
nature computational science

https://doi.org/10.1038/s43588-023-00448-9Article

An additive framework for kirigami design

In the format provided by the
authors and unedited

https://doi.org/10.1038/s43588-023-00448-9

Supplementary information for

“An additive framework for kirigami design”

Levi H. Dudte, Gary P. T. Choi, Kaitlyn P. Becker, L. Mahadevan

Contents

1 Linear kirigami design 1
1.1 Linkage design . 1
1.2 Linkage strips . 5
1.3 Linkage arrays . 7
1.4 Determining the boundary node positions in the final kirigami pattern 9
1.5 Rigid-deployability . 11
1.6 Self-intersection . 11

2 Nonlinear optimization 15

3 Results 17

4 Analysis of random kirigami patterns 20
4.1 Diagonal ratio . 21
4.2 Side length ratio . 21
4.3 Area ratio . 22
4.4 Relationship between the quantities . 23

1 Linear kirigami design

1.1 Linkage design

Here we give a more detailed description of the planar parallelogram four-bar linkage design. Recall that the
four-bar linkage is parameterized by the offset ε and the deployment angle φ as shown in Supplementary
Figure 1A. Specifically, for the four points xk = (xk, yk), k ∈ {0, 1, 2, 3} that form the parallelogram, we have

D

[
x0

x3

]
=


D0

D1

D2

D3

[x0

x3

]
=


I 0

I −Q Q
−Q I +Q
0 I

[x0

x3

]
=


x0

x1

x2

x3

 , (1)

where Q = (1+ε)R(−φ) is a scaled rotation matrix. When ε = 0, the linkage is a rhombus (see Supplementary
Figure 1B). When ε = 1, the linkage is a parallelogram with the side length ratio 2 : 1 (see Supplementary
Figure 1C). When ε = −1, the parallelogram degenerates to two equal collinear line segments with x0 = x1

and x2 = x3 (see Supplementary Figure 1D). Otherwise, so long as φ 6= 0, π the generated points x form
a parallelogram in R2 for all values of ε. The points are ordered counter-clockwise when φ < π, clockwise
when φ > π and are collinear when φ = π. Holding ε constant keeps each edge length in the parallelogram
constant and varying φ casts the parallelogram as a four-bar linkage, giving its one-dimensional deployment
path. During deployment, two opposite interior angles in the linkage each measure φ and the other two each

1

φ

ε

A B

C

D

φ = 0

φ = π/2

φ = π

ε = −1

ε = 0

ε = 1

ε = −1/2

ε = 1/2

x2

x3

x0

x1

φ > π φ < π

ε = 0

φ = π

ε = 0

φ = 0

ε = 0

φ = π/3

ε = 0

φ = 2π/3

x2

x3

x0

x1 x2x3

x0 x1 x2

x3

x0

x1

x2

x3

x0

x1

ε = 1

φ = 0

ε = 1

φ = π/3

ε = 1

φ = 2π/3

ε = 1

φ = π

x2x3

x0 x1

x2 x3

x0x1

ε = −1

ε = 0

φ = 4π/3

x2

x3

x0

x1

x2x3

x0 x1

x2

x3

x0

x1

x2

x3

x0

x1

Supplementary Figure 1: Planar parallelogram four-bar linkage design. (A) The parameterization of
a four-bar linkage. Given two points x0 and x3, the four-bar linkage is parameterized by the deployment
angle φ and an offset ε, from which the other two points x2,x4 can be obtained. (B) The deployment of a
rhombus (ε = 0). (C) The deployment of a rhombus (ε = 1). (D) Some singular/illegal cases.

measure π − φ.

Now we can take a closer look at each of the 2× 2 blocks that comprise the linkage design matrix D, in
particular their rank. The identity components I are trivially rank two and the zero components are trivially
rank zero. The ±Q blocks are scalar multiples of rotation matrices (1 + ε)R(−φ) and are therefore rank two
when ε 6= −1 and rank zero when ε = −1 (a degenerate case described above). Lastly, the I ±Q blocks are
generically rank two and only become rank zero when I = ∓Q, respectively. The first case

I = Q⇔
[
1 0
0 1

]
= (1 + ε)

[
cos(−φ) − sin(−φ)
sin(−φ) cos(−φ)

]
(2)

occurs when (1 + ε) cos(−φ) = 1, so when ε = 0, φ = 0 or ε = −2, φ = π. The second case

I = −Q⇔
[
1 0
0 1

]
= −(1 + ε)

[
cos(−φ) − sin(−φ)
sin(−φ) cos(−φ)

]
(3)

clearly occurs when −(1 + ε) cos(−φ) = 1, so when ε = −2, φ = 0 or ε = 0, φ = π. These cases have geometric
significance which can be interpreted by inspecting Equation (1). The first case gives a linkage with coincident
x3 = x1 and collinear −x0 + 2x3 = x2. The second case gives a linkage with coincident x0 = x2 and
2x0 − x3 = x1.

Finally, we can use Equation (1) to prove the following result:

2

Proposition 1. Choosing the coordinates of any two points in a planar parallelogram four-bar linkage along
with its offset ε and deployment angle φ determines the spatial configuration of the full linkage, generically.

Proof. To prove this statement we will calculate the ranks of the six possible 4× 4 block submatrices di,j of
D (i.e. a 4× 4 matrix comprised of 2× 2 of the 2× 2 blocks of D):

di,j =

[
Di

Dj

]
, (4)

where (i, j) = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), which correspond to the six possible ways to choose a pair
i, j from a set of four points. If a square submatrix is full rank, then it is invertible and the linear inverse
solution

Dd−1i,j

[
xi
xj

]
= D

[
x0

x3

]
=


x0

x1

x2

x3

 (5)

yields the input positions of points x0 and x3 to Equation (1) that produce a full linkage with the prescribed
positions of points xi and xj satisfied.

d0,1 =

[
D0

D1

]
=

[
I 0

I −Q Q

]
, (6)

d0,2 =

[
D0

D2

]
=

[
I 0
−Q I +Q

]
, (7)

d0,3 =

[
D0

D3

]
=

[
I 0
0 I

]
, (8)

d1,2 =

[
D1

D2

]
=

[
I −Q Q
−Q I +Q

]
, (9)

d1,3 =

[
D1

D3

]
=

[
I −Q Q

0 I

]
, (10)

d2,3 =

[
D2

D3

]
=

[
−Q I +Q
0 I

]
. (11)

Four of these submatrices (d0,1, d0,2, d1,3 and d2,3) are block triangular with an identity matrix and a 2× 2
matrix analyzed above on the main diagonal. These four matrices are therefore rank four (full) generically
and become rank two when one of the non-identity main diagonal 2× 2 entries (Q, I +Q, I −Q and −Q,
respectively) loses rank. The submatrix d0,3 is a 4× 4 identity matrix and therefore trivially full rank. Lastly,
the submatrix d1,2 can be block row-reduced to upper triangular form in two steps:

d1,2 −
[

0 0
I −Q Q

]
+

[
Q 0
I 0

]
=

[
I Q
0 I

]
(12)

and is therefore full rank generically, i.e. when rank(I ±Q) = 2.

As analyzed above, each of these submatrix rank loss cases corresponds to a geometrically indeterminate
linkage where two coincident points have been prescribed, leaving an additional rotational degree of freedom
to determine the other two points in the linkage. Note also that we have restricted ourselves to prescribing
both coordinates of a given point and therefore working only with the 2× 2 block components of D. This is
not necessary, however, and more submatrices of D comprised of collections of four individual (not block)
rows could be shown to be full rank and therefore invertible as well, should the designer wish to prescribe a
mix of coordinates across a set of points in the linkage.

3

To conclude our analysis of planar parallelogram four-bar linkage design, we look in more detail at the
endpoints of a deployment path, i.e. when φ = 0, π:

φ = 0⇒ Q = (1 + ε)I ⇒ D =


I 0
−εI (1 + ε)I

−(1 + ε)I (2 + ε)I
0 I

 , (13)

φ = π ⇒ Q = −(1 + ε)I ⇒ D =


I 0

(2 + ε)I −(1 + ε)I
(1 + ε)I −εI

0 I

 . (14)

Because each of the blocks becomes either a zero matrix or a scaled identity matrix, the effects of D on the
respective x and y coordinates of x0 and x3 are identical, i.e. the 4× 4 submatrix of D given by its odd rows
of its odd columns (corresponding to x coordinates) is equal to the submatrix given by the even rows of the
even columns (corresponding to y coordinates). In these cases, we can write reduced versions of Equation (1)
with 4 × 2 design matrices D that take a 2 × 2 input matrix with coordinates of a point as a row vector,
rather than stacked column vectors as in Equation (1):

φ = 0⇒ D

[
xT0
xT3

]
=


D0

D1

D2

D3

[x0 y0
x3 y3

]
=


1 0
−ε 1 + ε

−(1 + ε) 2 + ε
0 1

[x0 y0
x3 y3

]
=

[
x1 y1
x2 y2

]
=

[
xT1
xT2

]
, (15)

φ = π ⇒ D

[
xT0
xT3

]
=


D0

D1

D2

D3

[x0 y0
x3 y3

]
=


1 0

2 + ε −(1 + ε)
1 + ε −ε

0 1

[x0 y0
x3 y3

]
=

[
x1 y1
x2 y2

]
=

[
xT1
xT2

]
, (16)

where xT denotes the transpose of x. This simplifies the linear inverse design of linkages in “closure”
configurations as both coordinates are handled simultaneously and indistinguishably. And, just as we showed
for deployed configurations, we would like to prove that:

Proposition 2. Prescribing any two points along with an offset ε in a closure linkage determines the full
closure linkage.

Proof. Again, we break each D into the six possible submatrices di,j and calculate the rank of each.

When φ = 0, four of its submatrices (d0,1, d0,2, d1,3 and d2,3) are triangular and are generically full rank
with rank loss occurring when ε = −1,−2, 0,−1, respectively. The identity submatrix d0,3 is trivially full
rank. Lastly, the submatrix d1,2 is full rank for all values of ε, which can be shown by the linear independence
of its rows, as we have

k
[
−ε 1 + ε

]
6=
[
−(1 + ε) 2 + ε

]
(17)

for any real number k. Similarly, when φ = π, four of its submatrices (d0,1, d0,2, d1,3 and d2,3) are triangular
and are generically full rank with rank loss occurring when ε = −1, 0,−2,−1, respectively. The identity
submatrix d0,3 is trivially full rank. Lastly, the submatrix d1,2 is full rank for all values of ε, which can be
shown by the linear independence of its rows:

k
[
2 + ε −(1 + ε)

]
6=
[
1 + ε −ε

]
(18)

for any real number k. So all 2× 2 submatrices of both closure design matrices D are generically full rank
and thus prescribing any two points in a closure linkage determines the full closure linkage with the exception
of a small set of singular cases identified above. This completes the proof.

4

x2,1

x2,3

x2,2

x3,1

x3,3
x3,2

x0,1

x0,0

x0,3

x0,2

x1,1

x1,3
x1,2 ...

xn–2,1

xn–2,3

xn–2,2

xn–1,1

xn–1,3
xn–1,2xn–3,2

ϕn–1ϕn–2
ϕ3ϕ2

ϕ1ϕ0

Supplementary Figure 2: Linkage strip design. Note that in the j-th linkage, the node xj,0 = xj−1,2
depends on the (j − 1)-th linkage. Therefore, the new nodes xj,1 and xj,2 are dependent of xj−1,2 as well as
the node xj,3, the angle φj and the offset εj .

1.2 Linkage strips

We now apply this insight to calculate the design matrices for a strip of n linkages xj,k, where j ∈ {0, . . . , n−1}
is the linkage index, k ∈ {0, 1, 2, 3} is the point in linkage index and xj,2 = xj+1,0 denotes a shared node (see
Supplementary Figure 2). First, Let E(j) be a 2× 2n block matrix comprised of the identity block in the jth

preceded by position j − 1 zero blocks and followed by n− j zero blocks:

E(j) =
[
0 · · · 0 I 0 · · · 0

]
. (19)

Then the base case is

D0,0 = E(0), (20)

Dj,3 = E(j + 1), (21)

and the recursive case is

Dj,1 = G0,0
j Dj−1,2 +G0,1

j Dj,3, (22)

Dj,2 = G1,0
j Dj−1,2 +G1,1

j Dj,3, (23)

where G0,0
j , G0,1

j , G1,0
j , G1,1

j are the components of the following “generator” matrix[
G0,0
j G0,1

j

G1,0
j G1,1

j

]
=

[
I − (1 + εj)R(−φj) (1 + εj)R(−φj)
−(1 + εj)R(−φj) I + (1 + εj)R(−φj)

]
, (24)

which takes two points in a linkage and produces the other two points in the linkage.

These rules define the full (3n + 1) × (2n) linkage strip design matrix. The dynamic program defined
above can be solved to give closed-form expressions for the dependent block rows:

Dj,1 = G0,0
j

(0∏
y=j−1

G0,1
y

)
D0,0 +

j−1∑
z=0

G0,0
j

(z+1∏
y=j−1

G0,1
y

)
G0,0
z Dz,3 +G1,0

j Dj,3, (25)

Dj,2 =
(0∏
y=j

G0,1
y

)
D0,0 +

j∑
z=0

(z+1∏
y=j

G0,1
y

)
G1,0
z Dz,3. (26)

All other block rows correspond to seed input points and are therefore independent/base-case identity rows.
It is helpful to look more closely at the terms that comprise Equation (26) to develop some intuition for the

5

D 0,0 D 0,2 D 1,2 D 2,2 D 3,2
G0,10 G0,11 G0,12 G0,13

D 0,3

D 0,2

D 1,2 D 2,2 D 3,2

G1,10

G0,11 G0,12 G0,13

D 1,3

D 1,2

D 2,2 D 3,2

G1,11

G0,12 G0,13

D 2,3

D 2,2
D 3,2

G1,12

G0,13

D 3,3

D 3,2

G1,13

D 0,0

D 3,1

D 0,2 D 1,2 D 2,2
G0,10 G0,11 G0,12

G0,03D 0,3

D 3,1

D 0,2 D 1,2 D 2,2

G1,10

G0,11 G0,12

G0,03D 1,3

D 3,1

D 1,2
D 2,2

G1,11

G0,12

G0,03

D 2,3

D 3,1

D 2,2

G1,12

G0,03

D 3,3

D 3,1

G1,03

A C

B

D 0,3 D 1,3 D 2,3 D 3,3

D 1,1 D 2,1 D 3,1

D 0,2 D 1,2 D 2,2
D 3,2

G0,00

G1,00

G1,10

G0,10

G0,01

G1,01

G1,11

G0,11

G0,02

G1,02

G1,12

G0,12

G0,03

G1,03

G1,13

G0,13
D 0,0

D 0,1

Supplementary Figure 3: Linkage strip example. (A) Example strip of four linkages. Block design
matrix rows Dj,k corresponding to the kth node of the jth linkage xj,k are labeled along with the generator

components G
{0,1},{0,1}
j which form directed edges in the paths from seed nodes to determined nodes. (B)

The five generator product paths originating at seed nodes and terminating at D3,1. (C) The five generator
product paths originating at seed nodes and terminating at D3,2.

relationships between seed positions and dependent positions. Note that the left expression is the only term
involving left seed rows D0,0 and the right expression produces a term for each of the top seed rows Dz,3 that
Dj,2 depends on. Each of these terms can be viewed as a path through the structure that originates at a
seed and terminates at the dependent node, collecting components of G as left products along the way. So a
dependent node block row can be viewed as the sum of all the paths originating at the boundary seed nodes
and terminating at that dependent node.

This heuristic will eventually form the foundation for our analysis of two-dimensional linkage arrays.
Because the current example is a strip of linkages, though, there is only one path from each seed node to each
determined node. This will change significantly when we look at linkage arrays, so it is instructive to look in
detail at the calculation of linkage strips through this lens now. Consider a strip comprised of four linkages
as shown in Supplementary Figure 3A. As an example, we are interested in the design matrix block rows D3,1

and D3,2 corresponding to the structure node x3,1 and x3,2, respectively. Applying Equation (26), we have

D3,1 = G0,0
3 G0,1

2 G0,1
1 G0,1

0 D0,0 +

G0,0
3 G0,1

2 G0,1
1 G1,1

0 D0,3 +

G0,0
3 G0,1

2 G1,1
1 D1,3 + (27)

G0,0
3 G1,1

2 D2,3 +

G1,0
3 D3,3,

which shows the five generator product terms that correspond to the five paths connecting seed nodes to x3,1

6

(Supplementary Figure 3B). Similarly, we have

D3,2 = G0,1
3 G0,1

2 G0,1
1 G0,1

0 D0,0 +

G0,1
3 G0,1

2 G0,1
1 G1,1

0 D0,3 +

G0,1
3 G0,1

2 G1,1
1 D1,3 + (28)

G0,1
3 G1,1

2 D2,3 +

G1,1
3 D3,3,

which shows the five generator product terms that correspond to the five paths connecting seed nodes to x3,2

(Supplementary Figure 3C). It is easy to see how this process generalizes to calculate any Dj,{1,2} in a strip
design matrix.

Now we can put all of these pieces together to calculate the full linkage strip design matrix S:

S =



D0,0

D0,1

D0,2

D0,3

D1,1

D1,2

D1,3

D2,1

D2,2

D2,3

...
Dn−1,1
Dn−1,2
Dn−1,3



=



I 0 0 0

G0,0
0 G0,1

0 0 0

G1,0
0 G1,1

0 0 0
0 I 0 0

G0,0
1 G0,0

0 G0,0
1 G0,1

0 G0,1
1 0 · · ·

G1,0
1 G1,0

0 G1,0
1 G1,1

0 G1,1
1 0

0 0 I 0

G0,0
2 G1,0

1 G1,0
0 G0,0

2 G1,0
1 G1,1

0 G0,0
2 G1,1

1 G0,1
2

G1,0
2 G1,0

1 G1,0
0 G1,0

2 G1,0
1 G1,1

0 G1,0
2 G1,1

1 G1,1
2

0 0 0 I
...

. . .



. (29)

The entire linkage strip is then given by

S



x0,0

x0,3

x1,3

x2,3

...
xn−1,3


=



I 0 0 0

G0,0
0 G0,1

0 0 0

G1,0
0 G1,1

0 0 0
0 I 0 0

G0,0
1 G0,0

0 G0,0
1 G0,1

0 G0,1
1 0 · · ·

G1,0
1 G1,0

0 G1,0
1 G1,1

0 G1,1
1 0

0 0 I 0

G0,0
2 G1,0

1 G1,0
0 G0,0

2 G1,0
1 G1,1

0 G0,0
2 G1,1

1 G0,1
2

G1,0
2 G1,0

1 G1,0
0 G1,0

2 G1,0
1 G1,1

0 G1,0
2 G1,1

1 G1,1
2

0 0 0 I
...

. . .





x0,0

x0,3

x1,3

x2,3

...
xn−1,3


=



x0,0

x0,1

x0,2

x0,3

x1,1

x1,2

x1,3

x2,1

x2,2

x2,3

...
xn−1,1
xn−1,2
xn−1,3



. (30)

1.3 Linkage arrays

After getting the linkage strip design matrix, we proceed to consider linkage arrays (Supplementary Figure 4A).
Similar to the case of linkage strips, in an array of four-bar linkages, there will be multiple paths connecting

7

D 0,j ,0

D 0,j ,1

D 0,j ,2

D 0,j ,3

Di ,0,0

Di ,0,1

Di ,0,2

Di ,0,3

Di ,j ,0

Di ,j ,1

Di ,j ,2

Di ,j ,3

D 0,n ,0

D 0,n ,1

D 0,n ,2

D 0,n ,3

Dm,0,0

Dm,0,1

Dm,0,2

Dm,0,3

Di ,n ,0

Di ,n ,1

Di ,n ,2

Di ,n ,3

Dm,j ,0

Dm,j ,1

Dm,j ,2

Dm,j ,3

Dm,n ,0

Dm,n ,1

Dm,n ,2

Dm,n ,3

D 0,0,0

D 0,0,1

D 0,0,2

D 0,0,3

D 0,0,0

D 0,0,1

D 0,0,2

D 0,0,3

D 0,1,1

D 0,1,2

D 0,1,3

D 0,2,1

D 0,2,2

D 0,2,3

D 0,3,1

D 0,3,2

D 0,3,3

D 1,0,0

D 1,0,1

D 1,0,2

D 1,1,1

D 1,1,2

D 1,2,1

D 1,2,2

D 1,3,1

D 1,3,2

D 2,0,0

D 2,0,1

D 2,0,2

D 2,1,1

D 2,1,2

D 2,2,1

D 2,2,2

D 2,3,1

D 2,3,2

D 3,0,0

D 3,0,1

D 3,0,2

D 3,1,1

D 3,1,2

D 3,2,1

D 3,2,2

D 3,3,1

D 3,3,2

G0,00,0

G0,10,0

G1,00,0

G1,10,0

G0,00,1

G0,10,1

G1,00,1

G1,10,1

G0,00,2

G0,10,2

G1,00,2

G1,10,2

G0,00,3

G0,10,3

G1,00,3

G1,10,3

G0,01,0

G0,11,0

G1,01,0

G1,11,0

G0,01,1

G0,11,1

G1,01,1

G1,11,1

G0,01,2

G0,11,2

G1,01,2

G1,11,2

G0,01,3

G0,11,3

G1,01,3

G1,11,3

G0,02,0

G0,12,0

G1,02,0

G1,12,0

G0,02,1

G0,12,1

G1,02,1

G1,12,1

G0,02,2

G0,12,2

G1,02,2

G1,12,2

G0,02,3

G0,12,3

G1,02,3

G1,12,3

G0,03,0

G0,13,0

G1,03,0

G1,13,0

G0,03,1

G0,13,1

G1,03,1

G1,13,1

G0,03,2

G0,13,2

G1,03,2

G1,13,2

G0,03,3

G0,13,3

G1,03,3

G1,13,3

A B

Supplementary Figure 4: The relationship between nodes in a linkage array. (A), An (m+1)×(n+1)
linkage array. (B), A 4×4 linkage array with all paths connecting seed nodes to each point in the array. Here,
Di,j,0, Di,j,1, Di,j,2, Di,j,3 are the block design matrix rows, and {G0,0

i,j , G
0,1
i,j , G

1,0
i,j , G

1,1
i,j } are the generator

components.

seed nodes to each point in the array (see Supplementary Figure 4B). Although the relationship between
the nodes becomes more complicated in two-dimensional linkage arrays, the general idea, which hopefully
the reader now has a more concrete intuition for, remains the same: generator matrix product paths
originating at seed nodes (i.e. seed design matrix block rows) sum to determine other nodes
(i.e. other design matrix block rows) in the linkage structure.

Ultimately, we obtain the full linkage array design matrix M as described in the main text:

M



x0
0,0

x0
0,3

x0
1,3
...

x0
n−1,3
x1
0,0

x2
0,0
...

xm−10,0


=



D0
0

D0
1

...
D0
n−1
D1

0

D1
1

...
Dm−1
n−2

Dm−1
n−1





x0
0,0

x0
0,3

x0
1,3
...

x0
n−1,3
x1
0,0

x2
0,0
...

xm−10,0


=



I 0 0 0

G0,0
0,0 G0,1

0,0 0 0

G1,0
0,0 G1,1

0,0 0 0
0 I 0 0

G0,0
0,1G

0,0
0,0 G0,0

0,1G
0,1
0,0 G0,1

0,1 0 · · ·
G1,0

0,1G
1,0
0,0 G1,0

0,1G
1,1
0,0 G1,1

0,1 0
0 0 I 0

G0,0
0,2G

1,0
0,1G

1,0
0,0 G0,0

0,2G
1,0
0,1G

1,1
0,0 G0,0

0,2G
1,1
0,1 G0,1

0,2

G1,0
0,2G

1,0
0,1G

1,0
0,0 G1,0

0,2G
1,0
0,1G

1,1
0,0 G1,0

0,2G
1,1
0,1 G1,1

0,2

0 0 0 I
...

. . .





x0
0,0

x0
0,3

x0
1,3
...

x0
n−1,3
x1
0,0

x2
0,0
...

xm−10,0


,

(31)

where {xij,k} are the coordinates of the nodes in the linkage array (with i ∈ {0, 1, . . . ,m−1}, j ∈ {0, 1, . . . , n−

8

1}, k ∈ {0, 1, 2, 3}), Di
j are the linkage design matrices, and {G0,0

i,j , G
0,1
i,j , G

1,0
i,j , G

1,1
i,j } form the generator matrix[

G0,0
i,j G0,1

i,j

G1,0
i,j G1,1

i,j

]
=

[
I −Qij Qij
−Qij I +Qij

]
=

[
I − (1 + εij)R(−φij) (1 + εij)R(−φij)
−(1 + εij)R(−φij) I + (1 + εij)R(−φij)

]
, (32)

with Qij = (1 + εij)R(−φij) being the scaled rotation matrix for the linkage (i, j).

Specifically, for the first linkage (i, j) = (0, 0), we have

D0
0 =


D0,0,0

D0,0,1

D0,0,2

D0,0,3

 =


I 0 0 · · ·

G0,0
0,0 G0,1

0,0 0 · · ·
G1,0

0,0 G1,1
0,0 0 · · ·

0 I 0 · · ·

 . (33)

For the remaining linkages in the first strip, i.e. (i, j) = (0, j), j = 1, 2, . . . , n− 1, we have

D0
j =

D0,j,1

D0,j,2

D0,j,3

 (34)

where

D0,j,1 = G0,0
0,j

(0∏
y=j−1

G0,1
0,y

)
D0,0,0 +

j−1∑
z=0

G0,0
0,j

(z+1∏
y=j−1

G0,1
0,y

)
G0,0

0,zD0,z,3 +G1,0
0,jD0,j,3, (35)

D0,j,2 =
(0∏
y=j

G0,1
0,y

)
D0,0,0 +

j∑
z=0

(z+1∏
y=j

G0,1
0,y

)
G1,0

0,zD0,z,3, (36)

D0,j,3 =
[
0 · · · 0 I 0 · · · 0

]
, (37)

with the identity block I located at j-th block column. Here, note that we do not need the block row D0,j,0

in D0
j as it is identical to the block row D0,j−1,2, which is already encoded in the previous linkage design

matrix D0
j−1.

Starting from the second strip, i.e. i ≥ 1, we have

Di
0 =

Di,0,0

Di,0,1

Di,0,2

 and Di
j =

[
Di,j,1

Di,j,2

]
, j = 1, . . . , n− 1, (38)

where Di,0,0 is of the form
[
0 · · · 0 I 0 · · · 0

]
, and Di,0,1, Di,0,2, Di,j,1, Di,j,2 are determined using

dynamic programming. Again, here we do not need the block row Di,0,3 in Di
0 as it is identical to Di−1,0,1 in

the linkage design matrix Di−1
0 . Similarly, we do not need the block rows Di,j,0 and Di,j,3 in Di

j as they are

identical to Di,j−1,2 in Di
j−1 and Di−1,j,1 in Di−1

j respectively.

Altogether, M consists of 4 + 3(n− 1) + (m− 1)(3 + 2(n− 1)) = 2mn+m+ n block rows, where each
block row is a 2× 2(m+ n) matrix. Therefore, M is a (4mn+ 2m+ 2n)× (2m+ 2n) matrix.

1.4 Determining the boundary node positions in the final kirigami pattern

As described in the main text, after setting up the design matrix, fixing the position of 2m+ 2n nodes in
the linkage array appropriately will uniquely determine the entire m × n linkage array. However, in the
corresponding (m+ 1)× (n+ 1) kirigami pattern, the boundary nodes that are not included in the linkage

9

ϕ1
0

ϕ00

b0
0

x0,0
0

b0

2b0

b1
0

b2
0

x0,0
1

b3
0 b4

0

3b0

4b0 b4
4

b4
3

b4
2

b4
1

4b2
4b3

4b1

1

ϕ–1
0

θ

x1,0
1ϕ0

1

ϕ–1
2

Supplementary Figure 5: Determining the boundary node positions for the kirigami pattern. We
first fix the position of the red linkage boundary nodes and use the design matrix equation to uniquely
determine all the remaining nodes in the linkage array (pink). Then, we can further prescribe four boundary
node positions for the kirigami pattern (blue) and a set of boundary offsets, which uniquely determine all the
remaining boundary nodes (brown) in the kirigami pattern. Specifically, we can use the prescribed corner
position b0

0, the information x0
0,0 and φ0−1 together with a chosen boundary offset εb to form a ghost four-bar

linkage containing b0
0, b1

0, x0
0,0 (dotted lines), thereby uniquely determining b1

0. We can then use b1
0 together

with the obtained linkage array and another chosen boundary offset to uniquely determine b2
0, and then

continue the above process to determine the next left boundary node b3
0 and so on. After that, we can start

with another prescribed corner b4
0 to determine the bottom boundary nodes b4

1,b
4
2,b

4
3 one by one. Similarly,

the right boundary nodes and the top boundary nodes can be uniquely determined using the prescribed
corners b4

4 and b4
0 together with the chosen boundary offsets.

array are still not fixed. To determine the coordinates of those nodes, it suffices to further prescribe four
corner positions and a set of boundary offsets. To see this, consider the (m+ 1)× (n+ 1) = 4× 4 kirigami
pattern in Supplementary Figure 5. Once the red linkage boundary nodes are prescribed, the 3× 3 linkage
array (consisting of the red and pink nodes) are uniquely determined by the matrix equation. Suppose the
positions of the four corners b0

0,b
0
4,b

4
0,b

4
4 (the blue nodes) are further prescribed.

Now, we use the prescribed position b0
0 to determine the position of its neighboring boundary node b1

0.
Recall that in the deployment angle field constraints introduced in the main text, φ0−1 is a ghost point for
the angle constraint φ0−1 + 2φ00 + φ01 = 2π at (i, j) = (0, 0) which has already been prescribed when setting
the design matrix earlier. One can therefore consider a ghost four-bar linkage involving b0

0,b
1
0,x

0
0,0 with

φ0−1 being the deployment angle of it (see dotted lines). It is then natural to introduce a boundary offset εb
analogous to the linkage offset εij , which relates the two edge lengths ‖b0

0 − x0
0,0‖ and ‖b1

0 − x0
0,0‖ by

‖b0
0 − x0

0,0‖ = (1 + εb)‖b1
0 − x0

0,0‖. (39)

In particular, setting εb = 0 means that we would like the two edges to be equal in length. Altogether, using
the prescribed corner position b0

0, the prescribed boundary offset εb, as well as the information x0
0,0 and φ0−1

obtained from the linkage array, we can uniquely determine b1
0.

Similarly, we can introduce another boundary offset parameter for the ratio between ‖b1
0 − x0

0,0‖ and
‖b2

0 − x0
0,0‖ and use that to determine b2

0 uniquely. This time, note that the two tile angles at x1
0,0 and the

two tile angles at x0
1,0 should add up to 2π. As the two tile angles at x0

1,0 are uniquely determined in the
obtained linkage array, the sum of the two tile angles at x1

0,0 is known. Also, the deployment angle φ10 is
given by the linkage array. Therefore, the angle θ = ∠(b1

0,x
0
0,0,b

2
0) is uniquely determined, and hence one

10

First maximally
contracted state

Designed
deployed state

Rigid
deployment

Rigid
deployment

Non-rigid
deployment

Second maximally
contracted state

Supplementary Figure 6: An example of contractible but not fully rigid-deployable patterns
obtained by our framework. In the construction of the kirigami pattern, all slits are assumed to be
parallelograms and the contractible angle constraint is satisfied as in main text Figure 2B. If we have ε = 0 for
all linkages, then the resulting pattern will only be rigid-deployable within a certain range in the deployment
process.

can uniquely determine b2
0.

The above process can be continued to determine all left boundary nodes b1
0,b

2
0, . . . ,b

m
0 using the prescribed

corner position b0
0 and the prescribed boundary offsets. Similarly, one can use the prescribed corner positions

bm+1
0 ,bm+1

n+1 ,b
0
n+1 to uniquely determine all bottom boundary nodes bm+1

1 ,bm+1
2 , . . . ,bm+1

n , right boundary

nodes bmn+1,b
m−1
n+1 , . . . ,b

1
n+1, and top boundary nodes b0

n,b
0
n−1, . . . ,b

0
1, respectively. Altogether, prescribing

four corner positions as well as the boundary offsets uniquely determines the final kirigami pattern. In our
experiments, we simply set εb = 0 for all boundary nodes to avoid the occurrence of zig-zag boundary shapes
in the contracted state.

1.5 Rigid-deployability

As described in the main text, the parallelogram four-bar linkage setup does not necessarily yield a fully
rigid-deployable pattern. Recall that in our approach, there are degrees of freedom in the deployment angle
field so that we can specify the state of deployment of the resulting pattern. In the designed deployed pattern,
every slit (i, j) forms a parallelogram with angles in the form (φij , π − φij , φij , π − φij) without degeneracy if

we have 0 < φij < π. However, we may only be able to rigidly morph the pattern from the designed deployed
state within a certain range in the deployment process. In other words, the above (θ, π − θ, θ, π − θ) angle
condition may only hold within a certain range in the deployment process.

For instance, consider the contractible pattern in main text Figure 2B. As shown in the deployment
process in Supplementary Figure 6, the designed deployed pattern is only rigid-deployable within a certain
range in the deployment process. To further contract the pattern from the designed deployed state to a closed
and compact state, we will have to snap some of the parallelogram slits into closed V-shaped slits, which
involves a non-rigid process.

1.6 Self-intersection

As mentioned in the main text, the offsets {εij} of all linkages can be chosen independently as long as they do
not lead to degeneracies or self-intersections. In Section 1.1, we have shown that one should avoid setting
ε = −1 or φ > π for each linkage. Here, we perform a more detailed analysis to characterize the conditions
for self-intersection and how to prevent this.

Consider two adjacent four-bar linkages with fixed seed node positions A,B,C as shown in Supplementary
Figure 7. Suppose the deployment angle of the first linkage is also fixed. As shown in Supplementary
Figure 7A, one can achieve a pattern without any self-intersection if the offset parameter ε for the first

11

A B

A

B
C

A

B
C

Supplementary Figure 7: An illustration of potential self-intersections. Here, A,B,C are the fixed
seed node positions. It can be observed that by changing the offset parameter (and hence the side length ratio)
for the first linkage, one can get (A) a pattern without self-intersection or (B) a pattern with self-intersection.

B CA
ε ε ε

Supplementary Figure 8: Three kirigami patterns with different offset parameters. (A) The compact
reconfigurable kirigami pattern in main text Figure 2B, with the offset parameters ε = 0 everywhere. (B)
Another compact reconfigurable kirigami pattern created using a different set of offset parameters ε while
keeping the boundary node constraints (highlighted in red), corner constraints (highlighted in blue) and
deployment angle field unchanged. Note that there is no self-intersection in the configurations at different
states. (C) A pattern created using more extreme values of ε. Self-intersections can be observed at different
deployment states.

linkage is sufficiently small. By contrast, if a large ε is used so that the first four-bar linkage contains
point C, then self-intersection will occur as shown in Supplementary Figure 7B, no matter what deployment
angle and offset parameters are used for the second linkage. This example suggests that the presence of
self-intersections is closely related to the choice of the offset parameters. More generally, for an m× n linkage
array, we can consider every pair of adjacent linkages and repeat the above analysis. In this case, note that
the corresponding points A,B,C are determined by the previous linkages via the dynamic programming
formulation. Therefore, the occurrence of self-intersections will be related to the ε parameters locally as well as
the parameters for the previous linkages, which makes it difficult to give a universal bound of the parameters
for preventing self-intersections. As an illustration, in Supplementary Figure 8 we consider changing the
offset parameters of the compact reconfigurable kirigami pattern in main text Figure 2B. It can be observed
that for some large values of ε, there can indeed be self-intersections in the resulting pattern at different
deployment states. Nevertheless, we can establish a sufficient condition for getting kirigami patterns without
any self-intersection as follows:

Theorem 1. For any m×n linkage array, denote the nodes of the (i, j)-th linkage (where 0 ≤ i ≤ m− 1 and
0 ≤ j ≤ n − 1) as xij,0,x

i
j,1,x

i
j,2,x

i
j,3 as shown in Supplementary Figure 9. Note that xij,2 = xij+1,0 for all

j < n− 1 and xij,1 = xi+1
j,3 all for i < m− 1. Suppose εij > −1 and the deployment angles satisfy φij ∈ [0, π]

12

xj–1,0
i

x0,1

x0,0

x0,3

x0,2

x1,1

x1,3
x1,2

...
ϕ1ϕ0

0

0

0

0

0
0

0

0

0

... ...

...

...

...

...
xj,0
i

xj–1,3
i

xj–1,1
i

xj,0
i–1

xj,3
i–1

xj+1,0
i–1

xj+1,3
i–1

xj+1,1
i–1

xj+2,0
i–1

xj–1,0
i+1

xj–1,1
i+1

xj–1,2
i+1

xj,3
i

Supplementary Figure 9: An illustration of the bound on the offset parameters for ensuring no
self-intersections. Each parallelogram four-bar linkage consists of four vertices xij,0,x

i
j,1,x

i
j,2,x

i
j,3, with

xij,2 = xij+1,0 for all j < n− 1 and xij,1 = xi+1
j,3 all for i < m− 1. The nodes highlighted in red are the seed

nodes.

for all (i, j). If the condition

max{1 + εij ,
√

(1 + εij + cosφij)
2 + sin2 φij} ≤

dij
‖xij,0 − xij,3‖

(40)

is further satisfied for all (i, j), where dij is the minimum distance between xij,0 and all edges in all linkages

(̃i, :) and (:, j̃) with ĩ < i and j̃ < j (excluding the edges that contain xij,0), then there is no self-intersection
in the entire resulting pattern.

Proof. Consider the (i, j)-th linkage in the m× n linkage array. We first observe that:

• The two vertices xij,0,x
i
j,3 in the (i, j)-th linkage are determined by the linkages {(p, q) : 0 ≤ p ≤

i− 2 and 0 ≤ q ≤ j − 2} (i.e. in the top left corner of the (i, j)-th linkage), {(i, q) : 0 ≤ q ≤ j − 1} (i.e.
in the same column and above the (i, j)-th linkage) and {(p, j) : 0 ≤ p ≤ i− 1} (i.e. in the same row
and on the left of the (i, j)-th linkage).

13

• All linkages {(p, q) : 0 ≤ p ≤ i− 2 and q ≥ j} (i.e. in the top right corner of the (i, j)-th linkage) are
determined by the linkages {(p, q) : 0 ≤ p ≤ i− 2 and 0 ≤ q ≤ j − 1}.

• All linkages {(p, q) : p ≥ i and 0 ≤ q ≤ j − 2} (i.e. in the bottom left corner of the (i, j)-th linkage) are
determined by the linkages {(p, q) : 0 ≤ p ≤ i− 1 and 0 ≤ q ≤ j − 2}.

• All linkages {(p, q) : p ≥ i − 1 and q ≥ j} and {(p, q) : p ≥ i and q ≥ j − 1} (i.e. on the right of the
(i, j)-th linkage or below it) are dependent of the (i, j)-th linkage.

This suggests that to determine a suitable value of εij , we only need to consider the linkages (̃i, :) and (:, j̃)

with ĩ < i and j̃ < j, all of which are not affected by the choice of the parameters in the (i, j)-th linkage.

Now, we want to check whether the (i, j)-th linkage will intersect any other such linkages (̃i, :) and (:, j̃).
By the convexity of the linkage, it suffices to consider whether any of the two new vertices xij,1, x

i
j,2 lie inside

some other linkages. Note that we have

‖xij,0 − xij,1‖ = ‖xij,0 − xij,3‖(1 + εij), (41)

and by the law of cosines we have

‖xij,0 − xij,2‖ =
√
‖xij,0 − xij,3‖2 + ‖xij,0 − xij,1‖2 − 2‖xij,0 − xij,3‖‖xij,0 − xij,1‖ cos(π − φij)

= ‖xij,0 − xij,3‖
√

1 + (1 + εij)
2 + 2(1 + εij) cosφij

= ‖xij,0 − xij,3‖
√

(1 + εij + cosφij)
2 + 1− cos2 φij

= ‖xij,0 − xij,3‖
√

(1 + εij + cosφij)
2 + sin2 φij .

(42)

If the given condition on εij in Equation (40) is satisfied, we have

‖xij,0 − xij,1‖ = ‖xij,0 − xij,3‖(1 + εij) ≤ dij (43)

and

‖xij,0 − xij,2‖ = ‖xij,0 − xij,3‖
√

(1 + εij + cosφij)
2 + sin2 φij ≤ dij . (44)

Therefore, we can draw a semicircle centered at xij,0 with radius dij as shown in Supplementary Figure 9, and
the two new vertices xj,1 and xj,2 will always lie inside the semicircle. Hence, the (i, j)-th linkage will not lie
inside any other linkages (̃i, :) or (:, j̃), where ĩ < i and j̃ < j. Consequently, if the condition is satisfied for
all (i, j), there is no self-intersection in the entire pattern. This completes the proof.

The above theorem indicates that a non-self-intersecting kirigami pattern can be obtained by choosing all
εij to be sufficiently small. However, we remark that the above condition is sufficient but not necessary. For
instance, there can be non-self-intersecting patterns generated using very large values of ε (see Supplementary
Figure 10).

From a more practical perspective, note that ε = 99 gives a 100 : 1 side length ratio, while ε = 0.01 gives
a 1 : 100 side length ratio. Such extreme values of ε are unlikely to be necessary in practical applications,
and so it is reasonable for us to consider the offset parameters within a smaller range. Supplementary
Figure 11 shows a gallery of rigid-deployable, compact reconfigurable heart structures obtained using our
method with different offset parameters, including constant offsets and varying offsets in either [−0.9, 0],
[−0.9, 1] or [−0.9, 10]. From the examples, it can be observed that one can already create a wide range of
non-self-intersecting patterns with very different deployed and reconfigured shapes by considering only a
small range of ε.

14

ε

ε

ε

ε

Supplementary Figure 10: Rigid-deployable, compact reconfigurable square patterns obtained
with different offset parameters. For each pattern, the values of the offsets {εij} and three deployment
snapshots at φ = 0 (first contracted state), φ = π/2 (fully deployed state), and φ = π (second contracted
state) are shown. It can be observed that there is no self-intersection in all patterns.

2 Nonlinear optimization

As shown in the main text, we can produce rigid-deployable, compact reconfigurable kirigami patterns that
morph from a square to a prescribed reconfigured shape via nonlinear optimization.

To obtain the square-to-circle pattern in main text Figure 3B, note that the deployment angle field {φij}
of the second contracted state is already determined by one single angle φ = π. Therefore, we can search for
the optimal set of offset parameters E = {εij} that yields a circular second contracted shape. More specifically,
we optimize the circularity of the boundary points in the second contracted state by solving the following
problem:

min
E

∑
pi∈B

(‖pi − c‖ −meanj‖pj − c‖)2 , (45)

where B is the set of dual boundary nodes in the second contracted configuration and c is the center of the
second contracted configuration. Alternatively, from the isoperimetric inequality we have L2 ≥ 4πA, where L
is the length of any closed curve in R2 and A is the area of the region enclosed by it, and the equality holds

if and only if the region is a circle. We can then optimize the circularity by minimizing
(
L2

4πA − 1
)2

of the

second contracted configuration.

15

A

B

C

D

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

Supplementary Figure 11: A gallery of rigid-deployable, compact reconfigurable heart structures
obtained using our linear inverse design method. For each pattern, the values of the offsets {εij} and
three deployment snapshots at φ = 0 (first contracted state), φ = π/2 (fully deployed state), and φ = π
(second contracted state) are shown. (A) Examples with constant offsets ε = 0,−0.5, 1, 4. (B) Examples
with varying offsets in [−0.9, 0]. (C) Examples with varying offsets in [−0.9, 1]. (D) Examples with varying
offsets in [−0.9, 10].

16

Supplementary Figure 12: Rigid-deployable, compact reconfigurable kirigami patterns that match
a circle at a prescribed deployed state φ = π/4. The deployment paths of two patterns with different
resolution are shown.

More generally, given a set of discrete points D representing the target shape, we can solve the following
optimization problem to minimize the shape difference between the second contracted state and the target
shape:

min
E

∑
pi∈B

‖pi − projDpi‖2, (46)

where projDpi is the projection of pi onto the target shape D. This yields the patterns in Section 3 that
morph from a square to a target second contracted shape.

3 Results

In main text Figure 3A, we showed a rigid-deployable, compact reconfigurable kirigami pattern that matches
a circle at the prescribed deployed state φ = π/2. In Supplementary Figure 12, we show two other patterns
obtained by our additive design framework that match a circle at another prescribed deployed state φ = π/4.

Supplementary Figure 13 shows more results of rigid-deployable, compact reconfigurable square kirigami
patterns approximating a prescribed reconfigured shape obtained using our nonlinear optimization framework.
Note that by using different pattern sizes and different optimization solvers (scipy.optimize.least squares

and scipy.optimize.minimize etc.), one can obtain various results that achieve the same shape change. For
instance, Supplementary Figure 13A shows several patterns achieving a square-to-circle transformation. Here
we remark that the angles at half of the boundary points in the second contracted state should always add
up to π for rigid-deployable quad kirigami patterns, and hence the second contracted configuration cannot
match a circle perfectly at those points. Nevertheless, by increasing the pattern resolution, the approximation
becomes more accurate. By contrast, in case the target shape consists of zero curvature curves only (such as
a parallelogram), it is possible to produce kirigami patterns that morph from a square to the target shape
(Supplementary Figure 13B). Overall, as shown in Supplementary Figure 13C, our method is capable of
producing kirigami patterns that morph from a square to different target shape with different curvature
properties accurately.

Besides starting with a perfect square, we can also start with a rectangle and search for kirigami patterns
achieving a prescribed shape change. Supplementary Figure 14 shows examples that morph from a rectangle
to either a circle or a mixed curvature shape in the second contracted state. We remark that for the mixed
curvature shape, the approximation near the four corners of the target shape is not perfect due to the

17

A

B

C

Supplementary Figure 13: Rigid-deployable, compact reconfigurable kirigami patterns obtained
using our framework. For each example, the first contracted shape is enforced to be a perfect square and
a target shape for the second contracted state is prescribed as the optimization objective (highlighted in
red). (A) Various square-to-circle patterns. (B) Square-to-parallelogram patterns with different resolutions.
(C) Kirigami patterns that morph from a square to a rectangle (zero curvature), an egg (positive curvature),
and a star (mixed curvature) respectively.

rectangular shape constraint for the first contracted state.

18

Supplementary Figure 14: Rigid-deployable, compact reconfigurable kirigami patterns that morph
from a rectangle to a prescribed target shape.

Supplementary Figure 15: Designing kirigami patterns with partial linkage array. (Left) A deployed
kirigami pattern produced using our proposed approach, with no constraints enforced in the missing elements.
(Right) The contracted state of the pattern.

While we have been considering full m × n linkage arrays so far, it is possible to apply the proposed
approach for the case where the number of elements for the strips is not equal. Specifically, we can simply
treat the missing linkages as virtual linkages without any constraints enforced in their length and angle
parameters, and then construct the design matrix and create a kirigami pattern as usual (see Supplementary
Figure 15 for an example).

19

Supplementary Figure 16: 15 random square kirigami structures generated using our linear inverse
design method. For each pattern, three deployment snapshots at φ = 0 (first contracted state), φ = π/2
(fully deployed state), and φ = π (second contracted state) are shown.

Supplementary Figure 17: Assessing the diagonal ratio of different configurations. We consider the
two diagonals of each configuration (highlighted in red) and calculate the ratio rd of their length.

4 Analysis of random kirigami patterns

As described in the main text, 10000 random kirigami patterns were generated using our proposed method.
Supplementary Figure 16 shows 15 examples of the random kirigami patterns generated, from which we can
already see a large geometric variation. To quantify the geometric variation, several quantities are considered.

20

ra

φ = π/4

pa

tte
rn

s

φ = π/2 φ = 3π/4

rl

rd

φ = π/4 φ = π/2 φ = 3π/4 φ = π

rd rd rd

rl rl rl

φ = π/4 φ = π/2 φ = 3π/4 φ = π

ra ra

pa

tte
rn

s

pa
tte

rn
s

A

B

C

Supplementary Figure 18: Statistics of the 10000 random kirigami patterns. (A) Histograms of the
diagonal ratio rd for different deployment angle φ. (B) Histograms of the side length ratio rl for different φ.
(C) Histograms of the area ratio ra for different φ.

4.1 Diagonal ratio

To assess the shape change of a random kirigami pattern at different deployment states, we consider the two
diagonals of the pattern and compute the diagonal ratio rd = p/q, where p is the length of the longer diagonal
and q is the length of the shorter diagonal (see Supplementary Figure 17). For the random experiments shown
in main text Figure 3C, we start with a square pattern and hence the diagonal ratio of the first contracted
state is always 1. Throughout the deployment, the diagonal ratio rd changes, where a larger rd indicates a
larger shear in the overall shape. Supplementary Figure 18A shows the histograms of rd, from which it can
be observed that rd increases as φ increases. The variation of rd also becomes larger as the structures morph
from the square to the second contracted shape.

4.2 Side length ratio

Another way to assess the shape change of the random kirigami patterns is to consider the length ratio of
the four corners of the patterns. In particular, note that the quadrilateral formed by the four corners of a
random kirigami pattern is a perfect square at the initial contracted state, i.e. the lengths of the four sides are
identical. As the structure deploys, the four side lengths may become different. One can therefore consider

21

rl (π)

r d
 (π
)

rl (π/2)

r d
 (π
/2
)

r l
 (π
)

rl (π/2)ra (π/4)

r a
 (π
/2
)

A B

C D

Supplementary Figure 19: Relationship between different quantities. (A) A scatter plot of the area
ratio ra(π/4) versus the area ratio ra(π/2). (B) A scatter plot of the side length ratio rl(π/2) versus the
side length ratio rl(π). (C) A scatter plot of the side length ratio rl(π/2) versus the diagonal ratio rd(π/2).
(D) A scatter plot of the side length ratio rl(π) versus the diagonal ratio rd(π).

the side length ratio rl = max {a, b, c, d}/min {a, b, c, d}, where a, b, c, d are the four side lengths. A larger rl
indicates that the pattern deviates more from a rhombus. Supplementary Figure 18B shows the histograms
of rl, from which it can again be observed that the value and variation of rl increase as φ increases.

4.3 Area ratio

We can also consider the overall area of a kirigami pattern, possibly including the negative spaces. Denote
the overall area ratio by ra (note that the initial area is 1). For rigid-deployable, compact reconfigurable
quad kirigami structures, it is easy to see that the two contracted states corresponding to φ = 0 and φ = π,
where φ is the only DOF in the deployment angle field, always have the same total area as they are formed
by the same set of quads. In our simulations, the random structures always form a unit square and hence we
have ra(0) = ra(π) = 1.

To consider the area of the structures at a certain deployed state, note that the four-bar linkage negative
spaces are parallelograms. Hence, the area of each negative space can be expressed as

‖xij,0 − xij,1‖‖xij,0 − xij,3‖ sinφij = ‖xij,0 − xij,3‖2(1 + εij) sinφij ≤ ‖xij,0 − xij,3‖2(1 + εij). (47)

Consequently, ra always attains its maximum at φ = π/2 (recall that φij = φ or π − φ for all i, j). In other

22

words, the maximum area is attained when all negative spaces are rectangles. Supplementary Figure 18C
shows the histograms of ra at φ = π/4, π/2, 3π/4. Note that at different deployment states, the variation in
ra does not change significantly.

4.4 Relationship between the quantities

We first consider the relationship between the same quantity at different stages of the deployment. As shown
in main text Figure 3C, the diagonal ratio rd increases linearly as the deployment angle φ increases. From
the scatter plot in Supplementary Figure 19A, we can clearly see that the area ratio ra increases linearly in φ.
We can also see a linear increasing trend in the side length ratio rl from the scatter plot in Supplementary
Figure 19B.

Next, we consider the relationship between different quantities. As shown in main text Figure 3C, the
diagonal ratio rd and the area ratio ra at the fully deployed state φ = π/2 are positively correlated. On the
contrary, as shown the scatter plot in Supplementary Figure 19C–D, there is no clear relationship between
the side length ratio rl and the diagonal ratio rd at either the fully deployed state φ = π/2 or the second
contracted state φ = π.

23

Truss

t slot

hslot

A B C

D E F

Supplementary Figure 20: Digital design preparation for physical model fabrication via 3D printing.
(A) A vector image of the rigid-deployable heart kirigami pattern in main text Figure 2C imported into
3D modeling software. (B) An extrusion out of plane of the kirigami pattern. (C) An example of dividing
kirigami pattern into symmetric subunits to reduce the overall processing time.(D) Slots are added to the
individual kirigami tiles to later insert hinges. Circular pockets on the interior end of the slot allow clearance
for tweezers to aid in hinge installation. (F) Temporary trusses are added at the negative spaces to fix the
alignment of the model during assembly.

24

A B C

D E

GF H

Supplementary Figure 21: Assembly and hinge installation of a 3D printed physical model. (A)
A single textile hinge prior to installation and two mirrored halves of A 3D printed model of the partially
deployed configuration of the rigid-deployable heart kirigami pattern in main text Figure 2C. Two variants of
clearance pockets are shown between the two halves. (B) Installation of a single hinge across two kirigami
tiles. (C) A closeup view of hing installation aided by tweezers. (D) A closeup view of single hinges installed
across two kirigami tiles as well as examples of textile wound through the interior pockets of multiple adjacent
tiles. (E) Heart kirigami pattern with all hinges installed. (F) Partially installed caps to cover hinge slots
and clearance pockets. (G) Heart kirigami assembly with all caps installed. (H) Printed kirigami heart
structure with one of the pairs of temporary trusses removed.

25

C

A B

C D E

Supplementary Figure 22: Mold preparation process for a deployed configuration of the rigid-
deployable square-to-circle kirigami pattern in main text Figure 4. (A) A vector image use to
create the top layer of a laser cut mold of the square-to-circle kirigami pattern. (B) A vector image use to
create the bottom layer of a laser cut mold of the square-to-circle kirigami pattern. (C) Picture of a partially
assembled laser cut acrylic mold made using the vector images in panels A and B. The mold is an inversion
of the final geometry that will be molded. (D) Numbers and lines etched in the mold parts help guide the
location of parts and are easier to see when colored with a silicone compatible dye. (E) The mold is held
together with press-fit pins and can be fully assembled and disassembled by hand without the aid of tools.

26

A B

C

D E F

G H I

C

Supplementary Figure 23: Physical model fabrication via rubber molding with embedded fabric
hinges in a laser cut mold based on a deployed configuration of the rigid-deployable square-to-
circle kirigami pattern in main text Figure 3B. (A) Spool of cotton twill tape used to create hinges.
(B) The twill tape is cut into pieces to create the hinges between adjacent kirigami tiles. (C) The hinges are
dipped in rubber and inserted in the gap between mold part, extending into the adjacent cavities. Two pairs
of tweezers are used to pull the hinges into place. (D) Silicone rubber is poured into the mold. (E) The
embedded hinges are visible when molded into translucent rubber. (F) Rubber that overflowed the mold
creates a web between the kirigami tiles and must be trimmed away for the hinges to rotate. (G) The soft
kirigami sheet in the square configuration with embedded hinges visible in translucent rubber. (H) The soft
kirigami sheet of the square-to-circle pattern in mid deployment state. (I) The soft kirigami sheet of the
square-to-circle pattern in the circle configuration.

27

	SpringerNature_NatComputSci_448_ESM.pdf
	Linear kirigami design
	Linkage design
	Linkage strips
	Linkage arrays
	Determining the boundary node positions in the final kirigami pattern
	Rigid-deployability
	Self-intersection

	Nonlinear optimization
	Results
	Analysis of random kirigami patterns
	Diagonal ratio
	Side length ratio
	Area ratio
	Relationship between the quantities

