) “North pole” iteration. (b)
“South pole” iteration

The above step helps reduce the conformal distortion at the innermost region of the
disk, while the distortion at the region around z = 1 may still be large. Therefore,
in the subsequent “south pole” step, the method uses a reflection mapping z �→ 1

z

to reflect the disk along the unit circle, so that the outermost region of the new
shape corresponds to the innermost region of the disk, which is with low conformal
distortion due to the previous “north pole” step. One can then fix the outermost
region and apply the idea of quasi-conformal composition again to compute a
quasi-conformal map so that the conformal distortion at the region around z = 1
is reduced. By repeating the above procedure, one can eventually obtain a disk
conformal parameterization.

In 2018, Choi and Lui proposed a linear formulation for disk conformal parame-
terization of simply connected open triangle meshes. The idea is to use a technique
called double covering to turn any given simply connected open triangle mesh into a
genus-0 mesh and then apply the fast spherical conformal parameterization method
in Choi et al. (2015). More specifically, given a simply connected open triangle
mesh M = (V,E,F), the method constructs a new mesh M′ by duplicating
M and reversing the orientation of every triangle in it. In other words, for each
triangle [vi, vj , vk] inM, the corresponding triangle inM is given by [v′

i , v
′
k, v

′
j ],

where v′
i , v

′
j , v

′
k are copies of the vertices vi, vj , vk . One can then glueM andM′
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along their boundaries ∂M and ∂M′ by identifying all the corresponding boundary
vertices. The glued surface (denoted by M̃) is then a genus-0 closed triangle
mesh. Hence, one can apply the fast spherical conformal parameterization method
in Choi et al. (2015) for parameterizing M̃. By extracting the part corresponding
toM in the spherical parameterization and applying the stereographic projection in
Equation (28), we obtain a conformal parameterization ofM onto a planar domain.
As the planar domain may not be perfectly circular, the method further enforces the
circularity of the boundary using a projection:

v �→ v

|v| (38)

for all boundary vertices. Finally, to correct the conformal distortion caused by
the projection, the method composes the parameterization map with another quasi-
conformal map based on the composition formula in Equation (12), thereby yielding
a disk conformal parameterization (see Fig. 12 for an example).

Note that the abovementioned methods compute the conformal parameterization
of the input mesh globally. In case the density of the input mesh is very high or the
mesh geometry is complicated, the computation of the global parameterization may
be expensive and challenging. To resolve this issue, Choi et al. (2020a) proposed
the parallelizable global conformal parameterization (PGCP) method (Choi et al.
2020a) (see Fig. 13 for an illustration). Specifically, the PGCP method considers
partitioning the input mesh into different subdomains. For each subdomain, the
discrete natural conformal parameterization (DNCP) method in Desbrun et al.
(2002) is used for finding an initial free-boundary conformal flattening map. As
the local parameterizations of different subdomains may not be consistent along
their boundaries, the PGCP method looks for a series of conformal maps to deform

Fig. 12 The disk conformal parameterization of a simply connected open surface obtained using
the linear disk map method. (Image adapted from Choi and Lui 2018)



1504 G. P. T. Choi and L. M. Lui

Fig. 13 An illustration of the
parallelizable global
conformal parameterization
(PGCP) method. (Image
adapted from Choi et al.
2020a)

Fig. 14 An illustration of the partial welding procedure. (Image adapted from Choi et al. 2020a)

the boundaries to enforce the consistency between them. This is achieved using a
variant of conformal welding called partial welding.

More specifically, given a diffeomorphism f from a closed curve (e.g., the unit
circle) to itself, conformal welding aims to find two Jordan domains D,� ⊂ C

and two conformal maps φ : D → � and φ∗ : D∗ → �∗, where D∗ and �∗
are the exterior of D and �, respectively, such that φ = φ∗ ◦ f on the closed
curve. In other words, the two surfaces are stitched together seamlessly. By the
sewing theorem (Lehto 1973), if f is a quasisymmetric function from the real axis
to itself, then the upper and lower half-planes can be mapped conformally onto
disjoint Jordan domains D,� by two maps φ, φ∗, with φ(x) = φ∗(f (x)) for
all x ∈ R. Partial welding is a variant of conformal welding in the sense that it
does not assume the full correspondence between two boundary curves but only the
correspondence between a portion of the two curves. As illustrated in Fig. 14, to
enforce the consistency between two arcs of the boundaries of two Jordan regions
A and B on the complex plane, one can apply a series of analytic functions to
map A to the upper half plane and B to the lower half plane such that the two
corresponding arcs are mapped to the same interval I on the real axis. Then, one can
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find a conformal map that matches the corresponding points on the two arcs, thereby
enforcing the consistency between them. After transforming all the boundaries
of the flattened subdomains using this idea of partial welding, one can solve the
Laplace equation subject to the welded boundary constraints for each subdomain.
The final result is then a global free-boundary conformal parameterization of the
input mesh. It is noteworthy that both the initial and final parameterizations of the
subdomains are independent of those of the other subdomains, and hence one can
exploit parallelization in the computational procedure. Some additional steps can
be further incorporated for producing disk conformal parameterizations. It is also
possible to further reduce the area distortion of the conformal parameterizations by
finding an optimal Möbius transformation.

For some applications, it is more desirable to compute conformal parameteriza-
tions of the given surfaces onto a standardized planar domain different from a disk
or a rectangle. For instance, 3D carotid artery surfaces are usually visualized with
the aid of a nonconvex L-shaped parameter domain. In 2017, Choi et al. developed a
conformal parameterization method for flattening carotid artery surface meshes. The
method starts by computing an arclength scaling map onto a nonconvex L-shaped
planar domain for the initialization. Next, it computes the Beltrami coefficient of
the inverse of the arclength scaling map and then constructs a quasi-conformal
map from the L-shaped domain onto itself with the same Beltrami coefficient using
the LBS method (Lui et al. 2013), thereby yielding a conformal flattening map by
the composition formula in Equation (12). However, since the L-shaped domain is
nonconvex, the overall mapping is not guaranteed to be bijective especially near the
nonconvex corner of the domain. To enforce the bijectivity, the method considers
smoothing and chopping the Beltrami coefficient iteratively. More specifically, the
smoothing step is done by solving the following energy minimization problem:

μ̃ = argminμ

∫
(|∇μ|2 + |μ − ν| + |μ|2), (39)

where ν is the current Beltrami coefficient and μ̃ is the smoothed Beltrami
coefficient. The chopping step is done by changing the norm of the Beltrami
coefficient from |μ̃| to min{|μ̃|, 1 − ε} where ε is a small positive number. One
can then reconstruct a quasi-conformal map from μ̃ using the LBS method (Lui
et al. 2013) and repeat the above steps until the resulting map becomes bijective.
Figure 15 shows an example of the conformal parameterization of a carotid
artery surface obtained by Choi et al. (2017), from which it can be observed
that the parameterization facilitates the visualization of the vessel-wall-plus-plaque
thickness (VWT) measurement for the carotid model.

Quasi-conformal Parameterization
The LBS method (Lui et al. 2013) and the BHF method (Lui et al. 2012) can be
naturally applied for computing quasi-conformal parameterizations of any given
simply connected open triangle mesh. Specifically, after parameterizing the given
mesh onto a planar domain using the abovementioned conformal parameterization
methods, one can compute a quasi-conformal map with a prescribed Beltrami
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Fig. 15 The conformal parameterization of a carotid artery surface onto a standardized L-shaped
planar domain. (Image adapted from Choi et al. 2017). Here, the color represents the vessel-wall-
plus-plaque thickness (VWT) measurement for the carotid model

coefficient subject to some boundary constraints using either LBS or BHF. Similarly,
the QC iteration method (Lui et al. 2014) can be used for computing landmark-
matching Teichmüller parameterization of simply connected open triangle meshes.
It is noteworthy that these approaches can only produce fixed-boundary quasi-
conformal parameterizations.

More recently, Qiu et al. (2019) proposed a method for computing free-boundary
quasi-conformal parameterization of simply connected open triangle meshes. Let
f (z) = f (x + iy) = u(x, y) + iv(x, y) and μ = ρ + iτ . The least squares quasi-
conformal energy is defined as follows:

ELSQC(u, v;μ) = 1

2

∫
�

‖P∇u + JP∇v‖2dx dy, (40)

where:

P = 1√
1 − |μ|2

(
1 − ρ −τ

−τ 1 + ρ

)
(41)

and:

J =
(

0 −1
1 0

)
. (42)

It has been shown in Qiu et al. (2019) that:

ELSQC(u, v;μ) = 1

2

∫
�

‖A1/2u‖2dx dy + 1

2

∫
�

‖A1/2v‖2dx dy

−
∫

�

(uyvx − uxvy)dx dy, (43)
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where:

A =
⎛
⎜⎝

(ρ−1)2+τ 2

1−ρ2−τ 2 − 2τ
1−ρ2−τ 2

− 2τ
1−ρ2−τ 2

1+2ρ+ρ2+τ 2

1−ρ2−τ 2 .

⎞
⎟⎠ (44)

Based on this observation, the computation of a free-boundary quasi-conformal
parameterization can be done in a similar manner as in the least squares conformal
mapping method (Lévy et al. 2002; Desbrun et al. 2002).

Multiply Connected Open Triangle Meshes

Conformal Parameterization
In Choi et al. (2021), Choi developed a method for the annulus conformal
parameterization of multiply connected open triangle meshes with one hole and
a method for the poly-annulus conformal parameterization of multiply connected
open triangle meshes with k > 1 holes.

An illustration of the annulus conformal map (ACM) method is shown in Fig. 16.
Given any multiply connected open triangle mesh, the ACM method starts by
finding a path from a vertex at the inner boundary to a vertex at the outer boundary
and slicing the mesh along the path. As the sliced mesh is simply connected, one can
map it onto a rectangle using the rectangular conformal parameterization method
in Meng et al. (2016) with a periodic boundary constraint at the top and bottom
boundaries (the method will be explained in detail later in section “Point Cloud
Parameterization Using Conformal and Quasi-conformal Geometry”). Now, denote
the rectangular domain as [0, L] × [0, 1]. One can apply the following exponential
map η to map the rectangular domain to an annulus with inner radius e−2πL and
outer radius 1:

η(z) = e2π(z−L). (45)

Because of the periodic boundary constraint in the computation of the rectangular
parameterization, the top and bottom boundaries of the rectangular domain will be

Fig. 16 An illustration of the annulus conformal map (ACM) method. (Image adapted from Choi
et al. 2021)
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Fig. 17 An illustration of the poly-annulus conformal map (PACM) method. (Image adapted
from Choi et al. 2021)

mapped to consistent positions in the annulus. Therefore, it is possible to identify
the cut vertices to obtain a parameterization with annulus topology. Finally, one can
apply the idea of quasi-conformal composition in Equation (12) to further reduce
the conformal distortion of the parameterization caused by the cut and obtain the
final annulus conformal parameterization.

Given any multiply connected open triangle mesh with k > 1 holes, the poly-
annulus conformal map (PACM) method can be used for computing a conformal
parameterization of it onto a circle domain with k circular holes (see Fig. 17 for
an illustration). The PACM method starts by filling all but one holes of the input
mesh and computing an initial parameterization onto an annulus, thereby making
the unfilled hole circular. It then removes all filled regions and repeats the above
procedure with another hole chosen to be unfilled. Under the series of annulus
parameterizations, all holes eventually become highly circular in the parameter
domain. Finally, the method performs a projection to further enforce the circularity
of all holes and then applies the quasi-conformal composition as in Equation (12) to
produce a poly-annulus conformal parameterization.

Quasi-conformal Parameterization
Given any multiply connected open surface and any target Beltrami coefficient,
it is natural to ask whether one can compute a quasi-conformal parameterization
of the surface onto a canonical circle domain with the Beltrami coefficient of the
resulting mapping matching the input Beltrami coefficient. One major challenge in
this problem is that the radii and centers of the inner circles on the circle domain
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depend on the input multiply connected surface and hence cannot be set arbitrarily.
As the LBS method (Lui et al. 2013) and the BHF method (Lui et al. 2012) require
fixed (Dirichlet) boundary conditions, they cannot be used for computing the quasi-
conformal parameterization with the desired Beltrami coefficient directly. To solve
this problem, Ho and Lui (2016) proposed a variational approach called QCMC
for computing the quasi-conformal parameterization of multiply connected open
surfaces. More specifically, given any multiply connected open triangle mesh M
with ∂M = γ0 − γ1 − γ2 − · · · − γk , i.e., γ0 is the outer boundary and γ1, . . . , γk

are the inner boundaries, and any Beltrami coefficient μ, the QCMC method treats
the radii r and centers c of the inner circles on the circle domain as variables and
minimizes the following energy to solve for an optimal quasi-conformal map f :

E(f, r, c) =
∫
M

∣∣fz − μfz

∣∣2
, (46)

subject to the constraints f (γ0) = ∂D, f (γi) = ∂Bri (ci) for i = 1, . . . , k and
‖μ(f )‖∞ = ‖fz/fz‖∞ < 1. Here, Bri (ci) denotes the circle centered at a point
ci ∈ Z with radius ri > 0. In other words, the QCMC method simultaneously
searches for the optimal conformal module (r, c) for the boundary constraints and
the optimal quasi-conformal map f that satisfies the boundary constraints and is
associated with the prescribed Beltrami coefficient. Figure 18 shows an example of
the quasi-conformal parameterization obtained by the QCMC method.

It is also possible to compute the Teichmüller parameterizations of multiply
connected open triangle meshes. In 2014, Ng et al. developed a method for
computing the extremal Teichmüller map between two multiply connected domains.
The method iteratively updates the Beltrami coefficient of the mapping using BHF
until the norm of the Beltrami coefficient becomes uniform (see Fig. 19 for an
example). By combining the conformal parameterization methods for multiply
connected open surfaces and the proposed extremal Teichmüller mapping method,
the Teichmüller parameterization of any multiply connected open triangle mesh can
be obtained.

Point Cloud Parameterization Using Conformal and
Quasi-conformal Geometry

In recent years, several methods have been proposed for computing the conformal
and quasi-conformal parameterization of point clouds. Many of these methods are
motivated by prior mesh parameterization approaches, with some key modifications
and extensions for handling point clouds. Table 2 gives an overview of the recent
works. Below, we introduce the works for the parameterization of genus-0 point
clouds and then the works for point clouds with disk topology.
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Fig. 19 An example of the extremal Teichmüller map between two multiply connected domains.
(Image adapted from Ng et al. 2014). Left: A multiply connected domain with a circle packing
texture. Middle: The extremal Teichmüller map onto another multiply connected domain. Note
that the small circles are mapped to small ellipses with uniform eccentricity. Right: The histogram
of the norm of the Beltrami coefficient of the resulting map

Table 2 A summary of recent conformal and quasi-conformal parameterization methods for point
clouds

Method Surface type Target domain Criterion

Spherical map (Choi et al.
2016)

Topological sphere Sphere Conformal

TEMPO (Meng et al. 2016) Topological disk Rectangle Conformal/Teichmüller

PCQC (Meng and Lui
2018)

Topological disk Rectangle Quasi-conformal

Free-boundary map (Choi
et al. 2022)

Topological disk Free-boundary Conformal

Genus-0 Point Clouds

For the parameterization of genus-0 point clouds, Choi et al. developed a spherical
conformal parameterization method in Choi et al. (2016). Analogous to the spherical
conformal mapping algorithm for triangle meshes in Choi et al. (2015), the point
cloud spherical conformal parameterization method considers a “north pole” step
and a “south pole” step. More specifically, the method starts by approximating the
Laplacian operator on point clouds using the moving least squares (MLS) method
with a Gaussian-type weight function. Using the point cloud Laplacian, one can
compute a harmonic flattening map of a genus-0 point cloud and then map it to the
sphere using the inverse stereographic projection in Equation (29). This forms the
“north pole” step in the proposed method (Choi et al. 2016). As for the “south pole”
step, instead of solving for a quasi-conformal map as described in Choi et al. (2015),
here the method applies the south pole stereographic projection in Equation (30)
and then solves another Laplace equation followed by the inverse south pole
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Fig. 20 Spherical conformal
parameterization of genus-0
point clouds. (Image adapted
from Choi et al. 2016)

stereographic projection. It was shown in Choi et al. (2016) that by performing the
“north pole” step and the “south pole” step iteratively, one can eventually obtain a
spherical conformal parameterization of the point cloud. In other words, using the
north-south reiteration scheme, one can achieve conformality without computing
quasi-conformal maps as in the abovementioned mesh parameterization methods.
Figure 20 shows an example of the spherical conformal parameterization obtained
by Choi et al. (2016). More recently, a variation of the method has been proposed
in Jarvis et al. (2021) for the spherical parameterization of sparse genus-0 point
clouds.

Point Clouds with Disk Topology

In 2016, Meng et al. proposed a framework called TEMPO for computing Teich-
müller extremal mappings of point clouds with disk topology. In particular, they
developed methods for computing the rectangular conformal parameterizations and
landmark-matching Teichmüller parameterizations of disk-type point clouds (see
Fig. 21 for an illustration).

For the rectangular conformal parameterization, the method starts by computing
a harmonic map φ0 : P→ D of the input disk-type point cloud P onto the unit disk
by solving the Laplace equation:

�φ0 = 0 (47)

subject to a circular boundary constraint. It then computes a map φ1 : D →
[0, 1]2 from the unit disk to the unit square by solving the generalized Laplace
equation (19). Now, let φ1(x, y) = u(x, y) + iv(x, y). To achieve conformality,
the method considers rescaling the height of the square by a factor h such that the
Beltrami coefficient of the map φ2(x, y) = u(x, y) + ihv(x, y) is the same as
μ(φ−1

0 ). The optimal h is obtained by solving the following minimization problem:

h = argmin
∫
D

|μ(φ2) − μ(φ−1
0 )|2. (48)
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Fig. 21 The computation of rectangular conformal parameterization and landmark-matching
Teichmüller parameterizations of point clouds with disk topology. (Image adapted from Meng
et al. 2016)

By the composition formula (12), the composition map φ2 ◦ φ0 with the optimal
h gives a rectangular conformal parameterization of the input point cloud. After
getting the rectangular conformal parameterization, the landmark-matching Teich-
müller parameterization can be obtained by extending the QC iteration method (Lui
et al. 2014) for point clouds. Using the TEMPO framework, it is possible to compute
landmark-matching registrations of point cloud surfaces. Figure 22 shows an
example of registering two facial point clouds with prescribed landmark constraints.

One important component in the above framework is the approximation of
the Beltrami coefficient μ on point clouds. In 2018, Meng and Lui presented a
rigorous treatment of the approximation of quasi-conformal maps and the relevant
concepts on point clouds. In particular, they proposed a geometric quantity called the
point cloud Beltrami coefficient (PCBC) and proved that it can effectively capture
the local geometric distortion of a point cloud mapping. Using the PCBC, they
developed the point cloud quasi-conformal (PCQC) parameterization method for
the parameterization of point clouds with any prescribed PCBC (see Fig. 23 for an
example).

More recently, Liu et al. developed a free-boundary conformal parameterization
method for disk-type point clouds (Choi et al. 2022) by extending the mesh-based
DNCP algorithm in Desbrun et al. (2002). The method approximates the Laplacian
operator on disk-type point clouds using a modified local mesh method with some
special treatments at the point cloud boundary. More specifically, let P be the
given point cloud with n vertices. For each vertex vi , the method considers its
k-nearest neighbors and computes the local Delaunay triangulation to obtain a one-
ring neighborhood Ri . The angles in Ri are then used for constructing an n × n

matrix L
pc
k,i :
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Fig. 22 An illustration of the TEMPO framework. (Image adapted from Meng et al. 2016). Left
column: The source human facial point cloud and the rectangular conformal parameterization.
Middle column: The target human facial point cloud and the rectangular conformal parameteriza-
tion. Right column: The registration result and the corresponding landmark-matching Teichmüller
mapping of the rectangular domain

2.5
x 104

2

Compare diffuse BC with real BC
BC given
BC solved

1.5

1

0.5

0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 23 An example of the point cloud quasi-conformal (PCQC) parameterization. (Image
adapted from Meng and Lui 2018). Left: The input point cloud and its underlying surface. Middle
column: The PCQC parameterization with the prescribed PCBC. Right: The histogram of the norm
of the PCBC of parameterization result and that of the actual PCBC prescribed
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⎧⎪⎪⎨
⎪⎪⎩

L
pc
k,i(i, j) = L

pc
k,i(j, i) = −1

2
(cot αij + cot βij ) if vj ∈ Ri,

L
pc
k,i(i, i) = 1

2

∑
j :vj ∈Ri

(cot αij + cot βij ),
(49)

where αij and βij are the angles opposite to the edge [vi, vj ] in the local
triangulation, and all other entries of L

pc
k,i are set to be 0. Noticing that the above

approximation may be inaccurate at the boundary vertices in case the point cloud
boundary shape is nonconvex, the method further checks if every boundary angle
θ in the local triangulation for boundary vertices satisfies the angle criterion c1 <

θ < c2, where (c1, c2) is a prescribed angle range. It then removes all triangles that
violate this angle criterion and obtains the matrices L

pc
k,i for the boundary vertices.

The Laplacian operator L
pc
k for the entire point cloud can then be approximated by

L
pc
k = 1

3

∑n
i=1 L

pc
k,i . Finally, the point cloud parameterization f = (fx, fy) can be

obtained by solving the following linear system:

((
L

pc
k 0
0 L

pc
k

)
−

(
0 M1

M2 0

) ) (
fx

fy

)
= 0, (50)

where M1(i, j) = M2(j, i) = 1
2 and M1(j, i) = M2(i, j) = − 1

2 if vi, vj are
adjacent boundary points with positive orientation and 0 otherwise. As for the
boundary conditions, the farthest two points in P are mapped to (0, 0) and (1, 0)

following the original DNCP formulation (Desbrun et al. 2002). Moreover, it has
been shown in Choi et al. (2022) that the partial welding method for triangle meshes
in Choi et al. (2020a) can be extended for point cloud parameterization (see Fig. 24).
More specifically, the proposed point cloud parameterization method partitions the
point cloud into several subdomains and flattens the boundary of each of them onto
the plane. It then applies the partial welding method to enforce the consistency of
the boundaries. Finally, the interior part of each subdomain can be mapped onto the
plane by solving the Laplace equation with the welded boundary constraints.

Fig. 24 An illustration of the free-boundary conformal parameterization method for disk-type
point clouds via partial welding. (Image adapted from Choi et al. 2022)
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Applications

The surface mapping and parameterization methods developed based on quasi-
conformal geometry have been found useful in many practical applications in recent
years.

For instance, the mapping methods have been applied to biological and medical
shape analysis. In Zeng et al. (2010) and Zeng and Yang (2014), Zeng et al. applied
quasi-conformal mappings for supine and prone colon registration. In 2015, Wen
et al. used landmark-matching quasi-conformal mappings for analyzing vestibular
systems. In 2015, Lam et al. used Teichmüller mappings for skull registration.
In 2015, Choi et al. used the FLASH method for registering brain cortical surfaces
(see Fig. 25). In Chan et al. (2016, 2020), Chan et al. utilized conformal and quasi-
conformal mappings for the shape analysis of hippocampal surfaces. The spherical

Fig. 25 Registering brain cortical surfaces using the FLASH method. (Image adapted from Choi
et al. 2015). (a) The source brain with sulcal landmarks. (b) The target brain with sulcal landmarks.
(c) The registration obtained using conformal parameterization without landmark constraints. (d)
The registration obtained using landmark-constrained optimized conformal parameterization. It
can be observed that the landmark-constrained parameterization gives a more accurate registration
result
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conformal parameterization method developed in Choi et al. (2015) has been applied
to optical mapping for cardiac electrophysiology (Christoph et al. 2017) and cardiac
radiofrequency catheter ablation (Zhou et al. 2016). In 2018, Choi and Mahadevan
utilized Teichmüller mappings for insect wing morphometry (see Fig. 26). In Choi
et al. (2020c,d), Choi et al. utilized conformal parameterizations and Teichmüller
mappings for analyzing human and other mammalian tooth shape (see Fig. 27).

The mapping methods have also been applied to different engineering problems.
For instance, the spherical conformal parameterization method in Choi et al. (2015)
has been applied to collaborative robotics (Popov and Klimchik 2019). The disk
conformal parameterization method in Choi and Lui (2015) has been applied to

Fig. 26 Insect wing morphometry using landmark-matching Teichmüller mappings. (Image
adapted from Choi and Mahadevan 2018). To quantify the difference between two different
Drosophila wing shapes (top row), one can compute a landmark-matching Teichmüller mapping
(bottom left) from the first wing to the second wing that matches the prominent structural features
of the two wings such as the intersections of the veins. It is then possible to compare the
Teichmüller mapping result and the second wing by considering their intensity difference

Fig. 27 Mammalian tooth morphometry using quasi-conformal mappings. (Image adapted
from Choi et al. 2020c). Given two tooth surfaces, the method first computes a free-boundary
conformal parameterization of each surface. It then finds an optimal landmark-matching quasi-
conformal map on the plane, which finally gives an optimal inconsistent surface registration
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structural optimization (Kussmaul et al. 2019) and robot navigation (Notomista and
Saveriano 2021). The rectangular parameterization method in Meng et al. (2016)
has been applied to T-spline surface reconstruction (Wang 2021) and nanotech-
nology (Guralnik 2021). In 2017, Choi et al. developed a method for subdivision
connectivity surface remeshing via Teichmüller mappings. In 2018, Yung et al.
developed an efficient image registration method using coarse triangulations and
landmark-matching quasi-conformal mappings. In (2019, 2021), Choi et al. utilized
conformal and quasi-conformal mapping methods (Meng et al. 2016; Choi and Lui
2018) in developing constrained optimization frameworks for kirigami metamaterial
design. In 2021, Shaqfa et al. extended the disk conformal parameterization
method (Choi and Lui 2015) for spherical cap parameterization and utilized it for
analyzing stone microstructures. Recently, Jarvis et al. (2021) developed a method
for reconstructing 3D asteroid and comet shapes from sparse feature point sets via
spherical parameterizations based on the method in Choi et al. (2016).

Conclusion

With the theoretical guarantee and computational efficiency of quasi-conformal
maps, many conformal and quasi-conformal parameterization methods have been
developed for triangle meshes and point clouds. The methods have been successfully
applied to various science and engineering problems.

More recently, there is an increasing interest in volumetric mapping methods
for the deformations of 3D solid shapes (Lee et al. 2016; Yueh et al. 2019; Choi
and Rycroft 2021; Zhang et al. 2022). Therefore, a natural future research direction
is the development of higher-dimensional parameterization methods using higher-
dimensional quasi-conformal theory.
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