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Appendix A: Methods

1. Particle simulations

The microscopic model in main text Eqs. (1) in the main text has been previously studied for fixed particle
velocities vi = v0 and rotation frequencies Ωi = Ω0. In this scenario, particles form small clusters of aligned particles
and each cluster orbits on a circle of radius ∼ v0/Ω0 [1]. To generate the microscopic test data used in Sec. 1 D (main
text), we considered instead a heuristic distribution p(vi,Ωi) for which particles spontaneously organize into proper
vortices (main text Fig. 2A, top). It is convenient to define and draw from this distribution using propagation speeds vi
and the curvature radii Ri = vi/Ωi of a particle’s noise-free trajectory as independent variables. In particular, we
considered p̃(vi, Ri) ∼ G(vi;µv, σv)G(Ri;µR, σR), where G(x;µx, σx) represents a Gaussian normal distribution with
mean µx and standard deviation σx. p̃(vi, Ri) then defines p(vi,Ωi) implicitly through the relation vi = ΩiRi. In
units of the characteristic scales – mean velocity 〈vi〉p and interaction radius R – the particle properties vi and
Ωi = vi/Ri used for simulating main text Eqs. (1) (see main text Fig. S1) were drawn from p̃(vi, Ri) with µv = 1
(〈vi〉p̃ = 〈vi〉p = 1), σv = 0.4, µR = 2.2 and σR = 1.7. From these samples, we finally removed all particles with
Ωi > 1.4.

For simulations of the microscopic model in main text Eqs. (1), we set g ' 0.018 and Dr ' 0.009 (⇒ Dr �
〈Ωi〉p, Dr � 〈vi〉p) and initially placed particles randomly distributed and oriented on a domain of size 100×100 (in
units of the interaction radius). Equations (1) were then numerically integrated for particles interacting within the
interaction radius R = 1 using the Euler-Maruyama method with a time step of dt ' 0.0176. For the subsequent
coarse-graining, the data were saved at time intervals of ∆t ' 0.44.
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2. Kernel coarse-graining with periodic and non-periodic boundaries

To coarse-grain the discrete microscopic data through main text Eqs. (2), we used a 2D Gaussian kernel

K(x) = (2πσ2)−1 exp (−|x|2/2σ2). (A1)

Periodicity of the coarse-grained fields for the microscopic test data (main text Sec. 1 B) was ensured by placing ghost
particles periodically around the domain.

Coarse-graining in non-periodic domains (main text Sec. 2) was performed by truncating and renormalizing the
kernel. This was achieved by defining the integral over the non-periodic domain X to be N(x) =

∫
X d

2x′K(x′ − x),
and then replacing K[x − xi(t)] with K[x − xi(t)]/N(x) in main text Eqs. (2). This renormalization ensured that
the coarse-grained density ρ(t,x) integrated to the total particle number and strongly reduced artefacts near the
boundary.

3. Sparse regression and model selection

To perform sparse regression using the sequentially thresholded least squares (STLSQ) algorithm [2], we used
the same parameters when working with data from the test microscopic model (main text Sec. 1 A) as well as for
the experiments using Quincke rollers (main text Sec. 2) and sunbleak fish (SI Sec. F). As the sparse regression
approach used to infer hydrodynamic equations only requires the evaluation of input data within the data domain,
it is independent of the system’s boundary conditions. Details of the concrete steps of the learning framework are
provided in the following.

Construction of linear systems: To construct the linear system Ut = Θξ, we randomly sampled the coarse-
grained fields at Nd = 5 × 105 time-space points. The explicit form of the linear systems constructed for main text
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FIG. S1. Distribution of particle speeds vi and rotation rates Ωi used to simulate main text Eqs. (1). Those parameters were
drawn from a heuristic distribution p(vi,Ωi) that is explained in more detail in SI Sec. A 1. The white marker and dashed lines
depict the mean velocity 〈vi〉p ' 1 and 〈Ωi〉p ' 0.45.
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Eqs. (4) was given by 
...
∂tρ

...


︸ ︷︷ ︸
Ut(Nd×1)

=


...

...
∇ · p · · · ∇ · (ρp⊥)

...
...


︸ ︷︷ ︸

Θ(Nd×r)


a1
a2
...
ar


︸ ︷︷ ︸
ξ(r×1)

, (A2a)


∂tpx

...

∂tpy
...


︸ ︷︷ ︸
Ut(2Nd×1)

=


(∇ρ)x · · · ((p · ∇)p)x

...
...

(∇ρ)y · · · ((p · ∇)p)y
...

...


︸ ︷︷ ︸

Θ(2Nd×m)


b1
b2
...
bm


︸ ︷︷ ︸
ξ(m×1)

. (A2b)

Here, the subscripts denote components of the vectors, and r,m are the total number of library terms in each
equation. The vertical dots denote the respective terms evaluated at different time-space (t,x) locations. The
linear system in Eq. (A2b) was generated by stacking data for the x- and y-components of the time-derivatives and
the library terms. Such a construction enforced the same coefficients for both the components of the polarization
equation, ensuring rotational invariance (coordinate-independence) of the learned PDE. For the Quincke roller
system (main text Sec. 2, main text) and the sunbleak system (SI Sec. F) linear systems analog to Eqs. (A2) were
constructed for Nd = 5× 105 sampling points each, with term libraries described in the corresponding sections.

Pre-processing: Since the thresholding hyperparameter τ in STLSQ is agnostic to the scales of the library terms,
as a pre-processing step, we performed transformations so that columns of the data matrix Θ had zero mean and
unit variance, and the time-derivative vector Ut had zero mean. Column standardization has been widely applied
in equation discovery approaches [3–5], where it can mitigate numerical resolution limitations and may easily be
extended to regularized regression techniques, such as ridge regression or LASSO.

Stability selection [5]: With equal spacing on a log10 scale, we chose 40 values for τ over the regularization path
[τmax, ετmax]. The value of τmax was chosen so that all the terms get thresholded out and ε was set to 10−2. For
every τ , the data were split into 200 sub-samples each with 50% randomly selected data points. Every library term
was assigned an importance score as the fraction of sub-samples in which it was learned by STLSQ; in general, this
importance score was larger for smaller values of τ . Along the regularization path, unique combinations of terms that
had an importance score larger than 0.6 were considered and their coefficients were refitted to the full data without
normalization. This procedure resulted in a small number of PDEs of increasing complexity (Figs. 2E, 3D, and 4D).

Alternative approaches for model selection: Information criteria, such as AIC or BIC, as well as Pareto anal-
ysis are alternative approaches that have previously been employed to perform model selection [6]. Typically, these
methods depend on the regression residuals of the point-wise derivatives in real space to select a final model. However,
for the complex active matter systems studied in this work, we observe that the addition of terms leads in some
cases only to minor changes in such residuals, while it has a significant impact on the numerical long-term stability
and phenomenology of the resulting models. This motivated us to use stability selection instead to first discover the
terms that should appear in the model with statistical robustness to data sub-sampling and in a second step perform
model selection based on a verification of numerical stability, as well as phenomenological and quantitative agreement.

Number of sample points and importance score threshold: To determine a suitable number of sample
points Nd, we analyzed changes of the importance score of each term when learning the density dynamics of the
microscopic active particle system described by main text Eqs. (1) (see main text Fig. A 3). As sample size increases,
convergence towards the known ground truth (see SI Sec. B 2) can indeed be observed: the importance score becomes
1.0 for the expected term ∇ · p and continuously decreases for all other terms. A similar behavior of the the Quincke
roller and sunbleak fish data motivated us to fix the sample size to 5× 105 for all problems studied in this work.
In our work, the key role of the importance score threshold is to define a sequence of candidate models with increasing
complexity. We found that the sequence in which models appeared is not altered when the importance score threshold
is varied within a range of 0.6–0.8, which is due to a monotonic and steep increase of the importance score for most
library terms (see SI Figs. A 3 and A 3). To be consistent throughout this work, we fixed the importance score
threshold to 0.6.
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FIG. S2. Importance score evolution of each term when learning the density dynamics of the microscopic active particle system
[main text Eqs. (1)] for thresholding parameter τ = 0.1τmax at different sample sizes Nd. At a sample size of Nd = 5 × 105

the expected term ∇ · p is learned with an importance score very close to 1.0. A sample size of Nd = 5 × 105 and and an
importance score of 0.6 (black dashed line) were used throughout this work.
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FIG. S3. The importance score obtained along the stability path τ ∈ [τmax, ετmax] (App. A 3) for each term in the library of
the density equation learned from simulations of the microscopic active particle system (main text Eqs. (1)).

4. Computational cost

The the computational cost of the overall learning algorithm is comprised of two computationally independent
steps. The first is to represent the coarse-grained data in terms of a suitable spectral basis and in the second step
the sparse regression is performed.

Spectral representation: The coarse-grained hydrodynamic fields [main text Eqs. (2)] were evaluated at
[Nt, Nx, Ny] uniformly spaced grid points in the respective directions. The resulting discrete data were projected
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FIG. S4. The importance score obtained along the stability path τ ∈ [τmax, ετmax] (App. A 3 in the main manuscript) for each
term in the library of the polarization dynamics equation learned from simulations of the microscopic active particle system
(main text Eqs. (1)).

onto the spectral basis functions [main text Eqs. (3)] using multidimensional discrete cosine and Fourier transforms
provided by the FFTW library [7], with an efficient time complexity of O(N log(N)), where N = NtNxNy. For the
Chebyshev transforms, the data were interpolated onto the required Chebyshev extrema grid using spline functions
of degree 5.

STLSQ: The computational cost of STLSQ is dominated by the least-square fit performed in the first thresholding
step. The latter involves computing the singular value decomposition of Θ [Eqs. (A2)] and thus scales as O(r2Nd),
where r � Nd is the number of terms in the library (< 20) and Nd is the total number of sampled points (5× 105).
When learning a model from a given data set, this scaling acquires a constant prefactor that contains the number of
sub-samples on which STLSQ was repeatedly applied as a part of stability selection for each value of the thresholding
parameter. In this work, we have used 200 subsamples and a total of 40 different values of the thresholding
parameter τ (see SI Sec. A 3), amounting to a constant pre-factor of O(104).

5. Linear dependencies of the library terms

The procedure outlined in main text Sec. 1 D 1 leads to a few library terms for the polarization dynamics [main text
Eq. (4b)] that are linearly dependent on each other. For completeness, we provide here a list of non-trivial identities
that can be used to eliminate these dependencies:

1

2
∇|p|2 = (p · ∇)p + (∇ · p⊥)p⊥, (A3a)

(∇ · p)p⊥ = (∇p) · p⊥ + (p · ∇)p⊥, (A3b)

(p · ∇)p⊥ + (p⊥ · ∇)p

= (∇ · p)p⊥ + (∇ · p⊥)p. (A3c)

In Eq. (A3b), we follow the convention, [(∇a) ·b]i = bj∂iaj , with i = x, y and repeated indices indicating summation.
One may set p→ p⊥ and p⊥ → −p in Eqs. (A3a) and (A3b) to obtain two additional identities.

To ensure in general that no linear dependencies remain after a library of terms has been constructed, it should
be checked that the columns the data matrix Θ are linearly independent, for example by using a singular value
decomposition of Θ.
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6. Numerical simulations of learned PDEs

Continuum simulations were performed using the spectral PDE solver Dedalus [8] with four-step Runge-Kutta time
stepping scheme RK443. For simulation of the PDEs learned from the microscopic test data (main text Fig. 3E )
we used 256 × 256 Fourier modes in a doubly periodic domain with time step 4 × 10−3. To facilitate a comparison,
simulations shown in main text Fig. 3E were initialized using the initial density and polarization field of the coarse-
grained particle data. It was verified that similar vortex patterns also form from fully random initial conditions.

For the doubly periodic simulation of Eqs. (7) (main text Fig. 4E ), we used 1024 × 1024 Fourier modes and time
step 10−4s. The initial conditions were random with mean density 0.11, and mean horizontal and vertical velocities,
〈vx〉 = 0.1 mm s−1 and 〈vy〉 = 0, respectively.

The simulation presented in main text Fig. 4F was performed on a confined square domain using the Sine/Cosine
basis functions with 1024 × 1024 modes and time step 10−4s. The basis combinations in the (x, y) directions were
chosen to be (cos, cos) for density ρ, (sin, cos) for vx and (cos, sin) for vy. These imply that normal density gradients,
normal velocities and all remaining shear rates ∂xvy and ∂yvx vanish at the domain boundaries. The simulations were
initialized with random perturbations around a mean density of 0.11. Simulations of models learned for the confined
motion of sunbleak fish (see SI Sec. F) were run with the same boundary conditions and basis functions with 256×256
modes and time step 10−3 s.

Since the model in Eqs. (7) learned for the Quincke roller dynamics generates density shock waves, we added
numerical diffusivities of 10−4mm2/s (main text Fig. 4E ) and 10−3mm2/s (main text Fig. 4F ) in both density and
velocity equation to avoid Gibbs ringing.

Appendix B: Analytic coarse-graining of the particle model

We describe in this section two approaches to analytically determine mean-field approximations of the microscopic
model [main text Eqs. (1)] and compare their predictions and methodology with our learning approach. In general, an-
alytic coarse-graining can (i) provide guidance for developing a physics-informed learning library, (ii) allows discussing
our PDE learning framework as a tool to effectively infer moment closure relations, and (iii) predict the dependency
of PDE coefficients of linear terms on distributions of microscopic parameters, which can be used to validate learned
hydrodynamic models. However, to produce interpretable mean-field equations, analytic coarse-graining procedures
typically have to

(i) factorize pair-correlations;

(ii) impose closure relations; and

(iii) neglect microscopic parameter variability.

Such approximations particularly affect non-linear terms and terms with higher-order derivatives in the resulting
coarse-grained equations. It is, therefore, instructive to directly compare the coefficients from analytic approximations
against the results obtained by hydrodynamic model learning, where the latter effectively infers a suitable expansion
of pair-correlations, as well as a closure relation directly from the underlying data and naturally integrates microscopic
parameter variability.

1. Dynamic equation of the one-particle probability density

We first describe a common analytic coarse-graining procedure that is often applied to microscopic models like main
text Eqs. (1) for constant and homogeneous parameters vi = v0 and Ωi = Ω0. Specifically, this approach aims to find
an approximate dynamic equation for the one-particle probability density [1, 9–14]

f(t, θ,x) =

N∑
i=1

〈δ (θ − θi(t)) δ (x− xi)〉, (B1)

where 〈·〉 denotes a Gaussian white noise average. To find such a dynamic equation, this approach proceeds in two
steps: First, a dynamic equation for the angular moments of f(t, θ,x) is derived and second, to truncate the infinite
hierarchy of dynamic equations, a closure relation is imposed.
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a. Angular moment expansion

Neglecting multiplicative noise and factorizing pair-correlations gives rise to a nonlinear integro-differential equa-
tion [1, 11] that can be transformed into an infinite hierarchy of coupled PDEs for the angular moments fn(t,x)
defined by

fn(t,x) =

∫ 2π

0

dθf(t, θ,x)einθ. (B2)

For the microscopic model [main text Eqs. (1)] and equal microscopic parameters, vi = v0 and Ωi = Ω0 for all
particles, this procedure leads to [1, 11]

∂tfn +
v0
2

[∂x (fn+1 + fn−1)− i∂y (fn+1 − fn−1)] = n(iΩ0 −Drn)fn +
gnπ

2
(fn−1f1 − fn+1f−1) . (B3)

Each complex angular moment fn can be identified as a mean-field variable that represents different orientational
order parameters encoded by the probability density f(t, θ,x) [12]. In particular, f0 represents the particle number
density ρ and f1 =: px + ipy represents the polarization density p = (px, py)>. These fields correspond to the coarse-
graining information in main text Eqs. (2) that our learning framework extracts explicitly from given microscopic
data. For n = 0 and n = 1, we can therefore write Eqs. (B3) as

∂tρ+ v0∇ · p = 0, (B4a)

∂tp +
v0
2

(∇ρ+∇ ·Q) = Ω0p⊥ −Drp +
gπ

2
(ρI−Q) · p, (B4b)

which also shows the coupling to the next higher mode f2 =: Qxx + iQxy, corresponding to the independent degrees
of freedom of a nematic tensor. The chiral term ∼ Ω0p⊥ with p⊥ = (−py, px)> breaks the mirror symmetry. Terms
constructed from p⊥ are therefore generally allowed in chiral systems and consequently included into the library in
main text Eqs. (4).

b. Closure relation and comparison with learned models

The final step that is key to analytically close the infinite hierarchy of Eqs. (B3) requires the introduction of moment
closure assumptions [10, 11, 15]. Depending on the structure of the mode coupling, the resulting closure relation allows
to express the nearest coupled modes with |n| = k in terms of modes |n| < k and neglects the remaining modes. For
example, in the case of Eq. (B4), a moment closure assumption must provide an expression Q(ρ,p) [11, 15]. As modes
with higher mode numbers n are increasingly suppressed by rotational noise, which can be seen by the prefactor −n2Dr

in Eq. (B3), a common closure assumption is ∂tQ ≈ 0 [1, 12, 14]. Equation (B3) for n = 2 then implies the desired
closure relation Q(ρ,p) that can be used in Eq. (B4b) and leads to

∂tp = −v0
2
∇ρ+

ḡρ

2
p + Ωp⊥ −Drp

+
1

8

Dr

Ω2
0 + 4D2

r

[
2v20∆p + ḡv0

(
5∇|p|2 − 6p · ∇p− 10p∇ · p

)
− 4ḡ2p2p

]
+

1

8

Ω0

Ω2
0 + 4D2

r

[
v20∆p⊥ − ḡv0 (3p · ∇p⊥ + 5p⊥ · ∇p)− 2ḡ2p2p⊥

]
, (B5)

where we defined ḡ = πg. Equation (B5) is equivalent to the result given in Ref. [1]. The coefficients in Eq. (B5) are
listed and computed in Tab. S I, where we used Ω0 = 〈viΩi〉p/〈vi〉p = 0.5 and v0 = 〈v2i 〉p/〈vi〉p = 1.14. These values
for Ω0 and v0 are suggested by an analytic kernel coarse-graining (see SI Sec. B 2) of the microscopic model with a
distribution p(vi,Ωi) of kinetic particle parameters, as considered in this work (see SI Sec. A 1).

As discussed in the main text (see Sec. 1 E and Tab. I), coefficients associated with terms linear in the fields and
derivatives inferred from the model learning agree well with analytic predictions. However, Tab. S I shows that
coefficients associated with terms that are non-linear in the fields or derivatives can substantially differ between
these two approaches (e.g. b5, b8 or b13 in Tab. S I) or they do not even appear in the analytically coarse-grained
dynamics (e.g. b4, b11 or b12 in Tab. S I). At the same time, the analytically coarse-grained values of these non-linear
terms are most strongly affected by the various approximations listed in the introduction of SI Sec. B 1. Moreover,
simulations of the analytically coarse-grained model (Eq. (B5) with coefficients given in Tab. S I, simulation



8

TABLE S I. Comparison of analytic coarse-graining (CG) results with learned coefficients suggest a limited validity of common
analytic coarse-graining approximations in systems with microscopic parameter variability and mesoscopic pattern formation.
Analytic coefficients (CG coefficient) have been obtained by coarse-graining the model in main text Eqs. (1) for constant
microscopic parameters vi = v0 and Ωi = Ω0 [see SI Sec. B 1 and Eq. (B5)] using a common closure relation [1]. Models were
learned (PDE 1, PDE 4 and PDE 8 shown here; see Tab. S III for the complete list) from coarse-grained fields (see main text
Sec. 1 B and Fig. 3) of the microscopic dynamics in main text Eqs. (1) with a distribution of parameters vi and Ωi (see SI Sec. A 1
and Fig. S1). Analytic coefficients were calculated (CG value) using Ω0 = 〈viΩi〉p/〈vi〉p = 0.5, v0 = 〈v2i 〉p/〈vi〉p = 1.14,
Dr = 0.009, ḡ = πg = 1.1 and c0 = (8Ω2

0 + 32D2
r)
−1. While the analytic coefficients for linear terms agree well with the learned

models (see main text Sec. 1 E and Tab. I), coefficients of higher order terms in the fields and derivatives can differ significantly
(e.g. b5, b8 or b13) or are not predicted by the analytic coarse-graining to contribute to the mean-field dynamics (e.g. b4,
b11 or b12).

Term CG coefficient CG value PDE 1 PDE 4 PDE 8J
b1p −Dr -0.009 -0.009 -0.009 -0.009
b2ρp ḡ/2 0.0283 – 0.013 0.009
b3p⊥ Ω0 0.5 0.414 0.428 0.440
b4ρp⊥ – – – – -0.010
b5|p|2p −4c0ḡ

2Dr −6× 10−5 – – -0.080
b6|p|2p⊥ −2c0ḡ

2Ω0 -0.0016 – – –
b7∇ρ −v0/2 -0.57 -0.638 -595 -0.595
b8(p · ∇)p −6c0ḡv0Dr -0.0017 – -0.536 -0.463
b9(p · ∇)p⊥ −3c0ḡv0Ω0 -0.0483 – – –
b10(p⊥ · ∇)p −5c0ḡv0Ω0 -0.0805 – – –
b11∇(∇ · p) – – – – 0.078
b12∇(∇ · p⊥) – – – 0.265 0.277
b13∆p 2c0v

2
0Dr 0.0117 – – -0.155

b14∆p⊥ c0v
2
0Ω0 0.3245 – 0.202 0.196

b15∇|p|2 5c0ḡv0Dr 0.0014 – – –
b16(∇ · p)p −10c0ḡv0Dr -0.0029 – – -0.225
b17(∇ · p)p⊥ – – – – –
b18∆2p – – – – -0.483
b19∆2p⊥ – – – 1.197 1.235

parameters same as used for the learned model, see SI Sec. A 6) reveal a dynamics that does not exhibit any steady,
saturated vortex patterns (see spatial snapshots in Fig. S5). Instead, the analytic model becomes quickly unstable
when starting from a small, random density and polarization perturbation (see ‘spatial maxima’ plots in Fig. S5).
Notably, our learning framework takes a different route and determines in a data-driven manner an effective closure
relation that best explains the observed dynamics. Thus, a key approximation made in analytic coarse-graining
approaches is circumvented and closures are determined that can account quantitatively for non-trivial effects from
correlations and microscopic parameter variability.

2. Dynamic equations from conventional kernel coarse-graining

While the previous approach provides a clear coarse-graining strategy to find a closed set of PDEs from a sys-
tem of stochastic ODEs with homogeneous microscopic parameters, it is more challenging to understand how the
phenomenological coefficients will depend on the distribution p(vi,Ωi) of microscopic kinetic parameters described in
SI Sec. A 1. We therefore consider an alternative strategy, for which we write main text Eqs. (1) as

dxi
dt

= vipi, (B6a)

dpi
dt

= Ωiε · pi + Fi, (B6b)

where ε · pi = pi,⊥ = (− sin θi, cos θi)
>, and Fi contains forces from interactions and rotational diffusion. Taking

directly the time derivative of the coarse-graining prescription in main text Eq. (2a) and using Eq. (B6a), we find

∂tρ(t,x) +∇ · J(t,x) = 0, (B7)
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FIG. S5. Numerical simulation of the analytically coarse-grained model Eq. (B5) for parameters listed in Tab. S I (‘CG value’),
along with ∂tρ = −∇ · p, with snapshots of the density field ρ (top row) and snapshots of the polarization magnitude |p|
(bottom row). The transient dynamics does not exhibit any coherent pattern formation and the simulation becomes unstable
around times t ∼ 150. The latter is illustrated in right-most panels that show the spatial maxima of density ρ and |p|, which
both grow over two orders of magnitude before numerical values become intractable. Numerical parameters (see SI Sec. A 6)
and box size are the same as for the simulations used in Fig. 3 of the main text.

where we have defined a flux

J(t,x) =
∑
i

K [x− xi(t)] vipi(t). (B8)

Using this definition and Eq. (B6b), we find a dynamic equation for J of the form

∂tJ(t,x) +∇ · σ(t,x) = T(t,x) + Φ(t,x). (B9)

Here, we have defined the tensor and vector fields

σ(t,x) =
∑
i

K [x− xi(t)] v
2
i pi(t)pi(t), (B10a)

T(t,x) = ε ·
∑
i

K [x− xi(t)] viΩipi(t), (B10b)

Φ(t,x) =
∑
i

K [x− xi(t)] viFi(t). (B10c)
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Averaging the fields in Eq. (B8) and Eqs. (B10) over the particle parameter distribution p(vi,Ωi) yields

〈J(t,x)〉p =

〈∑
i

K [x− xi(t)] vipi(t)

〉
p

, (B11a)

〈σ(t,x)〉p =

〈∑
i

K [x− xi(t)] v
2
i pi(t)pi(t)

〉
p

, (B11b)

〈T(t,x)〉p =

〈
ε ·
∑
i

K [x− xi(t)] viΩi pi(t)

〉
p

, (B11c)

〈Φ(t,x)〉p =

〈∑
i

K [x− xi(t)] viFi(t)

〉
p

. (B11d)

We then adopt a moment factorization approximation

〈J(t,x)〉p ' 〈vi〉pp, (B12a)

〈σ(t,x)〉p '
1

2
〈v2i 〉p (ρI + Q) , (B12b)

〈T(t,x)〉p ' 〈viΩi〉pp⊥, (B12c)

where we used the definition of the particle number density in main text Eq. (2a), the polarization density in main
text Eq. (2b), and |pi|2 = 1. Additionally, we have defined in Eq. (B12b) a nematic moment of the form

Q =
∑
i

K [x− xi(t)] [2pi(t)pi(t)− I] . (B13)

Averaging Eqs. (B7) and (B9) over the microscopic parameter distributions and using Eqs. (B12), we obtain

∂tρ+ 〈vi〉p∇ · p = 0, (B14a)

∂tp +
〈v2i 〉p
2〈vi〉p

(∇ρ+∇ ·Q) =
〈viΩi〉p
〈vi〉p

p⊥ + 〈vi〉−1p 〈Φ〉p. (B14b)

From this, we can read off predictions about the coefficients we expect to find from the learning framework for the
terms ∇ · p, ∇ρ and p⊥ (Tab. I).

Following the same analytic coarse-graining strategy, but starting from a more general microscopic position dynamics

dxi
dt

= vipi + v′ε · pi, (B15)

yields an additional term ∼ v′∇⊥ρ in the polar dynamics SI Eq. (B14b). It is therefore a simple, non-interacting
term – for which analytic coarse-graining reliably predicts coefficients (see Tab. S I) – that would result from a chiral
propagation of particles. However, such a chiral propagation is absent in the microscopic model used in our work
(see main text Eq. (1a), where v′i = 0), such that the term ∇⊥ρ was omitted from the library, which is equivalent to
omitting the Levi-Civita tensor ε from the set S given in Eq. (5).

3. Physical interpretation of higher-order terms and relation to microscopic particle properties

The analytic coarse-graining results in Tab. S I are based on the simplifying assumption of constant microscopic
parameters vi = v0 and Ωi = Ω0 and invoke the various other approximations described in SI Sec. B 1. Nevertheless,
a more detailed comparison with learning results is also instructive for terms that are non-linear in the fields or
derivatives. In the following, we discuss this comparison for three different groups of terms.

• Terms that are present in the learned models and also expected by the analytic coarse-graining

{b5|p2|p, b8(p · ∇)p, b13∆p, b13∆p⊥, b16(∇ · p)p}
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TABLE S II. Parameters al of the density dynamics PDE (main text Fig. 2D) learned from simulations of the microscopic active
particle system main text Eqs. (1). The sparsest model (J) agrees well with the analytic coarse-graining prediction (Tab. I).

Term PDE 1J PDE 2 PDE 3 PDE 4
a1∇ · p -0.991 -0.991 -0.972 -0.957
a2∆ρ – – – –
a3∇ · (ρp) – – -0.015 -0.037
a4∆ρ2 – 0.022 0.022 0.022
a5∆|p|2 – – – –
a6∇ · (ρ2p) – – – 0.008
a7∆ρ3 – – – –
a8∇ · (|p|2p) – – – –
a9∇ · (ρ∇|p|2) – – – –
a10∇ · (|p|2∇ρ) – – – –
a11∇ · p⊥ – – – –
a12∇ · (ρp⊥) – -0.026 -0.026 -0.026
a13∇ · (ρ2p⊥) – – – –
a14∇ · (|p|2p⊥) – – – –

can be understood as dynamic coupling of the polar order parameter p to the nematic order Q that naturally
arise from symmetry arguments [see terms ∇ · Q and Q · p in Eq. (B4b)]. In particular, we can consider a
general expansion of nematic tensors constructed in terms of the polar order parameter field

Q = ν1(pp− I/2) + ν2(∇p +∇p> −∇ · pI) + ν3(∇p⊥ +∇p>⊥ −∇ · p⊥I) + ..., (B16)

which is similar to defining a closure relation, where the coefficients ν1, ν2, ν3, ... are here inferred via a data-
driven approach.

• A second group of non-linear terms can be defined as those that the learning approach identifies as relevant
contributions, but which would not be predicted by the analytic coarse-graining for constant microscopic pa-
rameters

{b4ρp⊥, b11∇(∇ · p), b12∇(∇ · p), b18∆2p, b19∆2p}.

Here, the term b4ρp⊥ (b4 < 0) describes a density-dependent reduction of average particle rotations through
collective effects, which (mildly) counteracts the term b3p⊥ (b3 > 0) related to single particle rotations. Such a
contribution is most likely a consequence of the skewed distribution of single particle rotation rates Ωi (Fig. S1):
A larger amount of particles has rotation frequencies Ωi < Ω0, such that the average rotation frequency of
the finite subsample of particles present in a given vortex (i.e. regions with high density) tends to be reduced
as compared to the mean value Ω0 of the overall distribution. The terms b11∇(∇ · p) and b12∇(∇ · p) with
b11, b12 > 0 correspond to non-standard diffusive terms [16] that can generally exist in any flocking-type model
and in our case arise through the combination of rotational diffusion and microscopic parameter variability.
The terms b18∆2p and b19∆2p with b18, b19 > 0 correspond to Swift-Hohenberg-type terms, which typically
appear in systems that exhibit pattern formation on mesoscopic length scales [17]. In our case, the relevant
length scales are determined by the microscopic parameters as v0/Ω0, corresponding to the approximate radius
of vortices, as well as by the finite interaction range among particles, which was also recently shown to give rise
to Swift-Hohenberg-type operators on the mean-field level [18].

• Lastly, we identify a third group of non-linear terms

{b6|p2|p⊥, b9(p · ∇)p⊥, b10(p⊥ · ∇)p, b15∇|p|2}

as those that are expected by the analytic coarse-graining of a system with constant microscopic parameters,
but which do not appear in the most parsimonious model that recapitulates the dynamics (PDE 8 in Tabs. S I
and S III). However, these terms will be consecutively added to the learned models, when looking for those with
higher complexity (Tab. S IV), but their effect on the overall dynamics and pattern formation is minute (Fig. S11,
mid- and bottom-row).
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TABLE S III. Parameters bl of the nine sparsest PDEs for the polarization dynamics (main text Fig. 3C ), learned from
simulations of the microscopic system main text Eqs. (1). PDE 8 (J) reproduces the characteristic vortex dynamics as in the
microscopic simulations (main text Fig. 3A,B,E) and the coefficients of the linear terms compare well with analytic coarse-
graining predictions (Tab. I). Four additional PDEs with more terms are shown in Tab. S IV.

Term PDE 1 PDE 2 PDE 3 PDE 4 PDE 5 PDE 6 PDE 7 PDE 8J PDE 9
b1p -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009
b2ρp – – – 0.013 0.013 0.013 0.007 0.009 0.009
b3p⊥ 0.414 0.476 0.477 0.428 0.478 0.436 0.436 0.440 0.441
b4ρp⊥ – -0.050 -0.040 – -0.040 -0.006 -0.006 -0.010 -0.012
b5|p|2p – – – – – – – -0.080 -0.080
b6|p|2p⊥ – – – – – – – – 0.054
b7∇ρ -0.638 -0.637 -0.600 -0.595 -0.601 -0.596 -0.596 -0.595 -0.595
b8(p · ∇)p – – – -0.536 – -0.510 -0.510 -0.463 -0.479
b9(p · ∇)p⊥ – – – – – – – – –
b10(p⊥ · ∇)p – – – – – – – – –
b11∇(∇ · p) – – – – – – – 0.078 0.077
b12∇(∇ · p⊥) – – 0.225 0.265 0.248 0.265 0.270 0.277 0.277
b13∆p – – – – – – -0.151 -0.155 -0.156
b14∆p⊥ – – 0.252 0.202 0.222 0.203 0.198 0.196 0.197
b15∇|p|2 – – – – – – – – –
b16(∇ · p)p – – – – – – – -0.225 -0.213
b17(∇ · p)p⊥ – – – – – – – – –
b18∆2p – – – – – – -0.475 -0.483 -0.484
b19∆2p⊥ – – 1.100 1.197 1.085 1.212 1.215 1.235 1.243

TABLE S IV. Parameters bl of PDEs 10-13 for the polarization dynamics (main text Fig. 3C ), learned from simulations of the
microscopic system in main text Eqs. (1). These are learned in addition to the PDEs mentioned in Tab. S III.

Term PDE 10 PDE 11 PDE 12 PDE 13
b1p -0.009 -0.009 -0.009 -0.009
b2ρp 0.010 0.010 0.010 0.010
b3p⊥ 0.442 0.442 0.442 0.448
b4ρp⊥ -0.012 -0.012 -0.012 -0.017
b5|p|2p -0.079 -0.060 -0.066 -0.065
b6|p|2p⊥ 0.055 0.055 0.055 0.065
b7∇ρ -0.595 -0.595 -0.595 -0.594
b8(p · ∇)p -0.479 -0.479 -0.480 -0.461
b9(p · ∇)p⊥ – 0.057 0.058 0.058
b10(p⊥ · ∇)p – – 0.054 0.054
b11∇(∇ · p) 0.078 0.078 0.076 0.076
b12∇(∇ · p⊥) 0.277 0.277 0.277 0.278
b13∆p -0.153 -0.150 -0.138 -0.138
b14∆p⊥ 0.197 0.197 0.197 0.195
b15∇|p|2 – – – -0.023
b16(∇ · p)p -0.213 -0.215 -0.218 -0.202
b17(∇ · p)p⊥ -0.117 -0.151 -0.171 -0.171
b18∆2p -0.489 -0.454 -0.403 -0.403
b19∆2p⊥ 1.244 1.244 1.245 1.236

Appendix C: Parameters and parameter robustness of learned models

The parameters of the PDEs learned from simulations of the active polar particle model in main text Eqs. (1) are
summarized in Tab. S II (density dynamics) and Tab. S III (polarization dynamics). For the experimental Quincke
roller system [15], the learned hydrodynamic model parameters are given in Tab. S V (density dynamics) and Tab. S VI
(velocity dynamics).

The robustness of the sparse regression through STLSQ (SI Sec. A 3) is demonstrated in Fig. S6 for the identification
of the polarization dynamics [main text Eq. (4b)]. As specified in the stability selection procedure (SI Sec. A 3),
selected terms have non-zero coefficients in at least 60 % of the subsamples. To further quantify the uncertainty in
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TABLE S V. Parameters cl of the PDE for the density dynamics (main text Fig. 4C ) learned from experimental data for self-
propelled Quincke rollers (Supplementary Movie S2 of Ref. [15]). The dimensions of the coefficients are such that [v] =mm/s
and [ρ] = 1, where the density ρ represents the area fraction of rollers of diameter Dc = 4.8 µm. The four sparsest PDEs are
shown corresponding to the cut-off n0 ∈ {50, 100} above which the temporal Chebyshev modes in main text Eqs. (3) are set
to zero to ignore high frequencies. The sparsest PDEs (J) have coefficients close to each other and agree well with the mass
conservation equation obtained from analytic coarse-graining (Ref. [15]).

n0 = 50 n0 = 100
Term Unit PDE 1J PDE 2 PDE 3 PDE 4 PDE 1J PDE 2 PDE 3 PDE 4
c1∇ · v – – – -0.052 -0.052 – -0.051 -0.051 -0.055
c2∆ρ mm2 s−1 – 0.016 0.040 0.023 – 0.055 0.040 0.041
c3∇ · (ρv) – -0.950 -0.950 -1.068 -1.067 -0.945 -1.057 -1.054 -0.985
c4∆ρ2 mm2 s−1 – 0.047 0.080 0.081 – -0.076 -0.051 -0.062
c5∆|v|2 s – – – 0.001 – – 0.001 0.001
c6∇ · (ρ2v) – – – – – – – – -0.313
c7∆ρ3 mm2 s−1 – – – – – 0.427 0.341 0.366
c8∇ · (|v|2v) mm−2 s2 – – 0.035 0.035 – 0.034 0.034 0.034
c9∇ · (ρ∇|v|2) s – – – -0.013 – – -0.008 -0.007
c10∇ · (|v|2∇ρ) s – -0.018 -0.039 -0.028 – -0.036 -0.028 -0.027

the values of the coefficients, we performed a bootstrapping procedure by performing least-squares regression only on
the terms identified. This leads to empirical probability density functions whose standard deviations can be used to
quantify uncertainties in the coefficients (Fig. S7). Similar results for the velocity dynamics for the Quincke roller
system [Eq. (6b)] are presented in Figs. S8 and S9.

TABLE S VI. Parameters dl of the PDE for the velocity dynamics (main text Fig. 4C ) learned from experimental data for self-
propelled Quincke rollers (Supplementary Movie S2 of Ref. [15]). The dimensions of the coefficients are such that [v] =mm/s
and [ρ] = 1, where the density ρ represents the area fraction of rollers of diameter Dc = 4.8 µm. The four sparsest PDEs are
shown corresponding to the cut-off n0 ∈ {50, 100} above which the temporal Chebyshev modes in main text Eqs. (3) are set to
zero to ignore high frequencies. The sparsest PDEs which reproduce the experimental observations (J) have coefficients that
are close to each other for different values of n0, and they agree well with corresponding values reported in Ref. [15] (Tab. II).

n0 = 50 n0 = 100
Term Unit PDE 1 PDE 2J PDE 3 PDE 4 PDE 1 PDE 2J PDE 3 PDE 4
d1v s−1 – 2.281 1.524 1.491 – 1.825 1.252 1.122
d2ρv s−1 – 8.356 5.156 4.745 – 6.135 3.143 3.083
d3|v|2v mm−2 s – -2.194 -1.436 -1.382 – -1.710 -1.095 -0.999
d4∇ρ mm2 s−2 – -1.620 -1.711 -2.074 – -1.689 -2.438 -2.430
d5(v · ∇)v – -0.639 -0.674 -0.678 -0.679 -0.662 -0.696 -0.702 -0.702
d6∇(∇ · v) mm2 s−1 – – – – – – – –
d7∆v mm2 s−1 – – – – – – – 0.002
d8∇(|v|2) – – – – 0.090 – – 0.169 0.168
d9(∇ · v)v – – – -0.189 -0.190 – – -0.178 -0.179
d10∆2v mm4 s−1 – – – – – – – 0.000



14

0.435 0.440 0.445
b3

0.0075

0.0090

0.0105

b2

0

200

PD
F

0 500
PDF

0.08 0.04 0.00
b5

0.015

0.010

0.005

b4

0

50

PD
F

0 200
PDF

0.596 0.594
b7

0.00

0.04

0.08

b6

0

250PD
F

0 100
PDF

0.4 0.0 0.4
b9

0.54

0.48

0.42

b8

0

20

PD
F

0 10
PDF

0.00 0.04 0.08
b11

0.4

0.0

0.4

b10

0

25PD
F

0 20
PDF

0.18 0.16 0.14
b13

0.26

0.28
b12

0

50

PD
F

0 50
PDF

0.4 0.0 0.4
b15

0.175

0.200

0.225

b14

0

20

PD
F

0 50
PDF

0.4 0.0 0.4
b17

0.15

0.00

b16

0

20

PD
F

0 10
PDF

1.1 1.2 1.3
b19

0.6

0.5

0.4

b18

0

10

PD
F

0 5
PDF

FIG. S6. Parameters bl of the polarization dynamics (main text Eq. (4b) and Fig. 3C ) obtained by applying the STLSQ
algorithm on 200 data sub-samples with 50 % randomly selected data points (see SI Sec. A 3). The units of the coefficients are
the same as in Tab. S III. This plot is generated for the thresholding parameter τ = 1.34× 10−4, at which PDE 8 (Tab. S III)
is found in more than 60 % of the sub-samples. Histograms indicate the marginal probability density functions (PDFs) of the
corresponding coefficients.
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FIG. S7. Parameters bl of the polarization dynamics (main text Eq. (4b) and Fig. 3C ) obtained from the least-squares method
by setting the thresholded coefficients in Fig. S6 to zero. The units of the coefficients are the same as in Tab. S III. A total of
200 points (blue) are presented from 200 sub-samples with 50% randomly chosen data points. The red points indicate the fitted
coefficients on the entire data set, which are the same as for PDE 8 in Tab. S III. The histograms indicate the marginal probability
density functions (PDFs) of the corresponding coefficients, which can be used to find uncertainties for the coefficients. The fitted
values and standard deviations of the coefficients are (mean± standard deviation): b2 = 0.009 ± 0.0004, b3 = 0.440 ± 0.0020,
b4 = −0.010±0.0016, b5 = −0.080±0.0111, b7 = −0.595±0.0009, b8 = −0.463±0.0124, b11 = 0.078±0.0083, b12 = 0.277±0.0092,
b13 = −0.155± 0.0082, b14 = 0.196± 0.0125, b16 = −0.225± 0.0204, b18 = −0.483± 0.0360, b19 = 1.235± 0.0434.
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FIG. S8. Parameters dl of the velocity dynamics (main text Eq. (6b) and Fig. 4C ) obtained by applying the STLSQ algorithm
on 200 data sub-samples with 50% randomly selected data points (see SI Sec. A 3). The units of the coefficients are the same as
in Tab. S VI. This plot is generated for the thresholding parameter τ = 9.59× 10−2, at which PDE 2 (Tab. S VI and n0 = 50)
is found in more than 60% of the sub-samples. The histograms indicate the marginal probability density functions (PDFs) of
the corresponding coefficients.

FIG. S9. Parameters dl of the velocity dynamics (main text Eq. (6b) and Fig. 4C ) obtained from the least-squares method by
setting the thresholded coefficients in Fig. S8 to zero. The units of the coefficients are the same as in Tab. S VI. A total of 200
points (blue) are presented from 200 sub-samples with 50% randomly chosen data points. The red points indicate the fitted
coefficients on the entire data set, which are the same as for PDE 2 in Tab. S VI. The histograms indicate the marginal probability
density functions (PDFs) of the corresponding coefficients. The fitted values and the standard deviations of the coefficients
are (mean± standard deviation): d1 = 2.281 ± 0.0242, d2 = 8.356 ± 0.1027, d3 = −2.194 ± 0.0239, d4 = −1.620 ± 0.0059,
d5 = −0.674± 0.0008.
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FIG. S10. Comparison of the contour plots of the density field ρ(t,x) for the coarse-grained data (left) and the PDE simulation
(right) corresponding to the chiral active Brownian model. Contour levels [1.0, 1.8, 2.0, 2.2] are the same in both plots. The
contours distinctly isolate the most prominent vortices, which can be identified by the closely spaced red contours [1.8, 2.0, 2.2].
The representation shows that the number, density profiles, sizes, and disordered nature of vortices emerging in the learned
model are very similar to the structures seen in the coarse-grained data.

Appendix D: Quantitative comparison of the particle model data and continuum simulations

To facilitate a direct visual comparison between vortex patterns observed in the coarse-grained particle data and
in simulations of the learned model (main text Fig. 3) the corresponding density fields are in Fig. S10 depicted as
a level set representation. Key pattern characteristics, such as the number, density profiles, sizes, and disordered
nature of emerging vortices, show very good agreement between patterns seen in the coarse-grained data and in the
simulated model.

To further quantify this similarity between vortex patterns, we show in Fig. S11 the spatial power spectral density,

Sρ;x(t,q) = A−1
∣∣∣∣∫ d2x ρ(t,x) exp(2πiq · x)

∣∣∣∣2 (D1)

of the long-lived vortex states at t = 1250 in the coarse-grained data and simulations. Here, A is the domain area.
The simulation data correspond to PDE 1 for the density equation (Tab. S II), and PDEs 1-3 and 8-13 for the
polarization equation (Tab. S III; PDEs 4-7 are found to be numerically unstable). The comparison shows that
PDE 8 is the sparsest model that captures the dominant flow length scale indicated by the shape of the spectra as
well as close agreement with the peak. As more terms are incorporated in the PDE (that is, the PDE index gets
larger), the peak of the inferred spectrum moves closer to the maximum seen in the data.

In Fig. S12, we plot the temporal power spectral density

Spx;t(ω,x) = T−1
∣∣∣∣∫ dt px(t,x) exp(2πiωt)

∣∣∣∣2 (D2)

over a time window [0, T ] and averaged over a spatial window. The spectra for the coarse-grained data and simulation
of PDE 8 for the momentum equation (Tab. S III) show similar overall shape with four distinct peaks at non-zero
frequencies. The first set of peaks occur at 2πω = ±〈Ωi〉p (the dotted lines), which is the average rotation frequency
of the particles. This shows that the learned model reproduces the bulk temporal dynamics as seen in the input
coarse-grained data.
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FIG. S11. Spatial power spectral density Sρ;x(t,q) = A−1
∣∣∫ d2x ρ(t,x) exp(2πiq · x)

∣∣2 averaged over 100 time points around
t = 1250 between the coarse-grained data (top left) and simulations of the learned polarization PDEs (other color plots).
Bottom right: azimuthal average of the power spectrum. For PDE 8 and above, the peak of the spectrum compares well with
that of the data. Inset: wavenumber q corresponding to the peak of the spectrum for each PDE. This peak gets close to the
peak of the data (black line) as the PDE index gets larger, that is, the PDE incorporates more terms. To improve further the
agreement in the tails of spectra, additional higher-order derivatives [19] must be accounted for in the library.

FIG. S12. Temporal power spectral density, Spx;t(ω,x) = T−1
∣∣∫ dt px(t,x) exp(2πiωt)

∣∣2 computed at grid points in the spatial
window x ∈ [45, 50], y ∈ [45, 50] (black lines) for the time window t ∈ [0, 1700]. The red lines show the average over the spatial
locations. The non-zero peaks in the spectrum for the coarse-grained data (top) and the simulation of PDE 8 for the polarization
equation (Tab. S III, bottom) compare well with ω = 〈Ωi〉p/2π (black dotted lines). This implies that the simulation captures
the bulk temporal dynamics in the input coarse-grained data at the average rotation frequency of the particles (see Fig. S1).
The secondary peaks that result from nonlinearities also compare well between the simulations and the data. Note that the
noise background in the coarse-grained particle data is several orders of magnitude smaller than the power in the characteristic
peak frequencies.
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FIG. S13. Normalized spectral entropy, Eq. (E1), as a function of the Gaussian kernel width σ (see SI Sec. A 2) for the
chiral particle model data (top) quantifies the fraction of information that remains in Fourier space after coarse graining.
Representative snapshots of coarse-grained fields are shown in the bottom panels. Characteristic scales in units of particle-
particle interaction distance: Median vortex distance ∼ 17 (obtained from a Delaunay triangulation of density peaks), box
size 100. (i, σ = 0.02): Raw image before coarse graining. (i, σ = 0.02)–(ii, σ = 0.12): The discrete nature of the particle
data remains present in the data, leading to little information loss. (ii, σ = 0.12)–(iii, σ = 0.86): As the coarse-graining scale
approaches the interaction length scale, σ → 1, coarse-grained data starts losing single particle information and vortices become
more prominent. (iii, σ = 0.86)–(iv, σ = 5): Vortices start to be smoothed out as σ exceeds the particle interaction distance
and vortex size. Data from (iv, σ = 5) was used for inferring a continuum model from the chiral-particle simulation date; this
choice of the coarse-graining scale ensures that the hydrodynamic fields are sufficiently smooth while still containing sufficient
information about density fluctuations and vortex patterns. (v, σ = 12.6): When the kernel width σ approaches the typical
vortex-vortex distance, coarse-graining results in a constant homogeneous density and all spatially heterogeneous information
is lost.

Appendix E: Information content of coarse-grained data

To quantify the information loss due to coarse-graining as a function of the coarse-graining length scale σ, we use
spectral entropy [20, 21] as a measure of the information content that remains in the coarse-grained fields. Specifically,
we define the spectral entropy as

H(σ) = −
∑
q

Ŝ(σ)
ρ;x(t,q) log2 Ŝ

(σ)
ρ;x(t,q), (E1)

where the normalized spatial power spectral density Ŝ
(σ)
ρ;x is defined as

Ŝρ;x(t,q) = Sρ;x(t,q)

(∫
d2qSρ;x(t,q)

)−1
, (E2)

with Sρ;x(t,q) the spatial power spectral density defined in Eq. (D1). The additional index σ indicates the Gaussian
kernel smoothing width (‘coarse-graining length scale’) with which the underlying density field ρ(t,x) was computed
from the raw particle data. For our analysis, we rescale the spectral entropy H given in Eq. (E1) by the spectral
entropy of the raw particle data, yielding a normalized spectral entropy between 0 and 1 (see Figs. S13 and S14).

Appendix F: Learning hydrodynamic equations for the collective motion of sunbleak fish

To demonstrate the generalizability of the presented learning framework to other active matter systems, we con-
sidered experimental data for the collective motion of sunbleak fish in Ref. [22]. These experiments were done in a
quasi-two-dimensional tank in which the motion of ∼1000 animals was influenced by a rotating dotted pattern that
was projected on the bottom of the tank. This results in the fish swimming in an anti-clockwise motion (Fig. S15)
that was recorded using overhead cameras.
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FIG. S14. Normalized spectral entropy, Eq. (E1), as a function of the Gaussian kernel width σ (see SI Sec. A 2) for the Quincke
roller system (top) quantifies the fraction of information that remains in Fourier space after coarse-graining. Representative
snapshots of coarse-grained fields are shown in the bottom panels. Characteristic length scales: Roller diameter 4.8µm, mean
roller-roller centroid distance ∼ 11µm, window height H = 0.286 mm, window width W = 1.146 mm. (i, σ = 10−5 mm): Raw
image before coarse graining. (ii, σ = 0.0033 mm)–(iii, σ = 0.0085mm): Single rollers are increasingly smoothed out, leading to
an initial decrease in information. (iii, σ = 0.0085 mm)–(iv, σ = 0.045 mm): Large-scale density fluctuations become increasingly
smoothed out by the coarse graining. Data from (iv, σ = 0.045 mm) was used for model learning from experimental Quincke
roller data, providing a compromise between sufficiently smooth data and well-resolved details of density fluctuation in both
spatial directions. (v, σ = 0.24 mm): As the coarse-graining scale σ becomes comparable to the window height H, density
fluctuations in the vertical direction have been smoothed out leading to an effectively one-dimensional density pattern that
varies only along the horizontal direction. (vi, σ = 1.04 mm): As σ becomes comparable to the window width W , all density
variations disappear and the coarse-graining yields a constant homogeneous density.

1. Tracking of swimming trajectories

To track the fish motion between two consecutive video frames In and In+1, we first detected feature points in In
using the detectSURFFeatures function in the MATLAB Computer Vision Toolbox, which implements the Speeded
Up Robust Features (SURF) algorithm [23]. The parameters MetricThreshold (strongest feature threshold) and
NumScaleLevels (number of scale levels per octave) in the SURF algorithm were set to be 1200 and 4 respectively.
After getting the SURF features in In, we tracked all corresponding feature point pairs in the two frames In and
In+1 using the vision.PointTracker function in the MATLAB Computer Vision Toolbox, which implements the
Kanade-Lucas-Tomasi (KLT) tracking algorithm [24, 25]. The parameter MaxBidirectionalError (forward-backward
error threshold) in the KLT algorithm was set to be 1. To further remove the effect of outliers on the subsequent
computation, we discarded all feature point pairs with displacement being outside of 2 standard deviations of the
mean displacement.

2. Data coarse-graining and model learning

Starting from the particle data, we applied the same procedure as for the Quincke roller data (main text Sec. 2
and Fig. 4). We considered the particle positions xi(t) and velocities vi(t) (main text Fig. S15A) and applied kernel
coarse-graining (main text Eqs (2); σ = 0.3 m) to obtain the density field ρ and velocity field v = p/ρ (Fig. S15B).
These data were then projected onto Chebyshev basis functions in space and time, and a temporal mode cut-off
n > n0 was imposed to retain the hydrodynamically relevant time scales. Our goal was to learn equations of the form
in Eq. (7) and similar physics-informed libraries as in Sec. 2 B (main text) were considered. The rotating pattern
stimulus was accounted for by including an additional term v⊥ = ε> · v = (−vy, vx)> in the velocity equation. The
complete libraries are shown in Fig. S15C. Application of the STLSQ algorithm along with the stability selection
procedure (SI Sec. A 3) resulted in hydrodynamic models that are summarized in Fig. S15 and Tabs. S VII and S VIII.
The sparsest density equation is ∂tρ = e3∇ · (ρv) with e3 ' −1, which is the expected continuity equation for the
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system. Along with this density equation, we simulated all the PDEs for the velocity equation starting from random
initial conditions. These simulations were performed in a closed square domain with reflective boundary conditions
to mimic the experimental tank with side walls (see SI Sec. A 6). We found that PDE 4 (marked by J in Fig. S15)
was the sparsest velocity equation that resulted in a spontaneously formed anti-clockwise vortex as seen in the coarse-
grained data (Fig. S15). Furthermore, 100% of the subsamples at the corresponding thresholding parameter τ result
in the same terms as in PDE 4. The uncertainties in the parameters of this PDE are quantified by a bootstrapping
procedure in Fig. S16.

TABLE S VII. Phenomenological parameters el for the density equation learned from the experimental data for the collective
motion of sunbleak fish (Fig. S15). The dimensions of the coefficients are such that [v] = m/s and [ρ] = m−2.

Term Unit PDE 1J PDE 2 PDE 3 PDE 4
e1∇ · v m−2 – – – –
e2∆ρ m2 s−1 – 1.26×10−3 1.69×10−3 9.87×10−4

e3∇ · (ρv) – -1.02×100 -1.01×100 -1.13×100 -1.14×100

e4∆ρ2 m4 s−1 – -1.57×10−5 -1.81×10−5 -1.66×10−5

e5∆|v|2 m−2 s – – -1.68×101 -1.37×101

e6∇ · (ρ2v) m2 – – 5.96×10−4 6.20×10−4

e7∆ρ3 m6 s−1 – 3.77×10−8 4.10×10−8 3.79×10−8

e8∇ · (|v|2v) m−4 s2 – – – –
e9∇ · (ρ∇|v|2) s – – 1.62×10−1 1.23×10−1

e10∇ · (|v|2∇ρ) s – – – 4.91×10−2

TABLE S VIII. Phenomenological parameters fl for the velocity equation learned from the experimental data for the collective
motion of sunbleak fish (Fig. S15). Simulations the of velocity dynamics PDE 4 (J) along with density dynamics PDE 1 in
Tab. S VII show the spontaneous formation of an anti-clockwise vortex (Fig. S15E), recapitulating the pattern observed in the
input data (Fig. S15B). The dimensions of the coefficients are such that [v] = m/s and [ρ] = m−2.

Term Unit PDE 1 PDE 2 PDE 3 PDE 4J PDE 5
f1v s−1 – – 2.97×10−2 3.80×10−2 3.08×10−2

f2ρv m2 s−1 – – – -5.94×10−5 -4.41×10−5

f3v⊥ s−1 5.00×10−2 7.49×10−2 7.55×10−2 7.56×10−2 7.57×10−2

f4|v|2v m−2 s – – -2.28×100 -2.40×100 -2.17×100

f5∇ρ m4 s−2 -3.26×10−5 -3.98×10−5 -3.96×10−5 -3.95×10−5 -3.94×10−5

f6(v · ∇)v – -2.54×10−1 -3.88×10−1 -3.98×10−1 -3.99×10−1 -4.02×10−1

f7∇(∇ · v) m2 s−1 – – – – 2.60×10−3

f8∆v m2 s−1 – – – – -1.30×10−3

f9∇(|v|2) – – 1.69×10−1 1.64×10−1 1.64×10−1 1.66×10−1

f10(∇ · v)v – – – – – –
f11∆2v m4 s−1 – – – – –

Appendix G: Temporal spectra of the coarse-grained data for the Quincke roller system and sunbleak fish

The coarse-grained density ρ(t,x) and velocity v(t,x) fields are projected onto Chebyshev basis functions in both
space and time (see main text Sec. 2 A). To quantify how the energy decays with increasing frequency, we plot the
summation of the squared mode amplitudes for each temporal mode in Fig. S17 to obtain a power spectrum similar
to main text Fig. 2B. In all the three cases, we observe an exponential decay of the energy spectra with increasing
frequency. This suggests that significant fluctuations (‘noise’) are absent in the coarse-grained field dynamics, typically
visible in terms of slowly (algebraically) decaying temporal frequency spectra. Thus, our approach to model the
dynamics using deterministic (instead of stochastic) partial differential equations is justified.
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FIG. S15. Learning hydrodynamic equations for the collective motion of sunbleak fish. (A) Identified locations and velocities
of approximately 1000 animals from experiments in a quasi-two-dimensional tank [22]. The fish are stimulated with a rotating
pattern projected at the base of the tank, due to which they exhibit a counter-clockwise motion. Scale bar, 0.5 m. (B) Coarse-
grained density ρ(x, y) and velocity components, vx(x, y) and vy(x, y), at a representative time point. The coarse-graining
width σ is 0.3m. (C ) Physics-informed libraries for the density and velocity dynamics. These are the same libraries as in main
text Fig. 4C along with a v⊥ term in the velocity equation to take into account the external rotating stimulus provided to the
fish by the rotating pattern. (D) Learned phenomenological coefficients el and fl of the four sparsest PDEs for the density
(left) and velocity (right) dynamics. The coefficients are non-dimensionalized with length scale σ and time scale σ/v0, where
v0 = 0.13 m/s is the average speed of the fish. (E) Simulation snapshot at t = 500 s of the learned hydrodynamic model
(PDEs marked by J in (D) in a square domain with reflective boundary conditions. Starting from random initial conditions,
this is the sparsest model for which spontaneous flow emerges and the flow settles into an anti-clockwise vortex as seen in the
coarse-grained data. Furthermore, the magnitudes of the velocity components agree well with the coarse-grained data in (B).
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FIG. S16. Parameters fl of the velocity dynamics (Fig. S15C ) that are obtained from the least-squares method by setting the
thresholded coefficients in PDE 4 (Tab. S VIII) to zero. The units of the coefficients are the same as in Tab. S VIII. A total of
200 points (blue) are presented from 200 sub-samples with 50% randomly chosen data points. The red points indicate the fitted
coefficients on the entire data set, which are the same as for PDE 4 in Tab. S VIII. The histograms indicate the marginal prob-
ability density functions (PDFs) of the corresponding coefficients. The coefficient f11 (not shown) is thresholded out and set to
zero. The fitted values and the standard deviations of the coefficients that remain in the PDE are (mean ± standard deviation):
f1 = (3.80±0.10)×10−2, f2 = (−5.94±0.50)×10−5, f3 = (7.56±0.05)×10−2, f4 = −2.40±0.05, f5 = (−3.95±0.02)×10−5,
f6 = (−3.99± 0.04)× 10−1, f9 = (1.64± 0.02)× 10−1.
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FIG. S17. Power spectra of coarse-grained data for the Quincke roller system (left; see Sec. 2 in the main text) and for
sunbleak fish (right; see SI Sec. F), where n denotes temporal Chebychev mode numbers. Similar to Fig. 2B (main text), we
define the spatio-temporal power spectrum Sx;n,(α,β) = |ex · v̂n,α,β |2, where (α, β) are the spatial Chebyshev mode numbers
and the total spatial spectral power is given by Sx;n =

∑
α,β Sx;n,(α,β). The normalized power shown in the two panels

is given by Sx;n/Sx;n=0. For both the Quincke roller and the sunbleak fish data spectral powers decay exponentially with
increasing temporal mode number n. The analog spatio-temporal power spectra Sy;n,(α,β) show similar behavior. Note, the
use of a Chebyshev basis implies that the power spectrum Sx;n,(α,β) is related to real-space data by

∑
α,β

∑
n Sx;n,(α,β) =∫

dtd2x|vx(t,x)|2wCh(t)wCh(x)wCh(y), where wCh is the Chebyshev weight function.
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Appendix H: Movie Legends

Movie 1. Supporting Video for Figs. 2 and 3 of
the main text: Comparison of discrete particle dynamics
and coarse-grained density and polarization fields from
simulations of an active chiral Brownian particle model
(Eqs. (1), main text; see SI Sec. A 1 for simulation details
and model parameters) with simulations of the learned
continuum model (see SI Secs. C and D for details of the
continuum model and its parameters).

Movie 2. Supporting Video for Fig. 4A-E of the main
text: Simulations of the learned continuum model for the
experimental Quincke roller system in a channel geome-
try with periodic boundary conditions along the horizon-
tal direction.

Movie 3. Supporting Video for Fig. 4F of the main
text: Simulation of the learned continuum model for the
Quincke roller system in a closed-square geometry reca-
pitulates essential characteristics of the experimental ob-
servations.
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