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Adaptive avian radiations associatedwith the diversification of bird beaks into
a multitude of forms enabling different functions are exemplified by Darwin’s
finches and Hawaiian honeycreepers. To elucidate the nature of these
radiations, we quantified beak shape and skull shape using a variety of geo-
metric measures that allowed us to collapse the variability of beak shape
into a minimal set of geometric parameters. Furthermore, we find that just
two measures of beak shape—the ratio of the width to length and the normal-
ized sharpening rate (increase in the transverse beak curvature near the tip
relative to that at the base of the beak)—are strongly correlated with diet.
Finally, by considering how transverse sections to the beak centreline evolve
with distance from the tip, we show that a simple geometry-driven growth
law termed ‘modified mean curvature flow’ captures the beak shapes of
Darwin’s finches and Hawaiian honeycreepers. A surprising consequence of
the simple growth law is that beak shapes that are not allowed based on the
developmental programme of the beak are also not observed in nature,
suggesting a link between evolutionary morphology and development in
terms of growth-driven developmental constraints.
1. Introduction
Avian adaptive radiations, such as those associated with Darwin’s finches and
Hawaiian honeycreepers (figure 1a), provide concrete examples of how a species
can diversify, with the beak evolving into a variety of forms that enabled different
specialized functions. To elucidate this diversification of form, we need to quan-
tify both the nature and the extent of variation in beak shapes and how this
variation enables function (e.g. feeding and vocalization). In addition, since this
variation in shape is generated by modifications of a developmental programme
to produce new forms, it is equally important to describe these three aspects of
beak shape evolution (form, function and development) within a common frame-
work that can further illuminate the evolvability of adaptive radiation. Here,
using micro-computed tomography (μCT) scans of Darwin’s finches, Hawaiian
honeycreepers and their relatives, we quantify beak and skull shape variation,
and link it to their evolution and development.

Beak shapes have been quantified using discrete measurements, such as
length, width and depth, or using a set of landmarks—identifiable points that
are common to all studied specimens [3,4]. While these methods are valuable in
characterizing beak shape variation [5–7], they do not explicitly capture the rich
geometry of beak shape parametrized by the curvature of its surface, unless slid-
ing semilandmarks are used [8,9]. To overcome the challenges associated with
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Chlorodrepanis virens
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Telespiza cantans

Carpodacus erythrinus

Leucosticte arctoa

Leucosticte brandti

Pyrrhula pyrrhula

Pinicola enucleator

(3) (4)

cut and align beak

close holes and smooth

extract beak centreline and cross sections

interate to obtain normal sections

~7 Myr

Figure 1. Beak morphology and phylogeny of Hawaiian honeycreepers. (a) Examples showing the diversity of beak shapes observed for Hawaiian honeycreepers: (1)
H. wilsoni, (2) V. coccinea, (3) P. xanthophrys and (4) C. flava. (b) Steps used in our analysis to extract beak shapes, centrelines and cross sections (see electronic
supplementary material for details). (i) The skull is aligned so that its long axis is in the x-direction. (ii) The beak is cut from the skull using the most basal plane
normal the x-axis that does not include the nares (nostrils), then rotated so that its major axis is along the x-direction, and (iii) smoothed to remove holes from the
mesh. (iv) starting with vertical cross sections perpendicular to the x-axis, we find a test centreline as the centre of mass (assuming uniform density) for each cross
section. New cross sections are obtained normal to the generated centreline. Iterating this procedure, we get the final centreline and cross sections shown in (v).
(c) The phylogeny of honeycreepers and their relatives based on [1]. Taxonomic nomenclature follows [2], except that the genus Vestiaria is not merged with Drepanis.
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landmark-based morphometrics [10], landmark-free methods
that avoid the need to manually select a set of landmarks on
a structure have been developed, for example, using smooth
transformations [11] or Fourier transforms [12]. Complement-
ing these morphometric approaches, researchers have also
suggested generative models for the morphogenesis of
shapes modelled geometrically, with each specimen rep-
resented by the values of the best-fit model parameters
[13–15]. This leads to theoretical morphospaces and allows
for investigating why some forms exist in nature and others
do not, either due to functional or ontogenetic constraints [13].

Here, we take both these approaches, drawing on and gen-
eralizing our recent work on the finch beak [16], to quantify
the range of avian beak shapes and provide a biophysical
model for their morphogenesis. We first describe the upper
surface of the beak using three complementary landmark-
free approaches. In the first approach, the beak shape is
represented as a surface with curvature linearly decreasing
with distance from the tip [16]. To accommodate the highly
curved honeycreeper beaks and motivated by beak ontogeny,
we then extract the upper bill centreline, along with its
normal cross sections as a function of distance from the tip to
further elucidate the geometry of beak shape variation.
Lastly, we use an independent approach, based on the
Hausdorff distance, to validate results on the distribution of
species within each phylogenetic group in morphospace. This
third approach is flexible enough to apply equally to beaks
and skulls without introducing landmarks or parametric
equations.While all ourmorphometric approaches give similar
qualitative conclusions regarding the distributions of beaks
and skulls in morphospace, consistent with prior results
using landmark morphometrics [7], we discover further geo-
metric regularities in beak shapes and computationally link
morphology to development and function.

Next, motivated by studies of beak growth during embryo-
nic development [17,18] that show that a group of proliferating
cells near the tip of the developing beak form a growth zone
that defines the shape of the beak as it shrinks over time, we
investigate how transverse beak cross sections normal to the
centreline change as they approach the tip of the beak. We
observed that beak cross sections change shape over time,
becoming more convex and circle-like the closer they are to
the tip, contrary to the previous assumption that the growth
zone will shrink uniformly (without change in shape) over
time [18]. This observation motivates us to use a variant of
the modified mean-curvature flowmodel of growth zone evol-
ution [16] byallowing a highly curved region near its boundary
to shrink (stop dividing) at a higher rate comparedwith cells in
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Figure 2. Evolutionary morphospace of beaks. (a) The extracted upper beak (right) from a V. coccinea skull (left). The beak axes are aligned with its principal
directions (figure 1b). The functional form z ¼ ðDB þ kx L2BÞðx=LBÞ � kx x2 approximates the midsagittal curve (y = 0) shown in yellow. Transverse sections
(red) also have parabolic form with curvatures varying with distance from the tip according to κy(x) = κtip− S x. The tip curvature, κtip, is extrapolated from
the relation κtip≡ κy(0). (b) The extracted tomium of the beak projected onto the xz−plane and the corresponding parabolic fit. (c) The morphological variables
defined by the beak centreline, where LC is its length and κC is its curvature. At the base of the beak, the cross section is characterized by its depth DC and width
WC. (d ) Beak morphospace defined by the variables ~kx ¼ L2B kx=DB and ~S ¼ LB W2

B S=DB for 151 specimens from four groups, colour coded as shown in (a).
(e) The morphospace defined by the dimensionless tomium parameters ~aT ¼ LBaT=DB and ~kT ¼ L2BkT=DB. The fact that most points are close to the dashed
curve, defined by ~kT ¼ 0:5þ ~aT , indicates that DT≈ 0.5 DB for almost all beaks in our dataset as explained in the text. ( f ) Beak morphospace defined by the
aspect ratio WC/(2LC) and dimensionless centreline curvature ~kC ; kC LC .
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the bulk of the growth zone. This tissue scale behaviour can
emerge from a morphogen diffusion and degradation, where
cells continue dividing if the concentration of this morphogen
is above a threshold value [16]. By additionally allowing
changes in the growth direction that can generate beaks
with highly curved centrelines, we show that we can generate
the observed beak shapes of both Darwin’s finches and
Hawaiian honeycreepers.
2. Evolutionary morphospace of beaks
(a) Constructing morphospaces
In figure 1b,c, we show beak meshes from honeycreepers (n =
41) and their relatives (n = 9) along with their phylogenetic
relationships (see electronic supplementary material, figure
S1 for views of the entire skull). Our dataset, with 151 total
specimens, also includes Darwin’s finches (n = 54) and their
relatives (n = 47). To quantify their three-dimensional shapes,
we extract and smooth the three-dimensional surfaces of the
bones of upper beaks from μCT-scans of the skulls and, for
each smoothed beak mesh, automatically extract its centreline
and beak cross sections normal to it (see figure 1; electronic
supplementary material, figure S2 for details of smoothing
and centreline extraction).

To extract the upper surface of the beak, we first find the
tomium (cutting edge of the beak) as the points withminimum
and maximum lateral coordinates (y-axis in figure 2a). The
tomium then separates the upper and lower surfaces of
the beak, which we orient so that the origin of the coordinate



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230420

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 S

ep
te

m
be

r 
20

23
 

system is at the tip of the upper surface, with axes oriented to
correspond to the principal axes (electronic supplementary
material, figure S3). We find that the following paraboloidal
profile, which was introduced as a fit to the beaks of Darwin’s
finches in [16], captures the upper surface of the beak for the
samples in our dataset (electronic supplementary material,
figure S4):

zUðx, yÞ ¼ aU x� kx x2 � (ktip � S x) y2, ð2:1Þ
where the subscript U denotes the upper surface, aU gives the
slope of themidsagittal section (y = 0) near the tip, κx is the cur-
vature of the midsagittal section, κtip is the curvature in the
transverse direction at the tip and S represents the ‘sharpening
rate’ of the beak curvature towards the tip. Since the size of the
cross section shrinks to zero at the tip, the parameter κtip is
extracted from the linear fit of the transverse curvature κy≡ κtip−
S x. The beak is also characterized by its length LB, widthWB, and
depth DB, where the subscript B denotes measurements aligned
with the bounding box of the beak oriented along the principal
directions (figure 2a). To compare beak shape across species,
we remove the effect of scale and consider the dimensionless
shape variables

~aU ¼ LB
DB

aU , ~kx ;
L2B
DB

kx, ~ktip ;
W2

B

DB
ktip and ~S ;

LB W2
B

DB
S:

ð2:2Þ

To describe the shape of the tomium, we project the
extracted tomium points onto the xz-axis and fit the resulting
curve to a parabola,

zTðx, yÞ ¼ aT x� kT x2, ð2:3Þ
which gives a good fit as shown in figure 2b. The three-
dimensional tomium curve can then be found as the intersec-
tion of the upper beak surface given by equation (2.1) and the
surface given by equation (2.3). We also define normalized
tomium parameters as ~aT ; LBaT=DB and ~kT ; L2BkT=DB.
Knowing the upper beak surface and tomium, equations
(2.1)–(2.3), we can define the beak depth and width as a
function of the coordinate x. The depth is defined as D(x)≡
zU(x, 0)− zT(x, 0), while the width is defined through the
equation zU(x, W(x)/2) = zT(x, W(x)/2), which leads to

WðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DðxÞ

ktip � Sx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðaU � aTÞx� 4 (kx � kT)x2

ktip � Sx

s
: ð2:4Þ

Comparisons of this equation with data are given in elec-
tronic supplementary material, figure S3.

To elucidate the role of centreline curvature in honeycree-
per beak shape variation, we compute the arc-curvature of
the beak centreline, κC, by fitting the centreline to a circular
arc (figure 2c; electronic supplementary material, figure S3).
A circular arc is used in this case, since the obtained curvature
will not depend on the overall rotation of the beak—unlike a
parabolic fit, which changes depending on the choice of the x
and y axes. In addition, as shown in figure 2c, we define centre-
line adapted length, width and depth (LC, WC, DC) and
corresponding centreline adapted coordinates (xC, yC, zC),
where xC is the arc-length coordinate along the beak centreline
and (yC, zC) represent the remaining two orthogonal directions.
We also define a dimensionless curvature ~kC ¼ LCkC and
aspect ratio WC/LC between the width of the beak’s basal
cross section and the centreline length.
To elucidate the statistical distribution of beaks in morpho-
space, and the covariation between beak and skull shapes, we
performed a surface-based morphometric analysis for the
beaks and skulls in our dataset. We first normalized each
surface mesh based on the distance between the beak tip and
the centroid of the mesh. Then, for each pair of specimens, we
searched for an optimal rigid transformation (i.e. a combination
of translations and rotations) to align them and computed the
symmetric Hausdorff distance between them [19,20]. The
advantage of using this metric is that it does not depend on a
correspondence between points on the meshes that may have
different numbers of points—it is computed by first finding
for each vertex on one mesh the minimum distance to the
other mesh, and then taking the maximum value across all
these pointwise distances. Once we obtained the Hausdorff
distance measure for all pairs of specimens, we used multidi-
mensional scaling (MDS) to represent all specimens on the
two-dimensional plane (figure 3), where distance between
points in this plane are as close as possible to the computed
Hausdorff distance between each pair of meshes [21,22].
Repeating this for beaks and skulls separately, results in coordi-
nates that describe the beak and skull shapes. In addition, by
using affine (rigid, scaling and shear) transformations to opti-
mally align meshes we obtained MDS coordinates that
indicate how well two shapes can be transformed into each
other with this set of transformations [23].
(b) Patterns in morphospace
The dimensionless parameters that we use to characterize beak
size and shape given in equation (2.2) are not all independent.
Indeed, using equation (2.1) and the relationDB = zU(LB, 0), we
obtain ~aU ¼ 1þ ~kx. In addition, since the curvature of the para-
bola at the base of the beak is given as kyðLBÞ ¼ 4W2

B=DB, we
have the identity ~ktip ¼ 4þ ~S, which we verify by calculating
the Pearson correlation coefficient between the two quantities
across our 151 samples (Cor½~S, ~ktip� � 0:97) and noting that
specimens are close to the plane ~ktip ¼ 4þ ~S in morphospace
(electronic supplementary material, figure S5A). This reduces
the morphospace of beak shapes to an overall size (which
may be taken as the length LB), two aspect ratios associated
with the relative depth DB/LB and width WB/LB and two
scaled curvature parameters ~kx, ~S.

By looking at the samples in the morphospace ð~kx, ~SÞ
(figure 2d), we note that the region 4~kx . ~S is only occupied
by honeycreepers. The constraint 4~kx . ~S, which is satisfied
by all the other species, was predicted in [16] as a developmen-
tal constraint resulting from curvature driven growth of the
beak. The fact that Hawaiian honeycreepers do not satisfy
this constraint is related to their higher normalized tomium
curvature ~kT (figure 2e) and large midsagittal curvature ~kx
coupled with relatively low sharpening rates (figure 2d).

Looking at the normalized tomium parameters (figure
2e), we find that points lie close to the line ~kT ¼ 0:5þ ~aT .
To understand what this means, we note that the depth of
the tomium—the vertical distance between the tip and base
denoted by DT in figure 2b—can be calculated using equation
(2.3) as DT ; �zTðL, 0Þ ¼ DBð~kT � ~aTÞ. Therefore, the line
in figure 2e implies that DT/DB≈ 0.5 for most specimens in
our dataset, with the Maui parrotbill (P. xanthophrys) and
Eurasian bullfinch (P. pyrrhula) deviating from this trend
due to their extreme morphology (see also figure 2f ).
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We observed that the depth over width aspect ratio DC/
WC for the most basal cross section normal to the centreline
is nearly constant for honeycreepers (DC/WC = 0.64 ± 0.1,
where 0.64 is the mean and 0.1 is the standard deviation),
which is close to the value for Darwin’s finches (DC/WC =
0.68 ± 0.07), as can be seen in electronic supplementary
material, figure S5B. In addition, the dimensionless curvature
~kC is large for honeycreepers, especially for V. coccinea, as
expected (figure 2f ). However, this high value of dimension-
less curvature is driven more by its longer length LC than the
absolute value of its curvature κC relative to other species
(electronic supplementary material, figure S5C).

As can be seen from figures 2d–f (see also electronic sup-
plementary material, figure S5), Honeycreepers, Darwin’s
finches and their respective relatives occupy distinct regions
of morphospace, with Honeycreepers occupying a broader
and unique range of variation in each case. This observation
is also confirmedusing the beakMDS coordinates from the sur-
face-based analysis using rigid transformations (figure 3a). By
contrast, the overlap between the regions occupied by the
different groups in the full skull MDS plane is more significant
(figure 3b). These results are consistent with the those presented
in [7], in which the principal component analysis (PCA) was
applied to a set of normalized landmarks representing the
beaks or the full skulls. To explore further the nature of variation
between the different groups, we consider MDS coordinates
based on affine matching for both beaks and skulls. For beaks,
we find that Darwin’s finches occupy a distinct region, indicat-
ing that as a group, we cannot match their beaks with affine
transformation to the other groups in our study (figure 3c).

Lastly, to quantify the relative intra-specific (within species)
and interspecific (between species) variations, we compare the
area of the convex hull occupied by each species (for species
that have more than two specimens) to the total area occupied
by its phylogenetic group (honeycreepers or Darwin’s finches).
The smaller the ratio of these two areas, V, the stronger a
species’ specimens are clustered together. To assess the statisti-
cal significance of the mean measured value of V for each
phylogenetic group, we estimate its probability by randomly
assigning the morphospace values (such as those given in
figure 2d) to specimens and recomputing V. We find that for
the morphospaces shown in figure 2d–f and figure 3, specimens
are significantly clustered (with 99% confidence) relative to
other members of their respective phylogenetic group.
3. Form and feeding mechanics of beaks
Beaks are under multiple selection pressures, and their evol-
ution may be correlated with other parts of the body due to
developmental constraints or co-adaptation [24,25]. Here,
we explore correlations between beak shape and diet for
birds in our study [26]. We grouped species in our dataset
by their main diet items following [7,27,28]. To explore the
correlation between diet and the morphospace generated in
the previous sections, we assign each diet category a numeri-
cal value D, which is an integer in the range [1, 9], and then
found Spearman’s rank correlation coefficient—which is suit-
able for correlating discrete and continuous variables—
between this measure and the morphometric quantity of
interest (figure 4). Since the numerical value of D for each
diet category involves an arbitrary choice of ordering the cat-
egories, we calculate the correlation coefficient for all possible
permutations of assigning a value to a diet category and
define the correlation coefficient as the maximum across all
possible permutations. To check that this method does not
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generate spurious correlations, we generate control morphos-
paces consisting of values chosen at random between [0,1],
and then compute the correlation between these random
values and D. By repeating this for ten thousand trials,
we estimate that correlations above 0.25 are statistically
significant since it did not result for any of these trials.

Using this method, we find that the aspect ratio WC/LC is
highly correlated with diet (with coefficient of 0.70), where
small values correspond to nectar feeding species and large
values correspond to fruit and seed eating species (figure
4a)—possibly enabling them to exert larger output forces on
food items by increasing the mechanical advantage [29] and
fracture resistance as suggested in previous studies [30–32].
We also find that fruit and seed eating species have high
sharpening rate ~S (coefficient≈ 0.54, figure 4b), which we
hypothesize enables the beak to withstand high forces, since
curvature is known to enhance the rigidity ofmechanical struc-
tures [33]. In addition, we find that the skull morphospace
parameter MDS2 is correlated with diet (coefficient≈ 0.46).
While these correlations may be due to morphology adapting
to diet—long and narrow beaks for probing flowers, wide
and deep beaks for crushing seeds, as shown in previous
studies [30,34,35]—the correlation between diet and mor-
phology may also be linked to other factors [36]. Indeed
phylogenetic grouping (honeycreepers, Darwin’s finches, and
their respective relatives) is also highly correlated with the
aspect ratio WC/LC (with coefficient of 0.54) and sharpening
rate ~S (with coefficient of 0.48).

Figure 4c shows the morphospace ðWC=2LC, ~SÞ colour
coded according to diet category, illustrating the correlations
between these quantities and diet mentioned in the previous
paragraph. By calculating the quantity V described at the end
of §2(b), we find that specimens of the same species are
significantly clustered in this morphospace relative to other
members of their phylogenetic group.
4. Developmental biophysics of beaks
Beak growth occurs via the extrusion of a group of dividing
cells near the tip of the developing beak, even as the number
of dividing cells in the growth zone diminishes over time
[18]. By looking at how adult beak cross sections vary along
the centreline, we find that the shape of the cross sections
changes, as their size decreases towards the tip (electronic
supplementary material, figure S6). This observation of three-
dimensional beak shapes rules out homogeneous and isotropic
contraction of the growth zone over time to explain beak
shapes [18,23]. In previous work on the finch beak [16],
inspired by experimental observations, we proposed a cellular
model that accounts for cell proliferation patterns that vary in
space–time. This led to a coarse-grained tissue-level geometric
model for the evolution of the beak surface [16], given the
initial size and shape of the cross section (figure 5a), and the
extrusion rate of the growth zone along the proximal–distal
axis, denoted as U. By modifying this model to account for
the centreline curvature of the beaks, we show that we can gen-
erate all the beak shapes in our dataset by varying a single
dimensionless parameter (describing how the dynamics of
growth depends on curvature), (orange arrows in figure 5a).

(a) Cell-scale model for growth
In order to achieve a continuous turning of the growth zone
and generate a curved beak, cells must divide and extrude
faster in the upper part of the beak (culmen). A minimal
model for this follows from having a linear transverse gradient
in cell proliferation rates (figure 5b), controlled by Bmp4,
known to generate the highly curved cockatiel beaks [37]. Fur-
thermore, to account for our observation of changing shapes of
cross sections, we assume that cells have a proliferation gradi-
ent along the proximal–distal axis of the beak controlled by the
gradient of a morphogen that diffuses to the surrounding cells
with diffusion constantDc and degrades at a rate G. This limits
the efficacy of the morphogen produced by a cell to a region of
size l � ffiffiffiffiffiffiffiffiffiffiffi

Dc=G
p

(grey circle in figure 5c). Furthermore, since
only cells in the growth zone produce this morphogen, a gradi-
ent along the proximal–distal axis can generate a stable
protrusion rate in the distal direction.

Thus the behaviour of individual cells is a function of dis-
tance from the growth zone and the curvature of the beak.
Those that are far relative to λ will receive a weaker signal
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~S ¼ �3, ~aT ¼ 0, ~kx ¼ 1.
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than those that are closer. Similarly, cells proliferate less in
more positively curved regions near the boundary (e.g.
black parts in figure 5c). In addition to this effect, cells stop
dividing at some probability Pdeath, independent of the mor-
phogen concentration. This last effect, when acting alone,
leads to an exponential decay over time of the growth zone
size, without any change in its shape. Figure 5d shows the
(scaled) basal cross sections for all honeycreeper samples,
which represent the initial conditions for the dynamical
evolution discussed in the next section.
(b) Tissue-scale model for growth
We now consider a tissue level continuum approximation of
the cellular model described above. Since cells near a curved
part of the growth zone boundary receive the morphogen
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signal from fewer neighbours (figure 5c), the envelope of the
growth zone will shrink faster in those regions. By looking at
transverse sections of the adult beaks, represented using
equation (2.1), we observe that regions of higher curvature
(near y = 0) do in fact shrink faster (figure 5e). Therefore,
this suggests that the boundary of the growth zone evolves
with a velocity that depends on the local (arc) curvature
through the relation, first introduced by us in this context
to explain the shapes of finch beaks [16],

v ; @tx ¼ �ðaþ bkÞn, a, b . 0, ð4:1Þ
where n is the inward normal to the surface, and κ is the planar
curvature of the boundary. The characteristic length scale given
by the ratio b/a determines which of the two terms in the
growth law will dominate. When κ−1≫ b/a, the velocity of
the front is a constant and follows Huygens’ principle. When
κ−1≪ b/a, the front velocity v∼−bκn, and corresponds to
the well-known curve shortening (or mean curvature) flow in
which speed is proportional to the curvature [38,39].

Figure 5f shows the agreement between the shape gener-
ated by the mean curvature flow and the cross sections of a
V. coccinea sample (see also electronic supplementary
material, figure S7). By fitting the mean curvature flow to
beak cross sections, we obtain the dimensionless parameter
b/(aWC), which is plotted in figure 5g.

(c) Developmental constraints in morphospace
Our generative model which was inspired by the develop-
mental biology of the beak can not only reproduce beak
shapes, but also provides limits on the range of allowable
beak shapes. For example, beak shapes generated by equation
(4.1), when a and b are both positive, will have cross-sectional
area and perimeter that decrease over time (electronic sup-
plementary material, figure S6A–B) so that their cross
sections become more convex and circular as we approach
the tip (electronic supplementary material, figure S6C–D).

To investigate the constraints on beak shape that follow
from the curvature-driven flow described in equation (4.1),
we simplify equation (4.1) by assuming circular cross sections
with radius R(t) =W(t)/2, whereW(t) is the width of the beak
as a function of time, which we will calculate using the
tomium width given in equation (2.4). Then κ(t) = 1/R(t) =
2/W(t) and plugging this into equation (4.1), we obtain

dRðtÞ
dt

¼ � aþ b
R

� �
: ð4:2Þ

To convert between spatial (xC) and temporal variables (t),
we use the extrusion speed U so that (t− t*)U = xC, where
t* = LC/U is the final time when the cross section shrinks to
zero size at the tip of the developed beak. Near the tip
(xC→ 0), the term proportional to b in equation (4.2)
dominates and we get

W ¼ 2R ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b(t� � t)

p
¼ 2

ffiffiffiffiffiffiffiffiffiffi
2bxC
U

r
, ðxC ! 0Þ: ð4:3Þ

In §2(a), we found that the beak width is given by equation
(2.4), which—using equation (2.2) and the relations
~ktip ¼ 4þ ~S and ~aU ¼ 1þ ~kx derived in §2(b)—leads to the
following when (x→ 0),

WðxÞ ¼ WB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 (1þ ~kx � ~aT)

4þ ~S

s ffiffiffiffiffi
x
LB

r
, ðx ! 0Þ: ð4:4Þ
After using the Pythagorean theorem to estimate the factor

xC=x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

T

q
near the tip and equating the right-hand

sides of equations (4.3)–(4.4), we get

b
UWB

¼ (1þ ~kx � ~aT)
4þ ~S

LC

LB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2T

q WB

2LC
, ð4:5Þ

Since the beak shrinks to a point at the tip, we require that
a > 0, b > 0. Therefore, for a given value of b, the largest poss-
ible beak length LC corresponds to the case a = 0 (since a
higher value of a reduces the length via faster shrinking of
the growth zone). Then, from equation (4.2), it follows that
_R ¼ �b=R so that RðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2bðLC=U � tÞp
. Given the initial

conditions Rð0Þ ¼ WB=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bLC=U

p
, this means that

b=U ¼ W2
B=8LC. Since larger values of the beak length require

negative values of a, we get the prediction b/(WB U ) <WB/
8LC, which can be rewritten using equation (4.5) to eliminate
b in terms of other morphological parameters and gives

4(1þ ~kx � ~aT) � LB
LC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2T

q
ð4þ ~SÞ: ð4:6Þ

Empirically, we find that the factor multiplying (4þ ~S) is very
close to unity, which follows geometrically from the fact that
beak centrelines are not extremely curved, aT , ~kC & 1. Therefore,
wemay simplify the constraint to 4ð~kx � ~aTÞ � ~S, which reduces
to the earlier result [16] 4~kx � ~S when ~aT ¼ 0. Since all other
species satisfy the constraint 4~kx � ~S andhave aT≤ 0 unlike hon-
eycreepers (figure 2; electronic supplementary material, figure
S3B), we introduce the ramp function Rð�Þ ; maxð0, �Þ and
write the constraint as 4ð~kx �Rð~aTÞÞ � ~S. Figure 5h shows
that honeycreeper beaks are closer to the boundary predicted
by this constraint, which may be compared with two examples
of beak shapes that would not be possible due to this constraint
(blue meshes in figure 5h).
5. Conclusion
This study continues our previous study [16] by developing
and deploying three-dimensional morphometric approaches
to quantify three-dimensional beak shape and link evolution
and development, now going beyond finch beaks to other
avian radiations. Our methods complement (semi)land-
mark-based morphometrics by fully describing beak shape
using a small set of geometrically meaningful parameters—
orientation relative to the skull, aspect ratios and curvatures—
that allow us to discover further regularities in beak shape
(e.g. figure 2e; electronic supplementary material, figure S5A).
This sets the stage for computational studies that can simulate
the performance of different beak shapes (e.g. its mechanical
rigidity) as the morphological parameters are varied to shed
light on the distribution of species in morphospace [16,32,35].
The quantitative compression inherent in the mathematical
form of beaks allowed us to adapt our previous biophysical
model [16] to characterize curvature-dependent beak develop-
ment driven by morphogen signalling. Additionally, we were
able to predict developmental constraints—regions in morpho-
space that cannot be generated through that developmental
programme—further elucidating patterns of beak shape vari-
ation in morphospace. Finally, our approach of extracting the
beak centreline and transverse cross sections, and analysing
their shapes as a function of distance from the tip may prove
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useful for elucidating morphology and development of other
tip growing systems, such as deer antlers.

Our analysis uncovered interesting patterns in morpho-
space, including that HC beaks occupy a broader region of
morphospace, a finding we validated through employing
parameter-free, mesh-based methods using the Hausdorff
distance and MDS (figure 3). The mesh-based comparative
analysis also showed that DF beaks occupy a distinct region of
morphospace (figure 3a), even with affine transformations that
lead to overlap in regions occupied by other taxa (figure 3c).
Surprisingly, we found that some highly curved beaks, such
as those ofV. coccinea, do not have a high value of centreline cur-
vature in absolute units, but rather have a high value of the
(scale invariant) quantity curvature times length (~kC). We also
explored the relation between beak shape and diet and find a
correlation that we can rationalize by considering the beak as
a mechanical tool for feeding [34,40,41]. In particular, the
width-to-length aspect ratio and the sharpening rate (how fast
the curvature of transverse sections increases towards the tip)
are highly correlated with diet.

To further understand the source of variation in HC beak
morphology, we employed developmental models that use
adult beak shape to glean information about beak ontogeny.
While assuming a single growth direction, parallel to the
major axis of the beak, was sufficient to generate DF beaks
[16], generating HC beaks required a changing growth direc-
tion by assuming a linear gradient in cell proliferation rates
(figure 5). With this modification, our developmental model
explains how beak shape emerges due to initial size, shape,
growth direction relative to the skull, the extrusion velocity
of the growth zone, and the transverse shrinkage rate deter-
mined by both a and b parameters. Remarkably, a single
dimensionless parameter, b/(aWC), determined how cross
sectional shape evolves along the centreline for all species
in our dataset.
The fact that honeycreepers occupy a broader range of
morphospace in our analysis, and required a modification
of our developmental model to account for centreline curva-
ture, raises the question of how this group managed to escape
the constraint that limited the variation of other birds in our
dataset. Applying the methods developed in this paper in
conjunction with experimental work on developing beaks
to a wider range of avian taxa would be natural next steps
towards a more comprehensive description of beak shaping
during development, its evolution across time, and its
function as a remarkably adaptable tool.

Data accessibility. The data and code are available at https://doi.org/10.
7910/DVN/UQQ6EZ [42].

Supplementary material is available online [43].

Declaration of AI use. We have not used AI-assisted technologies in creat-
ing this article.

Authors’ contributions. S.M.: conceptualization, data curation, formal
analysis, investigation, methodology, software, visualization, writ-
ing—original draft, writing—review and editing; G.P.T.C.:
conceptualization, data curation, formal analysis, investigation, meth-
odology, software, validation, visualization, writing—original draft,
writing—review and editing; G.M.M.: data curation, resources;
H.F.J.: data curation, resources, supervision, writing—review and
editing; A.A.: conceptualization, data curation, resources, writing—
review and editing; L.M.: conceptualization, formal analysis, funding
acquisition, methodology, project administration, resources, supervi-
sion, validation, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was supported in part by the National Science
Foundation under grant nos. DMS-2002103 (to G.P.T.C.) and NSF-
1257122 (to A.A.), the Harvard Quantitative Biology Initiative and
the NSF-Simons Center for Mathematical and Statistical Analysis of
Biology at Harvard NSF 1764269 (to L.M.), the Simons Foundation
(L.M.) and the Henri Seydoux Fund (L.M.).
Acknowledgements. We thank Dr Masayoshi Tokita (Toho University) for
scanning the specimens.
References
1. Lerner HRL, Meyer M, James HF, Hofreiter M,
Fleischer RC. 2011 Multilocus resolution of
phylogeny and timescale in the extant adaptive
radiation of Hawaiian honeycreepers. Curr. Biol. 21,
1838–1844. (doi:10.1016/j.cub.2011.09.039)

2. Clements JF, Schulenberg TS, Iliff MJ, Fredericks TA,
Gerbracht JA, Lepage D, Billerman SM, Sullivan BL,
Wood CL. 2022 The eBird/Clements checklist of
Birds of the World: v2022. Downloaded from
https://www.birds.cornell.edu/clementschecklist/
download/.

3. Bookstein FL. 1996 Combining the tools of
geometric morphometrics. In Advances in
morphometrics, pp. 131–151. New York, NY:
Springer.

4. Adams DC, Rohlf FJ, Slice DE. 2004 Geometric
morphometrics: ten years of progress following the
‘revolution’. Ital. J. Zool. 71, 5–16. (doi:10.1080/
11250000409356545)

5. Grant BR, Grant PR. 1993 Evolution of Darwin’s finches
caused by a rare climatic event. Proc. R. Soc. Lond. B
251, 111–117. (doi:10.1098/rspb.1993.0016)
6. Foster DJ, Podos J, Hendry AP. 2008 A geometric
morphometric appraisal of beak shape in Darwin’s
finches. J. Evol. Biol. 21, 263–275. (doi:10.1111/j.
1420-9101.2007.01449.x)

7. Tokita M, Yano W, James HF, Abzhanov A. 2017
Cranial shape evolution in adaptive radiations of
birds: comparative morphometrics of Darwin’s
finches and Hawaiian honeycreepers. Phil.
Trans. R. Soc. B 372, 20150481. (doi:10.1098/rstb.
2015.0481)

8. Gunz P, Mitteroecker P. 2013 Semilandmarks: a
method for quantifying curves and surfaces. Hystrix
Ital. J. Mammal. 24, 103–109.

9. Bardua C, Felice RN, Watanabe A, Fabre AC,
Goswami A. 2019 A practical guide to sliding and
surface semilandmarks in morphometric analyses.
Integr. Organismal Biol. 1, obz016. (doi:10.1093/
iob/obz016)

10. Palci A, Lee MS. 2019 Geometric morphometrics,
homology and cladistics: review and
recommendations. Cladistics 35, 230–242. (doi:10.
1111/cla.12340)
11. Toussaint N et al. 2021 A landmark-free
morphometrics pipeline for high-resolution
phenotyping: application to a mouse model of
Down syndrome. Development 148, dev188631.
(doi:10.1242/dev.188631)

12. Harper CM, Goldstein DM, Sylvester AD. 2022
Comparing and combining sliding semilandmarks
and weighted spherical harmonics for shape analysis.
J. Anat. 240, 678–687. (doi:10.1111/joa.13589)

13. Raup DM, Michelson A. 1965 Theoretical
morphology of the coiled shell. Science 147,
1294–1295. (doi:10.1126/science.147.3663.1294)

14. Raup DM. 1966 Geometric analysis of shell coiling:
general problems. J. Paleontol. 40, 1178–1190.

15. Contreras-Figueroa G, Aragón JL. 2023 A
mathematical model for mollusc shells based on
parametric surfaces and the construction of
theoretical morphospaces. Diversity 15, 431. (doi:10.
3390/d15030431)

16. Al-Mosleh S, Choi GPT, Abzhanov A, Mahadevan L.
2021 Geometry and dynamics link form, function,
and evolution of finch beaks. Proc. Natl Acad.

https://doi.org/10.7910/DVN/UQQ6EZ
https://doi.org/10.7910/DVN/UQQ6EZ
http://dx.doi.org/10.1016/j.cub.2011.09.039
https://www.birds.cornell.edu/clementschecklist/download/
https://www.birds.cornell.edu/clementschecklist/download/
http://dx.doi.org/10.1080/11250000409356545
http://dx.doi.org/10.1080/11250000409356545
http://dx.doi.org/10.1098/rspb.1993.0016
http://dx.doi.org/10.1111/j.1420-9101.2007.01449.x
http://dx.doi.org/10.1111/j.1420-9101.2007.01449.x
http://dx.doi.org/10.1098/rstb.2015.0481
http://dx.doi.org/10.1098/rstb.2015.0481
http://dx.doi.org/10.1093/iob/obz016
http://dx.doi.org/10.1093/iob/obz016
http://dx.doi.org/10.1111/cla.12340
http://dx.doi.org/10.1111/cla.12340
http://dx.doi.org/10.1242/dev.188631
http://dx.doi.org/10.1111/joa.13589
http://dx.doi.org/10.1126/science.147.3663.1294
http://dx.doi.org/10.3390/d15030431
http://dx.doi.org/10.3390/d15030431


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20230420

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

27
 S

ep
te

m
be

r 
20

23
 

Sci. 118, e2105957118. (doi:10.1073/pnas.
2105957118)

17. Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ.
2004 Bmp4 and morphological variation of beaks in
Darwin’s finches. Science 305, 1462–1465. (doi:10.
1126/science.1098095)

18. Fritz JA, Brancale J, Tokita M, Burns KJ, Hawkins
MB, Abzhanov A, Brenner MP. 2014 Shared
developmental programme strongly constrains beak
shape diversity in songbirds. Nat. Commun. 5, 1–9.
(doi:10.1038/ncomms4700)

19. Huttenlocher DP, Klanderman GA, Rucklidge WJ.
1993 Comparing images using the Hausdorff
distance. IEEE Trans. Pattern Anal. Mach. Intell. 15,
850–863. (doi:10.1109/34.232073)

20. Dubuisson MP, Jain AK. 1994 A modified Hausdorff
distance for object matching. In Proc. of 12th Int.
Conf. on Pattern Recognition, vol. 1, pp. 566–568.
Piscataway, NJ: IEEE.

21. Torgerson WS. 1952 Multidimensional scaling:
I. Theory and method. Psychometrika 17, 401–419.
(doi:10.1007/BF02288916)

22. Cox MAA, Cox TF. 2008 Multidimensional scaling. In
Handbook of data visualization (eds C Chen, W
Härdle, A Unwin), pp. 315–347. New York, NY:
Springer.

23. Campàs O, Mallarino R, Herrel A, Abzhanov A,
Brenner MP. 2010 Scaling and shear transformations
capture beak shape variation in Darwin’s finches.
Proc. Natl Acad. Sci. USA 107, 3356–3360. (doi:10.
1073/pnas.0911575107)

24. Navalón G, Marugán-Lobón J, Bright JA, Cooney
CR, Rayfield EJ. 2020 The consequences of
craniofacial integration for the adaptive radiations
of Darwin’s finches and Hawaiian honeycreepers.
Nat. Ecol. Evol. 4, 270–278. (doi:10.1038/s41559-
019-1092-y)

25. Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ.
2019 The evolutionary relationship among beak
shape, mechanical advantage, and feeding ecology
in modern birds. Evolution 73, 422–435. (doi:10.
1111/evo.13655)

26. Pigot AL et al. 2020 Macroevolutionary convergence
connects morphological form to ecological function
in birds. Nat. Ecol. Evol. 4, 230–239. (doi:10.1038/
s41559-019-1070-4)

27. Pratt HD 2005 The Hawaiian honeycreepers:
Drepanidinae. Oxford, UK: Oxford University Press.

28. del Hoyo J, Elliott A, Sargatal J, Christie D, De Juana
E. 2018 Handbook of the birds of the world alive.
Barcelona, Spain: Lynx Edicions, 2014.

29. Uicker JJ, Pennock GR, Shigley JE, Mccarthy JM 2003
Theory of machines and mechanisms, vol. 3.
New York, NY: Oxford University Press.

30. Boag PT, Grant PR. 1981 Intense natural selection in
a population of Darwin’s finches (Geospizinae) in
the Galapagos. Science 214, 82–85. (doi:10.1126/
science.214.4516.82)

31. Witmer LM, Rose KD. 1991 Biomechanics of the jaw
apparatus of the gigantic Eocene bird Diatryma:
implications for diet and mode of life. Paleobiology
17, 95–120. (doi:10.1017/S0094837300010435)

32. Soons J et al. 2010 Mechanical stress, fracture risk
and beak evolution in Darwin’s ground finches
(Geospiza). Phil. Trans. R. Soc. B 365, 1093–1098.
(doi:10.1098/rstb.2009.0280)

33. Lazarus A, Florijn H, Reis PM. 2012 Geometry-
induced rigidity in nonspherical pressurized elastic
shells. Phys. Rev. Lett. 109, 144301. (doi:10.1103/
PhysRevLett.109.144301)

34. Soons J, Herrel A, Genbrugge A, Aerts P, Podos J,
Adriaens D, de Witte Y, Jacobs P, Dirckx J. 2010
Mechanical stress, fracture risk and beak evolution
in Darwin’s ground finches (Geospiza). Phil.
Trans. R. Soc. B 365, 1093–1098. (doi:10.1098/rstb.
2009.0280)

35. Soons J, Genbrugge A, Podos J, Adriaens D, Aerts P,
Dirckx J, Herrel A. 2015 Is beak morphology in
Darwin’s finches tuned to loading demands? PLoS
ONE 10, e0129479. (doi:10.1371/journal.pone.
0129479)

36. Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ.
2016 The shapes of bird beaks are highly
controlled by nondietary factors. Proc. Natl Acad.
Sci. USA 113, 5352–5357. (doi:10.1073/pnas.
1602683113)

37. Wu P, Jiang TX, Shen JY, Widelitz RB,
Chuong CM. 2006 Morphoregulation of
avian beaks: comparative mapping of growth
zone activities and morphological evolution.
Dev. Dyn. 235, 1400–1412. (doi:10.1002/
dvdy.20825)

38. Rayleigh L. 1942 The ultimate shape of pebbles,
natural and artificial. Proc. R. Soc. Lond. A 107–118.
(doi:10.1098/rspa.1942.0065)

39. Mullins WW. 1956 Two-dimensional motion of
idealized grain boundaries. J. Appl. Phys. 27,
900–904. (doi:10.1063/1.1722511)

40. Grant PR. 1981 The feeding of Darwin’s
finches on Tribulus cistoides (L.) seeds. Anim.
Behav. 29, 785–793. (doi:10.1016/S0003-
3472(81)80012-7)

41. Herrel A, Soons J, Aerts P, Dirckx J, Boone M, Jacobs
P, Adriaens D, Podos J. 2010 Adaptation and
function of the bills of Darwin’s finches: divergence
by feeding type and sex. Emu 110, 39–47. (doi:10.
1071/MU09034)

42. Mosleh S, Choi GPT, Musser GM, James HF,
Abzhanov A, Mahadevan L. 2023 Data from: Beak
morphometry and morphogenesis across avian
radiations. Harvard Dataverse. (doi:10.7910/DVN/
UQQ6EZ)

43. Mosleh S, Choi GPT, Musser GM, James HF,
Abzhanov A, Mahadevan L. 2023 Beak
morphometry and morphogenesis across avian
radiations. Figshare. (doi:10.6084/m9.figshare.c.
6806634)

http://dx.doi.org/10.1073/pnas.2105957118
http://dx.doi.org/10.1073/pnas.2105957118
http://dx.doi.org/10.1126/science.1098095
http://dx.doi.org/10.1126/science.1098095
http://dx.doi.org/10.1038/ncomms4700
http://dx.doi.org/10.1109/34.232073
http://dx.doi.org/10.1007/BF02288916
http://dx.doi.org/10.1073/pnas.0911575107
http://dx.doi.org/10.1073/pnas.0911575107
http://dx.doi.org/10.1038/s41559-019-1092-y
http://dx.doi.org/10.1038/s41559-019-1092-y
http://dx.doi.org/10.1111/evo.13655
http://dx.doi.org/10.1111/evo.13655
http://dx.doi.org/10.1038/s41559-019-1070-4
http://dx.doi.org/10.1038/s41559-019-1070-4
http://dx.doi.org/10.1126/science.214.4516.82
http://dx.doi.org/10.1126/science.214.4516.82
http://dx.doi.org/10.1017/S0094837300010435
http://dx.doi.org/10.1098/rstb.2009.0280
http://dx.doi.org/10.1103/PhysRevLett.109.144301
http://dx.doi.org/10.1103/PhysRevLett.109.144301
http://dx.doi.org/10.1098/rstb.2009.0280
http://dx.doi.org/10.1098/rstb.2009.0280
http://dx.doi.org/10.1371/journal.pone.0129479
http://dx.doi.org/10.1371/journal.pone.0129479
http://dx.doi.org/10.1073/pnas.1602683113
http://dx.doi.org/10.1073/pnas.1602683113
http://dx.doi.org/10.1002/dvdy.20825
http://dx.doi.org/10.1002/dvdy.20825
http://dx.doi.org/10.1098/rspa.1942.0065
http://dx.doi.org/10.1063/1.1722511
http://dx.doi.org/10.1016/S0003-3472(81)80012-7
http://dx.doi.org/10.1016/S0003-3472(81)80012-7
http://dx.doi.org/10.1071/MU09034
http://dx.doi.org/10.1071/MU09034
http://dx.doi.org/10.7910/DVN/UQQ6EZ
http://dx.doi.org/10.7910/DVN/UQQ6EZ
http://dx.doi.org/10.6084/m9.figshare.c.6806634
http://dx.doi.org/10.6084/m9.figshare.c.6806634

	Beak morphometry and morphogenesis across avian radiations
	Introduction
	Evolutionary morphospace of beaks
	Constructing morphospaces
	Patterns in morphospace

	Form and feeding mechanics of beaks
	Developmental biophysics of beaks
	Cell-scale model for growth
	Tissue-scale model for growth
	Developmental constraints in morphospace

	Conclusion
	Data accessibility
	Declaration of AI use
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


